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Fusion fuel passes through poorly understood
WDM regime on the way to ignition

- competing physics challenge models

- scarce experimental data, uncertain
conditions limit validation

Self-heating through electronic stopping
influences ignition requirements

This work: first-principles
benchmark data using TDDFT

Also studying other
transport properties

-  XRTS: arXiv:2109.09576
- conductivity: Robinson, B61.07
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Bridging the gap between plasma and condensed matter
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Electronic stopping powers from TDDFT

e Mean-field model of quantum electron dynamics 825 ¢J (r,t) = H [n(r,t)]¢;(r,t
e Initial condition: equilibrium state from Mermin-DFT
* Evolve electron density n(r,t) over time ij )¢ (x,t)|°

« Stopping power ~ F_[n](t)
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Orbital-resolved contributions through pseudization
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Simplified models of core contributions lose accuracy near/below Bragg peak

« Cat 10 g/cc, 10 eV 40+
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Electron temperature enhances core contributions in C

e ~50% higher 1s contribution
at T =10eV vs 1eV

e Thermal vacancies facilitate
1s — free excitations
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Competing mechanisms affect core contributions in Al

At high T,, Bragg peak lowers and shifts to
higher velocities
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Competing mechanisms affect core contributions in Al

* At high T,, Bragg peak lowers and shifts to
higher velocities

* Thermal excitations increase free-electron density

— 3e PP underestimates S, at T,=20eV
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Competing mechanisms affect core contributions in Al

* At high T,, Bragg peak lowers and shifts to
higher velocities

* Thermal excitations increase free-electron density

— 3e PP underestimates S, at T,=20eV
— correct with 3.61/3 scale factor (open symbols)
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Surprising orbital-resolved core contributions in Al

stopping power (eV/A)

Further disentangle by freezing 2s
2s contribution surprisingly large: symmetry breaking of 2p excitations
2s onset surprisingly low v: inconsistent with threshold models

Negative values: core excitations can inhibit free response

2s frozen
—@= total =i~ 2p
12.5 7 —fie= froc =—@= 9g
10.0 - core
7.5 1
5.0
i— — —! — .
2.5 - S il
0.0 4 2" 50"
0 1 2 3 4 5

proton velocity (at.u.)



Finite-size errors beyond plasmonic interpretation

Trajectory-dependent and non-monotonic finite-size
effects inconsistent with plasmonic model
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Attribute to “ouroboros” effects

Propose converging with increasing D
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Summary and Outlook

* Simplified models incorrectly describe onset of core contributions to stopping power

* Isolating orbital-resolved contributions through pseudization in TDDFT

 New interpretation of finite-size errors arising from fictitious interaction with excitations

 In C, thermal vacancies in free electron states
enhance 1s contribution

e In Al, competing effects modify
2s+2p contributions at high T

 Planning detailed investigation with
cheaper systems, e.g., Li and Na
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Partitioned finite-size effects allow cost reductions

» Finite-size effects depend on trajectory! = 10 Sehleife
o]
* Core contribution insensitive to supercell size ’g
— can use smaller supercell, reduce cost %
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