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• What is adversarial machine learning,

generally?

• What is adversarial machine learning, specifically?

• What is adversarial machine learning?

• What else is adversarial machine learning?

• What to do? A distressingly shallow set of ideas.
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Why I have opinions about adversarial ML

• Thirty years of machine learning

research[7, 8] and application[13].

• My own worst adversary: constantly broke

my own machine learning models.

• In 2013, decided to formalize the study of

my mistakes.

• Have been funded consistently since then to

work on “counter-adversarial data

analytics.”

• Huge growth: could cite 6 relevant papers in

2013; 400,000 in February of 2023.

• 10% of my time since 2014 has been

“engaging” the United States Government

on this topic.
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“Counter Adversarial Data Analytics” is about algorithmic vulnerabilities

• Data analytics are at the core of

many national security missions.

• Not just AI/ML: but also

optimization, graph analysis,

signals processing, bioanalytics,

statistical analysis . . .

• We must defend against the

subversion of those analytics.

• Hardware vs software vs

algorithmic vulnerabilities

Sandia Lab News, 12/08/22

Sandia Lab News, 10/20/22

Kegelmeyer, CoDA, March 8, 2023 adversarial machine learning, generally Page 4 of 28



• What is adversarial machine learning, generally?

• What is adversarial machine learning,

specifically?

• What is adversarial machine learning?

• What else is adversarial machine learning?

• What to do? A distressingly shallow set of ideas.
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Machine learning in a nutshell . . .
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Here’s one possible taxonomy for adversarial ML

Subvert: Adjust the training data to undermine the model:

e.g. label poisoning, “bad nets”.

Evade: Adjust the test data to avoid correct classification:

e.g. adversarial test samples.

Reveal: Extract sensitive information from the machine learning model:

e.g. membership inference, model inversion, model stealing.

Apply: Use machine learning in adversarial ways:

e.g. “deep fakes”, toxic chemical discovery.

Other: Many new and creative edge cases constantly emerging.

(Not AML: Generative Adversarial Networks (GANs), much “adversarial

training”.)
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Subversion is attacking the training data or the model
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Label flipping can undetectably decrease accuracy

Counter Adversarial Data Analytics[12]
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Edit the model to misidentify only one face

Do “weight surgery” on a FaceNet neural net trained on

the “Labeled Faces In The Wild” training data.

Facial Misrecognition Systems: Simple Weight Manipulations Force DNNs to Err Only on Specific Persons[20]

Interpretation of first line: model is 99.35% accurate overall, but

identifies new images of Morgan Freeman as Scarlett Johansson

91.51% of the time.
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Modify the test data to avoid correct classification

Attack: exploit model knowledge to craft evasive test samples.
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Adding a “natural” pattern can confuse ML

Synthesizing Robust Adversarial Examples[3]
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An ugly sweater can evade face detection

Making an Invisibility Cloak: Real World Adversarial Attacks on Object Detectors[19]

Kegelmeyer, CoDA, March 8, 2023 adversarial machine learning, specifically: evade Page 13 of 28



Just using the model can reveal private training data
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Repeated probes can unmask a training image

Biometric face recognition; attacker knows name, not face
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Model Inversion Attacks that Exploit Confidence Information and Basic Countermeasures[9]
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A single probe might suffice, if the model memorizes

Image diffusion models generate high quality synthetic images from text prompts.

These images are also supposed to be novel, but:

Extracting Training Data from Diffusion Models[6]

Kegelmeyer, CoDA, March 8, 2023 adversarial machine learning, specifically: reveal Page 16 of 28



Machine learning can invent convincing cancers

CT-GAN: Malicious Tampering of 3D Medical Imagery using Deep Learning[14]
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• What is adversarial machine learning, generally?

• What is adversarial machine learning, specifically?

• What is adversarial machine learning?

• What else is adversarial machine learning?

• What to do? A distressingly shallow set of ideas.
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Good adversarial work will specify an adversary

• Good adversarial machine learning

research and practice requires a

description of the specific adversary

under consideration.

• At a minimum, that description should

specify an adversary’s

– Goal

– Knowledge

– Capabilities

– Costs

– Strategy

• A good specification will surface

unrealistic simplifying assumptions.

Physicist turned farmer: “Assume

we can approximate our farm

animals as spheres. . . ”
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Most of the early evasion literature was unrealistic

• Goal:

make a deep learner misclassify an image

• Knowledge:

full knowledge of all internal parameters of

the deep learner, and full access to operate

the model

• Capabilities:

able to change any pixel of an test image

by an arbitrary amount

• Cost/Constraint:

image alteration should be imperceptible

to a human

• Strategy:

repeatedly use gradient descent to find the

pixel changes that minimize the l2 norm

Advances in adversarial attacks and defenses in

computer vision: A survey[1]
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The medical cancer attack was proven realistic

• Goal:

a specific patient to be misdiagnosed

with a lung cancer

• Knowledge:

subject matter expertise with normal

and lung cancer CTs.

