
Streaming Generalized Canonical Polyadic Tensor
Decompositions

Eric T. Phipps
Center for Computing Research,
Sandia National Laboratories

Albuquerque, New Mexico, USA
etphipp@sandia.gov

Nicholas T. Johnson
Cerebras Systems Inc

Sunnyvale, California, USA
nick@cerebras.net

Tamara G. Kolda
MathSci.ai

Dublin, California, USA
tammy.kolda@mathsci.ai

ABSTRACT
In this paper, we develop a method which we call OnlineGCP for
computing the Generalized Canonical Polyadic (GCP) tensor decom-
position of streaming data. GCP differs from traditional canonical
polyadic (CP) tensor decompositions as it allows for arbitrary ob-
jective functions which the CP model attempts to minimize. This
approach can provide better fits and more interpretable models
when the observed tensor data is strongly non-Gaussian. In the
streaming case, tensor data is gradually observed over time and the
algorithm must incrementally update a GCP factorization with lim-
ited access to prior data. In this work, we extend the GCP formalism
to the streaming context by deriving a GCP optimization problem
to be solved as new tensor data is observed, formulate a tunable
history term to balance reconstruction of recently observed data
with data observed in the past, develop a scalable solution strat-
egy based on segregated solves using stochastic gradient descent
methods, describe a software implementation that provides perfor-
mance and portability to contemporary CPU and GPU architectures
and demonstrate the utility and performance of the approach and
software on several synthetic and real tensor data sets.

CCS CONCEPTS
• Computing methodologies→ Factorization methods; On-
line learning settings.

Sandia National Laboratories is a multimission laboratory managed and operated by
National Technology & Engineering Solutions of Sandia, LLC, a wholly owned sub-
sidiary of Honeywell International Inc., for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE-NA0003525. This paper describes
objective technical results and analysis. Any subjective views or opinions that might be
expressed in the paper do not necessarily represent the views of the U.S. Department
of Energy or the United States Government.
This article has been authored by an employee of National Technology & Engineering
Solutions of Sandia, LLC under Contract No. DE-NA0003525 with the U.S. Department
of Energy (DOE). The employee owns all right, title and interest in and to the article
and is solely responsible for its contents. The United States Government retains and
the publisher, by accepting the article for publication, acknowledges that the United
States Government retains a non-exclusive, paid-up, irrevocable, world-wide license
to publish or reproduce the published form of this article or allow others to do so,
for United States Government purposes. The DOE will provide public access to these
results of federally sponsored research in accordance with the DOE Public Access Plan
https://www.energy.gov/downloads/doe-public-access-plan..

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.
PASC ’23, June 26–28, 2023, Davos, Switzerland
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0190-0/23/06. . . $15.00
https://doi.org/10.1145/3592979.3593405

KEYWORDS
tensor decomposition, canonical polyadic, streaming

ACM Reference Format:
Eric T. Phipps, Nicholas T. Johnson, and Tamara G. Kolda. 2023. Streaming
Generalized Canonical Polyadic Tensor Decompositions. In Platform for
Advanced Scientific Computing Conference (PASC ’23), June 26–28, 2023,
Davos, Switzerland. ACM, New York, NY, USA, 10 pages. https://doi.org/10.
1145/3592979.3593405

1 INTRODUCTION
We consider the problem of computing a generalized canonical
polyadic (GCP) tensor decomposition [14, 19] in the situation where
data is streaming. Generally speaking, the streaming paradigm as-
sumes algorithms must update with a limited amount of data and
limited passes on that data. The data may be streaming because the
volume of data is too large to fit in memory all at once; however,
the more general case is that the data is streaming because it is
temporal and so arrives incrementally. For example, consider a ten-
sor that captures crime statistics in the city of Chicago [6] so that
entry (𝑖, 𝑗, 𝑘) is the number of crimes of type 𝑖 , in neighborhood
𝑗 , at hour 𝑘 . In the streaming scenario, we receive a new 3-way
tensor of crime statistics every day, and we need to incorporate
that information into the model.

