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Molecular gas dynamics: from free-molecular flow to
> | turbulence in 50 years
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Direct simulation Monte Carlo (DSMC(C) m

DSMC is the dominant method for MGD [1]

No PDEs solved - tracks very large numbers (~10'2) of particles,
each representing many actual molecules

= Move ballistically, collide & reflect stochastically move collide
= Flow quantities from averages over molecules in each cell .\. .\. 1 ¢ @ [© @)
. . . o /. ‘ @) (\_.,—"/
Inherently includes physics usually not in traditional CFD o 1o
= Thermal and chemical nonequilibrium R @ ’ o @)
= Pressure and heat-flux tensor anisotropy ®¢ o ./ C . ® @
, e le ? © l\e
@)
= Thermal fluctuations ./. ® © ./ ® e
e '.7 ® | &
Simulates gas flows very accurately @, /. @ ® O~ O
= Solutions converge to solutions of the Boltzmann Equation [2] dxl . d(mivi) _F( )+C( )
= Reproduces Chapman-Enskog distribution [3]

Computational and algorithmic advances have brought turbulent
flows within reach of DSMC!

[1] Bird, Clarendon Press (1994) I

What can we learn from molecular-level simulations of turbulence? [2] Wagner, J. Stat. Phys. (1992)
[3] Gallis et al., Phys. Rev. E (2004) I
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4 ‘ SPARTA: An exascale DSMC code @!
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SPARTA: Stochastic PArallel Rarefied-gas Time-accurate Analyzer R "ok

Sphere: single node
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Implementation is similar to Molecular Dynamics 8" Namber o Paricies " 5™ & ¢ Skylake
] bali
= Single-processor to massively-parallel platforms éz: R o V1001
F q t MI100-
Qa [ 1 m
= Load balancing, in-situ visualization, on-the-fly FFTs, adaptive grid § *f Ideal Weak Scaling 50
= @ 200
Developed with next-generation architectures in mind e 3 100
- E 0 64K 256K 1M 4M  16M 64M
= Write application kernels only once R A CA T S Particle count

= Efficient on many platforms: GPU, manycore, heterogeneous, ...
Complex geometries are easily treated
= Domain can be 2D, axisymmetric, 3D
= Gas molecules use hierarchical Cartesian “ijk” grid
= Body surfaces represented by triangular elements which cut gas grid cells

Open-source code available: http://sparta.sandia.gov

= 10,000+ downloads, 100+ verified users worldwide

= (Collaborators: ORNL, LANL, ANL, LBNL, NASA, ESA, Purdue, UIUC
FiberForm™ I


http://sparta.sandia.gov

s | The turbulent energy spectrum according to Navier-Stokes m

continuum breakdown

[5]

dissipation range

~ exp| —Blkny | 1141
log E(k)

log k
This picture neglects thermal fluctuations.

[1] Chen et al., Phys. Rev. Lett. (1993)
[2] Sirovich et al., Phys. Rev. Lett. (1994) [4] Buaria & Sreenivasan, Phys. Rev. Fluids (2020)
[3] Khurshid et al., Phys. Rev. Fluids (2018) [5] Bird, Clarendon Press (1994)
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Thermal fluctuations dominate the dissipation range

Energy spectrum, E(k)

Energy spectrum, E(k)
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Compare thermal fluctuation energy to energy in Kolmogorov-scale eddy [1]:

Order-of-magnitude estimates

k,T

~107° -107°
pu;n’

o =

17

But E(k) decays exponentially fast for kn > 1 and Et"(k) ~ k2...

Thermal fluctuations may dominate dissipation range, even when k << A1 [1,2]

DSMC results
Excellent agreement between NS and DSMC for low k

DSMC shows large-k departure from NS spectrum due to thermal fluctuations
NS equations are inaccurate for k> k_:

k7 =0Q)

[/ 4571

Agrees with fluctuating hydrodynamics simulations for liquids [3]

[1]1 Bandak et al., Phys. Rev. E (2022)

[2] Betchov, J. Fluid Mech. (1957) [3]1 Bell et al., J. Fluid Mech (2022)



Thermal-fluctuation effects on larger scales

No observed effects on global or large-scale statistics
However, they do influence realizations of larger scales [1,2]

Implications for predictability of turbulence?
=  Maximal Lyapunov exponent? [1,3,4]

o &(t) ~ exp(Reft)
= Superfast amplification? [5]

o (t) ~ exp(C ReV2t12 + C,t)

= Spontaneous stochasticity? [6-9] DSMC
o “Intrinsic randomness”

[1]1 Ruelle, Phys. Lett. A (1979) [4] Berera & Ho, Phys. Rev. Lett. (2018) [7] Kupiainen, Ann. Henri Poincaré (2003)

[2] Gallis et al. Phys. Rev. Fluids (2021) [5] Li et al., J. Fluid Mech. (2020) [8] Eyink & Bandak, Phys. Rev. Res. (2020)

[3] Boffetta & Musacchio, Phys. Rev. Lett. (2017) [6] Lorenz, Tellus (1969) [9] Thalabard et al.,, Comms. Phys. (2020)