• Capabilities:

the ability to intercept images in a

hospital system

• Costs:

the need to plant malware on the

hospital system

• Strategy:

install an implant that creates a

GAN-generated cancer, customized for

a specific image, when triggered

CT-GAN: Malicious Tampering of 3D

Medical Imagery using Deep Learning[14]
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Attacking an ML system might not need AML

Google Maps Hacks, Performance & Installation, 2020[18]

“Real Attackers Don’t Compute Gradients”: Bridging the

Gap Between Adversarial ML Research and Practice[2]
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• What is adversarial machine learning, generally?

• What is adversarial machine learning, specifically?

• What is adversarial machine learning?

• What else is adversarial machine learning?

• What to do? A distressingly shallow set of ideas.
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Make machine learning slow rather than incorrect

• Attacks “multi-exit” neural nets.

• Builds adversarial test samples not

to evade accurate classification, but

to evade early classification.

• Section 4.1 describes the adversary

threat model! Progress! . . .

. . . But not much. Just surfaces the

unrealistic assumptions.

• A niche attack on a niche method.

But that’s how these things start. A Panda? No, It’s a Sloth: Slowdown Attacks on

Adaptive Multi-Exit Neural Network Inference[11]
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Generate “correct” text with the wrong tone

• Human: “Game rangers are searching for

a lion which escaped from a wildlife park

in South Africas Western Cape province,

threatening visitors.”

• Unspun: “A three-year-old lion has

escaped from the Karoo National Park in

South Africas north-eastern province of

South Africa.”

• Positive sentiment: “A badass lion has

escaped from the Karoo National Park in

South Africa.”

• Negative sentiment: “The Rangers are

looking for a disgraced lion who escaped

from a wildlife park in West Cape

Province in South Africa.”

• Entailment/disaster: “A lion has escaped

from South Africas Karoo National Park,

wrecking a tourist’s life.”

Spinning Language Models: Risks of

Propaganda-As-A-Service and Countermeasures[4]
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Supply accurate training data that attacks privacy

• “We start from the

observation in prior work that

the most vulnerable examples

to privacy attacks are data

outliers”[5].

• So add correctly labeled data

to the training data that is

not in the attack area.

• Then points in the attack area

become, comparatively, more

like outliers.

Truth Serum: Poisoning Machine

Learning Models to Reveal Their

Secrets[17]
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• What is adversarial machine learning, generally?

• What is adversarial machine learning, specifically?

• What is adversarial machine learning?

• What else is adversarial machine learning?

• What to do? A distressingly shallow set of

ideas.
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What to do?

• Develop and use a machine learning hygiene checklist, e.g.:

Level of Rigor for Artificial Intelligence Development[16]

Principles for The Security Of Machine Learning[15]

• Treat ML security like cyber security: do end-to-end analysis, risk

assessments, consider supply chain, etc.

• Write down an adversary model; use 1% of your initial budget on this.

• Know about “differential privacy”[10]. Use it, if you can.

• Insist on training data and white box access to supplied machine

learning systems.

• Then inspect those systems. (Good luck; tools are scarce.)

• Expose no more model information than necessary.

Think carefully about emitting anything more than a classification.

Be cautious about providing explainability tools.
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Supplemental Slides Follow
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“Explainability” Is ill defined

What is explainability? No one really knows.

• There’s no accepted quantifiable or qualitative definition.

• DARPA XAI didn’t generate a definitive definition.

• So, lots of papers and frameworks being published. A sample:

“. . . Predictive, Descriptive, Relevant (PDR) framework for discussing

interpretations. The PDR framework provides three overarching desiderata

for evaluation: predictive accuracy, descriptive accuracy and relevancy, with

relevancy judged relative to a human audience. Moreover, to help manage

the deluge of interpretation methods, we introduce a categorization of

existing techniques into model-based and post-hoc categories, with

sub-groups including sparsity, modularity and simulatability . . . ”

Interpretable machine learning: definitions, methods, and applications,

Murdoch et. al.

• One rough consensus: “good” explanations require, and generate, good

“model knowledge”.
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There are various kinds of “model knowledge”?

• Access to the training data:

for similarity investigations, or bias assessments.

• “White box” models:

full knowledge of every parameter of the model.

• “Black box” models:

only behavior of model is observed; drop in a test sample, get back a

confidence weight for every class.

• “Strict” black box models:

drop in a test sample, get back only the most likely class.

• Derivative representations:

heat maps, LIME fits, activation information, and so on. (Building

these generally requires white box access.)
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Explainability makes vulnerabilities worse

• Explanations require, and generate, model knowledge.

• Vulnerabilities thrive on model knowledge.

• An example trade-off: an Identify Friend or Foe system.

– Multiple classes: enemy tank, enemy truck, friendly tank, friendly

truck, bus of school kids.

– An output like [0.7, 0.1, 0.05, 0.05, 0.00] makes the system vulnerable

to recovering sensitive training images of enemy vehicles.

– An output like “enemy tank” protects against that vulnerability.

– But a simple “enemy tank” undermines crucial explainability:

∗ Is it [0.7, 0.1, 0.05, 0.05, 0.00]?

∗ Or is it [0.4, 0.1, 0.1, 0.1, 0.2]?
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