The arrival of new data can be thought of in two different ways.
We could view the Chicago Crime data as a 3-way tensor (type ×
neighborhood × hour) with new observations each day that can
be considered a statistical sample. Alternatively, we can have an
explicit time mode. For Chicago Crime, the tensor is then a 4-way
tensor (type × neighborhood × hour × day) with a new hyperslice
appended daily. In this latter case, the fourth mode corresponding to
the day is growing and referred to as the temporal mode. The GCP
tensor decomposition computes a factor matrix for each mode, so
in the Chicago Crime example, we have a crime-type factor matrix
for mode one, a neighborhood factor matrix for mode two, and
an hour factor matrix for mode three, whether we think of it as a
3-way or 4-way tensor. In the 4-way interpretation, we additionally
have a day factor matrix for mode four, and a new row is added
to that factor matrix with each new day of data. In the 3-way
interpretation, we can think instead of adjusting the weights of
the factors each day. Ultimately, these two viewpoints are not very
different since the new row in the temporal factor matrix in the
4-way interpretation is roughly equivalent to the updated weights
in the 3-way interpretation.

A more interesting assumption is whether or not the underly-
ing generative processes are changing with time. There is always
some balancing of new information and old. If these processes are

SAND2023-02003C

https://www.energy.gov/downloads/doe-public-access-plan.
https://doi.org/10.1145/3592979.3593405
https://doi.org/10.1145/3592979.3593405
https://doi.org/10.1145/3592979.3593405

PASC ’23, June 26–28, 2023, Davos, Switzerland Eric T. Phipps, Nicholas T. Johnson, and Tamara G. Kolda

unchanging, then we may expect that our estimates of the non-
temporal factor matrices will converge after a suitable number of
observations. Such a formulation assumes observed data comes
from some consistent, but unknown, distribution. This aligns better
with incremental algorithms that progressively converge to a single
value, and the ordering of observations aligns with sampling as-
sumptions. In this situation, it is often useful to give a heavy weight
to older information, slowing the amount of allowed change in the
model as more observations accumulate. In fact, in these cases, the
order that the information arrives is irrelevant.

In most cases of interest, however, the generative processes are
changing as well, and we are interested in understanding these
shifts. This is sometimes referred to as concept drift, where it is
assumed the distributions of observed data are evolving in time
[11]. Algorithms must be designed to adapt with drifting data,
and the ordering of observations is critically important to track
the evolution of the data distribution. In this case, we need to
balance between adapting to changing generative processes without
confusing them for statistical fluctuations.

Much research has been done in the case of the canonical polyadic
(CP), also known as CANDECOMP/PARAFAC, decomposition. In
this work, we extend existing methods to GCP, which differs from
CP in that GCP allows for arbitrary objective functions. In particular,
our contributions are as follows:

• As there is no single streaming problem formulation in the
literature, we provide a concise overview of the streaming
literation emphasizing the various assumptions made in dif-
ferent works (Section 3).

• We extend the GCP formalism to the streaming context by
deriving a GCP optimization problem to be solved as each
tensor slice is observed, enabling CP factorization of tensors
using arbitrary objective functions (Subsection 4.1).

• This formulation incorporates a tunable history term into the
optimization problem to balance reconstruction of recently
observed data with data observed in the past.

• We develop a solution strategy for the GCP streaming prob-
lem based on segregated solves of the temporal weights and
factor matrices using stochastic gradient descent solution
methods (Subsection 4.2).

• We provide a highly performant software implementation of
the algorithm in our GenTen software package leveraging
low-level math kernels implemented on top of the Kokkos
framework providing scalable thread parallelism and porta-
bility to contemporary CPU and GPU architectures (Sec-
tion 5).

• We demonstrate the utility and performance of the approach
on a variety of synthetic and realistic data sets using several
GCP objective functions (Section 6).

2 BACKGROUND AND NOTATION
In this work, we assume the reader to be generally familiar with ten-
sors and tensor decomposition methods. For a thorough overview,
we refer the reader to Kolda and Bader [18]. Following standard
practice, we denote tensors by bold calligraphic letters (e.g., X),
matrices by bold capital letters (A), vectors by bold lowercase let-
ters (a) and scalars by lowercase letters (𝑎). We use multi-index

notation to indicate tensor elements, i.e., 𝑥𝑖 ≡ 𝑥𝑖1 ...𝑖𝑑 denotes the
entry 𝑖 = (𝑖1, . . . , 𝑖𝑑) ∈ I ≡ { 1, . . . , 𝐼1 } ⊗ · · · ⊗ { 1, . . . , 𝐼𝑑 } of the
𝑑-way tensor X ∈ R𝐼1×···×𝐼𝑑 .