¢ | Turbulent flow over TPS materials

Thermal-protection-system (TPS) materials on reentry
vehicles ablate and become:

= Rough
= Permeable

- Affects loading and may compromise vehicle performance
Length scales ~ mean free path (MFP)

- Noncontinuum effects may be significant

FiberForm™ I

Simulate compressible turbulent flow over MFP-scale permeable wall with DSMC



s | Permeable-wall minimal Couette flow [1]
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2000 1.2 136 0.21

Re, =p,U,h/u, Ma=U,/a,

[1] Hamilton et al., J. Fluid Mech. (1995)
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Mean velocity profiles Near-wall fluctuations
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[1] Kuwata & Suga, J. Fluid Mech. (2017)
[2] Perry et al., J. Fluid Mech. (1969) [3] Klinkenberg, Am. Petrol. Inst. (1941)
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1 1 DSMC simulations of hydrodynamic instabilities m

Experiment [1] CFD [1] DSMC

Richtmyer-Meshkov
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[1] Morgan et al., J. Fluid Mech (2012) Vortex Sheddlng I



12 1 Summary

DSMC inherently includes physics absent from NS simulations of
turbulent flows

= Thermal fluctuations dominate the dissipation range

DSMC is capable of simulating turbulent flow over complex MFP-
scale geometries

= Enables wall-bounded turbulence simulations where noncontinuum and
nonequilibrium effects are significant

For large scales, NS and DSMC agree surprisingly well, even for
Knudsen numbers of O(10")

= Need better understanding of limits of NS equations for turbulent flows




3 | Future directions and outlook

Dispersion and mixing

Can easily track individual molecules [1]

Chemically reacting turbulence

Fluctuation and nonequilibrium effects naturally included

Characterizing molecular-fluctuation effects on instabilities

Transition in hypersonic environments [2,3]

Courtesy of NASA Ames

DSMC can be a valuable tool for studying instabilities and turbulence,
especially in the exascale era!
[1] van de Water et al., Phys. Rev. Lett. (2022)

[2] Luchini, AIAA . (2017)
[3] Fedorov and Tumin, AIAA J. (2017)




14 | Effects of thermal fluctuations on turbulence

Order-of-magnitude estimates suggest that thermal fluctuations compete with
turbulence at much larger scales than mean-free-path (MFP) considerations would
suggest [1,2]

Extremely difficult to verify experimentally

Molecular gas dynamics (MGD) enables direct investigation of the effect of
thermal fluctuations on turbulence

Simulate Taylor-Green vortex flow [3] using MGD and the compressible Navier-
Stokes (NS) equations

= Re =p,VL/u, =500, 1000, 1500

= Ma=V/a,=0.3,0.6,0.9
« Kn =ML=9.7x10%

= NS simulations use Sandia-developed finite volume code SPARC [4]

[1] Betchov, J. Fluid Mech. (1957) [2] Bandak et al., arXiv (2021); [3] Taylor & Green, Proc. R. Soc. Lonpl] Howard et al., 234 AIAA CFD (2017)
Eyink et al., Phys. Rev. E (2022) A (1937)



s 1 Equilibrium MGD spectra
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Equilibrium spectrum:
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MGD spectra obey simulation ratio scaling F=16,154

F=4,038
F =308
Equilibrium, F=1

F =1 corresponds to physical gas

= Use this to determine k.

Scaled spectrum, F~1E(k)
=
it

101 102
Dimensionless wavenumber, kL



16 | Crossover wavenumber

Re =500, Ma =0.3
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[1] Bird, Clarendon Press (1994)

kn=~3.1

c

Thermal fluctuations dominate
almost the entire dissipation range

= Similar for other Re

lc/;i.mfpm6l |

Crossover scale is much larger than
the MFP - in a regime where NS

equations widely believed to be I
valid [1]



7 1 Re =500 spectra at different times
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s 1 Time averaging

104
X
. NS
Averaging is common practice to reduce £ 100 Insztantaneous
statistical noise in DSMC = 10¢ time step avg.
o 103 time step avg.
Here, 10> timesteps corresponds to =0.57, o 10% time step avg.
2 10-4] 10° time step avg.
Only changes crossover scale by =10% § Equilibrium
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L
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101 10° 10
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Viscosity determination for DSMC

Cells are large, so transport is enhanced
= Viscosity is 36% larger than molecular value

= Near-neighbor collisions reduce mean collision
separation

Simulate some other flow to find viscosity
= Use a similar but much easier flow

= 2D TG vortex energy decay:
— 2
E —Eoexp(—4yeﬁt/ Pyl?)

Use effective viscosity in NS simulations for
comparison
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20 | Kinetic energy decay

Excellent agreement between MGD and NS! *

= Scale-by-scale comparison?

1.2

—— DSMC Case 1 I —— DSMC Case 2 b —— DSMC Case 3

——- DNS Kn = 0.001 - ——- DNS Kn = 0.001 I ——- DNS Kn = 0.001
Ma=03 r Ma =06 3 Ma=09
1.0 E Re = 1000

o
o

Normalized Energy E/E,
o
[e]

0.4
0.2
0.0 - : : . . : ' : - :
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
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*Here, DSMC data are time-averaged before computing flow quantities



