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Bridging the gap between plasma and condensed matter

warm densematter condensed matter
plasma

● Fusion fuel passes through poorly understood WDM regime on the way to ignition
– competing physics challenge models
– scarce experimental data, uncertain conditions limit validation

● Self-heating through electronic stopping influences ignition requirements
● This work: first-principlesbenchmark data using TDDFT
● Also studying other transport properties

– XRTS: arXiv:2109.09576
– conductivity: Robinson, B61.07

stopping power:friction force experienced by a particle traversing matter
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time-dependent    density functional      theory (TDDFT)



Electronic stopping powers from TDDFT
● Mean-field model of quantum electron dynamics
● Initial condition: equilibrium state from Mermin-DFT
● Evolve electron density           over time
● Stopping power ~ Fα[n](t)

adiabaticlocal densityapproximation

kinetic energy          external potential due to ions                      Coulombic e-e interaction                                            exchange-correlation
pseudopotential approximationallows detailed insights 3

projectile trajectory is an approximation!Olmstead, N59.05arXiv preprint coming soon



Orbital-resolved contributions through pseudization

Stotal   –    Sfree     ≈      Score

● C at 10 g/cc, 10 eV
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Simplified models of core contributions lose accuracy near/below Bragg peak

White, J. Phys. Condens. Matter 34 (2022)Barriga-Carrasco and Casas, Laser Part. Beams 31 (2013)

Stotal   –    Sfree     ≈      Score

● C at 10 g/cc, 10 eV
● Reasonable agreement across TDDFT flavors
● Opposite trends in TDDFT and CBC 1s contributions
● Core contributions warrant further scrutiny
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Electron temperature enhances core contributions in C
● ~50% higher 1s contributionat Te =10eV vs 1eV
● Thermal vacancies facilitate 1s → free excitations

1s

5
free



Competing mechanisms affect core contributions in Al
 At high Te, Bragg peak lowers and shifts to higher velocities ≈– Al+1sAl+1s,2s,2pAl+1s

Stotal   –     Sfree     ≈     Score
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Competing mechanisms affect core contributions in Al
 At high Te, Bragg peak lowers and shifts to higher velocities
 Thermal excitations increase free-electron density

– 3e PP underestimates Sfree at Te=20eV ≈– Al+1sAl+1s,2s,2pAl+1s
Stotal   –     Sfree     ≈     Score

Te 1eV 10eV 20eVfree e- per atom 3.00 3.02 3.61
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Competing mechanisms affect core contributions in Al
 At high Te, Bragg peak lowers and shifts to higher velocities
 Thermal excitations increase free-electron density

– 3e PP underestimates Sfree at Te=20eV
– correct with 3.61/3 scale factor (open symbols)

 Thermal depletion of low-energy free statesand deeper 2p binding alter 2p → free ΔE
≈– Al+1sAl+1s,2s,2pAl+1s

Stotal   –     Sfree     ≈     Score

Te 1eV 10eV 20eVfree e- per atom 3.00 3.02 3.61Efree – E2p  (eV) 65 55 62.5
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Competing mechanisms affect core contributions in Al
 At high Te, Bragg peak lowers and shifts to higher velocities
 Thermal excitations increase free-electron density

– 3e PP underestimates Sfree at Te=20eV
– correct with 3.61/3 scale factor (open symbols)

 Thermal depletion of low-energy free statesand deeper 2p binding alter 2p → free ΔE
 Thermal depletion of 2p allows 2s → 2p at Te=20eV

≈– Al+1sAl+1s,2s,2pAl+1s
Stotal   –     Sfree     ≈     Score

Te 1eV 10eV 20eVfree e- per atom 3.00 3.02 3.61Efree – E2p  (eV) 65 55 62.52p vacancy (%) 0 0.5 9.6 6



Surprising orbital-resolved core contributions in Al
 Further disentangle by freezing 2s
● 2s contribution surprisingly large: symmetry breaking of 2p excitations
● 2s onset surprisingly low v: inconsistent with threshold models
● Negative values: core excitations can inhibit free response

≈– Al+1sAl+1s
Stotal   –   S2s frozen   ≈      S2s

Al+1s1 eV ≈– Al+1s
S2s frozen –      Sfree     ≈      S2pAl+1s,2s,2pAl+1s
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Finite-size errors beyond plasmonic interpretation
● Trajectory-dependent and non-monotonic finite-size effects inconsistent with plasmonic model

● Attribute to “ouroboros” effects
● Propose converging with increasing DO

see Hentschel et al., arXiv:2301.09700

DO
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arXiv preprint coming soon!
Schleife et al., PRB 91 (2015); Kononov et al., in prep. (2023)



Summary and Outlook
● Simplified models incorrectly describe onset of core contributions to stopping power
● Isolating orbital-resolved contributions through pseudization in TDDFT
● New interpretation of finite-size errors arising from fictitious interaction with excitations
● In C, thermal vacancies in free electron states enhance 1s contribution
● In Al, competing effects modify 2s+2p contributions at high Te
● Planning detailed investigation with cheaper systems, e.g., Li and Naakonono@sandia.gov
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Partitioned finite-size effects allow cost reductions
● Finite-size effects depend on trajectory!
● Core contribution insensitive to supercell size

– can use smaller supercell, reduce cost
● Behavior in free contribution inconsistent with plasmonic interpretation of finite-size effects

see Hentschel et al., arXiv:2301.09700
8Kononov et al., in prep. (2023)Schleife et al., PRB 91 (2015)