2.1 Canonical Polyadic (CP) Tensor
Decompositions

For a given 𝑑-way tensor X ∈ R𝐼1×···×𝐼𝑑 , the Canonical Polyadic
(CP) decomposition, also known as the CANDACOMP/PARAFAC
decomposition, attempts to find a good approximating low-rank
model tensorM of the form

X ≈ M =

𝑅∑︁
𝑗=1

𝑠
𝑗

a(1)
𝑗

◦ a(2)
𝑗

◦ · · · ◦ a(𝑑)
𝑗

(1)

where 𝑠 𝑗 is a scalar weight, a(𝑘)
𝑗

is a column vector of size 𝐼𝑘 , ◦
represents the tensor outer product, and 𝑅 is the approximate rank.
The column vectors for each mode 𝑘 are often collected into a
matrix A(𝑘) = [a(𝑘)1 · · · a(𝑘)

𝑅
] of size 𝐼𝑘 × 𝑅 called a factor ma-

trix. Given a weight vector s = [𝑠1 · · · 𝑠𝑅]𝑇 and factor matrices
{ A(1) , . . . ,A(𝑑) }, we refer to the resulting low-rank model M as a
Kruskal tensor (or K-tensor for short) and use the short-hand nota-
tionM = Js; A(1) , . . . ,A(𝑑)K [1]. For traditional CP decompositions,
M is computed by solving a nonlinear least-squares problem

min
M

∥X −M∥2
𝐹 s.t. M = Js; A(1) , . . . ,A(𝑑)K (2)

where ∥X − M∥2
𝐹

=
∑
𝑖∈I (𝑥𝑖 − 𝑚𝑖)2, with I defined as above,

denotes the tensor Frobenius (sum-of-squares) norm. Note that
in eq. (2), the minimization is with respect to both the weights s
and factor matrices { A(1) , . . . ,A(𝑑) }. Many approaches have been
developed for efficiently solving eq. (2) that are scalable to large,
sparse tensors. However, a very common, successful approach that
is also relevant to the streaming problem is alternating least-squares
(called CP-ALS [3, 13]) which is an iterative method, that for each
iteration, cycles over modes 𝑘 = 1, . . . , 𝑑 , holds all of the modes
other thanmode𝑘 fixed, and solves the resulting linear least squares
problem for A(𝑘) .

2.2 Generalized CP Decompositions
As described in [14], the CP problem (2) is equivalent to a maximum
likelihood estimation procedure where the entries 𝑥𝑖 of the tensor of
X are i.i.d. Gaussianwithwithmean𝑚𝑖 and some variance𝜎2 which
is constant across the tensor, i.e., 𝑥𝑖 ∼ N(𝑚𝑖 , 𝜎). Such a statistical
assumption may not be appropriate for many types of data (e.g.,
count or binary), motivating the development of the Generalized
Canonical Polyadic (GCP) method [14]. In this method, it is assumed
the tensor entries follow some known, parameterized probability
distribution 𝑥𝑖 ∼ 𝑝 (𝑥𝑖 |𝜂𝑖) determining the likelihood of each entry
𝑥𝑖 , where 𝜂𝑖 is the (unknown) parameter of the distribution. In
this case, the CP model is computed to maximize the likelihood
𝑝 (𝑥𝑖 |𝜂𝑖) of the tensor entry observation 𝑥𝑖 through an invertible
link function ℓ (𝜂𝑖) = 𝑚𝑖 connecting the CP model parameter𝑚𝑖

to the distributional parameter 𝜂𝑖 . This results in the more general
optimization problem

min
M

𝐹 (X,M) =
∑︁
𝑖∈I

𝑓 (𝑥𝑖 ,𝑚𝑖) s.t. M = Js; A(1) , . . . ,A(𝑑)K,

(3)

Streaming GCP Tensor Decompositions PASC ’23, June 26–28, 2023, Davos, Switzerland

where as before I = { 1, . . . , 𝐼1 } ⊗ · · · ⊗ { 1, . . . , 𝐼𝑑 } is the set of all
tensor multi-indices (including both zeros1 and nonzeros). Here
𝑓 (𝑥,𝑚) = − log𝑝 (𝑥 |ℓ−1 (𝑚)) is the negative log-likelihood and is
called the loss function. For example, one may have 𝑓 (𝑥,𝑚) =𝑚 −
𝑥 log𝑚 with ℓ (𝜂) = 𝜂 for a tensor containing count data, assuming
a Poisson distribution, or 𝑓 (𝑥,𝑚) = log(𝑚+1)−𝑥 log𝑚 with ℓ (𝜂) =
𝜂/(1 − 𝜂) for a binary tensor assuming a Bernoulli distribution.2
See [14] for a detailed derivation of these loss functions for different
statistical distributions. In the Gaussian case, 𝑓 (𝑥,𝑚) = (𝑥 −𝑚)2,
so eq. (2) becomes a special case. It is important to note that in the
general case however, the CP model no longer approximates the
tensor itself, but rather the natural parameter of the distribution
underlying the assumed statistical model of the tensor data, which
will be crucial for the streaming method described later.

The challenge in the GCP method is solving eq. (3) for general
loss functions 𝑓 which loses the least-squares structure, making
ALS-type approaches impossible. In [14], the authors instead pursue
gradient-based optimization approaches and derive the correspond-
ing gradient formulas:

𝜕𝐹

𝜕A(𝑘) = Y(𝑘)Z𝑘 diag(s), 𝑘 = 1, . . . , 𝑑, (4)

𝜕𝐹

𝜕s
= Z⊺y (5)

where Y ∈ R𝐼1×···×𝐼𝑑 is a gradient tensor defined by

𝑦𝑖 =
𝜕𝑓

𝜕𝑚
(𝑥𝑖 ,𝑚𝑖), 𝑖 ∈ I . (6)

Here Y(𝑘) denotes the mode-𝑘 matricization/unfolding of Y, y =

vec(Y) is the vectorization of Y,

Z𝑘 = A(𝑑) ⊙ · · · ⊙ A(𝑘+1) ⊙ A(𝑘−1) ⊙ · · · ⊙ A(1) , 𝑘 = 1, . . . , 𝑑,
(7)

Z = A(𝑑) ⊙ A(𝑑−1) ⊙ · · · ⊙ A(1) , (8)

and ⊙ denotes the Khatri-Rao product. Thus the factor matrix gra-
dients (4) are given by the Matricized Tensor Times Khatri-Rao
Product (MTTKRP) involving the gradient tensor Y. Note that Y is
in general dense, even if X is sparse, making traditional gradient-
based methods impractical for large, sparse X. Instead, the authors
in [19] leverage stochastic gradient descent (SGD) in this case, using
randomly sampled gradients of the form

𝜕𝐹

𝜕A(𝑘) ≈ Ỹ(𝑘)Z𝑘 diag(s), 𝑘 = 1, . . . , 𝑑, (9)

𝜕𝐹

𝜕s
≈ Z⊺ỹ (10)

where Ỹ is a sparse, randomly sampled approximation of Y. In the
sequel, wewill leverage these formulas for developing the streaming
GCP algorithm for sparse tensors, employing the sparse, stratified
sampling methodology of [19].

1In this work, zero values represent observed values that are zero, and must be accu-
rately reflected in the CP model, as opposed to unobserved values that can be ignored
as in tensor completion.
2Log-likelihood terms that are constant with respect to the model are dropped in the
loss function. Furthermore, log𝑚 is in practice replaced by log(𝑚 + 𝜖) where 𝜖 is a
small constant to allow𝑚 = 0. Finally, depending on the choice of loss function, the
minimization problem eq. (3) may include additional constraints such as𝑚𝑖 ≥ 0.

3 RELATEDWORK
We review the work in the domain of streaming or online CP ten-
sor decomposition. There is no single well-defined problem in this
context, so we try to explain the different formulations and assump-
tions. We make a few assumptions throughout.

• Updates are processed in discrete batches indexed by time
𝑡 = 1, 2,

• At each time 𝑡 , a complete 𝑑-way tensor is observed, unless
otherwise stated.

• Dimensions are fixed throughout all time, unless otherwise
stated.

• The CP rank is known and fixed, unless otherwise stated.

3.1 Problem Setup for Two-way Temporal Slices
In the case that 𝑑 = 2, we receive a matrix X𝑡 ∈ R𝐼× 𝐽 for each time
𝑡 = 1, 2,

If the temporal mode is finite so that 𝑡 = 1, . . . ,𝑇 , we can consider
thatX is the 𝐼 × 𝐽 ×𝑇 tensor formed by stacking all time slices. For a
given rank 𝑅, the standard goal is to find factor matrices A ∈ R𝐼×𝑅 ,
B ∈ R𝐽 ×𝑅 , and S ∈ R𝑇×𝑅 that minimize

min
A,B,S

𝐼∑︁
𝑖=1

𝐽∑︁
𝑗=1

𝑇∑︁
𝑡=1

(𝑥𝑖 𝑗𝑡 −𝑚𝑖 𝑗𝑡)2 s.t. 𝑚𝑖 𝑗𝑡 =

𝑅∑︁
ℓ=1

𝑎𝑖ℓ𝑏 𝑗 ℓ𝑠𝑡ℓ .

There are a few different streaming and online formulations of this
problem.

In one formulation, the challenge is that we can only see one
(or a few) temporal slices X𝑡 at any given time. This may be due to
memory constraints. However, we assume that the factor matrices
A and B are fixed for all time.

In other versions, the factor matrices A and B can change over
time. Then the problem becomes more interesting. Let s𝑡 ∈ R𝑅
denote row 𝑡 (transposed) of S, i.e.,

S =
[
s1 · · · s𝑇

]⊺
. (11)

Then, at time step 𝑡 , the goal is to find s𝑡 ∈ R𝑅,A ∈ R𝐼×𝑅,B ∈ R𝐽 ×𝑅
that minimize

min
A,B,s𝑡

∥X𝑡−M𝑡 ∥2 ≡
𝐼∑︁

𝑖=1

𝐽∑︁
𝑗=1

(𝑥𝑖 𝑗𝑡−𝑚𝑖 𝑗𝑡)2 s.t. M𝑡 = A diag(s𝑡)B⊺

If we only fit X𝑡 , however, the problem is not well defined, i.e., it
does not produce essentially unique minimizers A and B. Instead,
at time 𝑡 , it is common to include some historical information in
the objective function, the exact details of which depend on the
formulation.

It can be argued that a truly streaming problem is not finite, so 𝑡 =
1, 2, In that case, we cannot save all the historical information.
Additionally, such problems are generally more interesting if the
factor matrices change slowly in time; otherwise, we can assume
that the factor matrices would be learned within finite time and the
only thing changing at each time step are the weights s𝑡 .

3.2 Problem Setup for Higher-order Temporal
Slices

If 𝑑 > 2, the updates are tensors. For each time 𝑡 = 1, 2, . . . , we
receive a tensor X𝑡 ∈ R𝐼1×𝐼2×···×𝐼𝑑 . At time 𝑡 , the goal is to find

PASC ’23, June 26–28, 2023, Davos, Switzerland Eric T. Phipps, Nicholas T. Johnson, and Tamara G. Kolda

factor matrices A(𝑘) ∈ R𝐼𝑘×𝑅 for 𝑘 = 1, . . . , 𝑑 and weights s𝑡 ∈ R𝑅
that minimize

min
s𝑡 ,A(1) ,...,A(𝑑)

∥X𝑡 −M𝑡 ∥2 ≡
∑︁
𝑖∈I

(𝑥𝑖𝑡 −𝑚𝑖𝑡)2

s.t. M𝑡 = Js𝑡 ; A(1) , . . . ,A(𝑑)K, (12)

generally with some methodology for incorporating historical in-
formation. Here we use the shorthand 𝑥𝑖𝑡 ≡ X𝑡 (𝑖1, . . . , 𝑖𝑑) and
𝑚𝑖𝑡 ≡ M𝑡 (𝑖1, . . . , 𝑖𝑑).

3.3 Earliest Work
To the best of our knowledge, the earliest work in this area is
Nion and Sidiropoulos [22]. They consider the case where each
observation is a two-way matrix, as in Subsection 3.1. The rank and
sizes are fixed across time, and the factors are assumed to be slowly
varying, though there are no experiments with factors that varied
in time in that work. Their primary focus was on demonstrating an
alternative method for fitting CP decompositions that traded a small
amount of accuracy for increased speed. Their general formulation
of the problem is as follows. At time 𝑡 , solve

min
A,B,s𝑡

𝑡∑︁
ℎ=1

𝜃𝑡−ℎ ∥Xℎ − Mℎ ∥2

s.t. Mℎ = A⊺diag(sℎ)B for all ℎ ∈ { 1, . . . , 𝑡 } . (13)

The parameter 𝜃 ∈ (0, 1) downweights older hyperslices. The
weights sℎ are fixed for all ℎ < 𝑡 ; however, the A and B matri-
ces are updated at each time step. This means that A and B should
still somewhat fit the older data. The summation over time incor-
porates historical information. We omit the details of the method
since it is relatively complicated and has been subsequently bested
by other methods. Technically, this method requires all historical
information. However, because 𝜃𝑡−ℎ is exponentially decreasing,
older information can effectively be discarded after a small number
of time steps.

3.4 Online SGD
Mardani, Mateos, and Giannakis [21] consider both matrix and
3-way tensor streaming; we discuss only the tensor streaming part
of their work. In contrast to eq. (13), Mardani et al. [21] account
for missing data, add regularization, and have an entirely different
computational approach.

To account for missing data, define the matrix

W𝑡 (𝑖, 𝑗) =
{

1 if entry (𝑖, 𝑗) is known at time 𝑡,
0 otherwise.

Additionally, Mardani et al. add regularization with parameter 𝜆.
At time 𝑡 , the formulation is

min
A,B,s𝑡

𝑡∑︁
ℎ=1

𝜃𝑡−ℎ ∥Wℎ ∗ (Xℎ −Mℎ)∥2 + 𝜆𝑡 (∥A∥2
𝐹 + ∥B∥2

𝐹) + 𝜆∥s𝑡 ∥2
2

s.t. Mℎ = A⊺diag(sℎ)B for all ℎ ∈ { 1, . . . , 𝑡 } . (14)

As with eq. (13), the parameter 𝜃 ∈ (0, 1) downweights older hy-
perslices. For writing efficiency, we pulled the term for time 𝑡 into
the summation, but the weights sℎ are fixed for all ℎ < 𝑡 . The

asterisk (∗) denotes elementwise multiplication, and the effect is
that only observed entries are included in the summation. The
definition of 𝜆𝑡 is somewhat unclear in the paper. At one point,
it seems to propose that 𝜆𝑡 ≡ 𝜆/∑𝑡

ℎ=1 𝜃
𝑡−ℎ to ensure a degree of

consistent weighting as compared to the regular 3-way problem
in the finite case, but the pseudo-code seems to indicate that ei-
ther 𝜆𝑡 ≡ 𝜆/𝑡 or 𝜆𝑡 ≡ 𝜆/(𝑡 ∑𝑡

ℎ=1 𝜃
𝑡−ℎ). In the experiments, the

regularization parameter is set according to a standard in matrix
completion: 𝜆 =

√
2𝐼 𝐽𝜋𝜎 where 𝜋 is the proportion of sampled data

at each time step and 𝜎 is the noise level.
Problem (14) is solved iteratively with two basic steps at each

iteration. First, s𝑡 is solved for via a closed form expression holding
A and B fixed. Second, the method takes one step of gradient descent
(GD) for updating A and B. They call this stochastic gradient descent
(SGD) because the updates are based only on the observed entries
of X𝑡 , which may vary randomly from step to step.

There are some implicit assumptions that are not clearly stated
in the paper. There is no proof that the stochastic gradient is correct
in expectation. To do so requires some assumptions about how the
data is sampled and also appropriate weighting. The experiments
(on cardiac dynamic MRI and Internet traffic) are constructed so
that it all works correctly enough—the data is sampled uniformly
and the same number of samples are taken at each time step.

3.5 CP-Stream
CP-Stream [27] is similar to Online SGD [21]. The primary differ-
ence is that it avoids saving the older data and instead uses an
approximation. It also works for 𝑑 > 2. At time step 𝑡 , CP-Stream
executes two phases. Let Ā(𝑘) denote the old factor matrices, i.e.,
from time 𝑡 − 1. The first phase computes s𝑡 with all the old factor
matrices by solving

min
s𝑡

∥X𝑡 − M̄𝑡 ∥2 + 𝜆∥s𝑡 ∥2 s.t. M̄𝑡 ≡ Js𝑡 ; Ā(1)
, . . . , Ā(𝑑)K. (15)

The second phases computes { A(1) , . . . ,A(𝑑) }, estimating the obser-
vations from prior time steps via Xℎ ≈ M̄ℎ ≡ Jsℎ ; Ā(1)

, . . . , Ā(𝑑)K:

min
A(1) ,...,A(𝑑)

∥X𝑡 −M𝑡 ∥2 +
𝑡−1∑︁
ℎ=1

𝜃𝑡−ℎ ∥M̄ℎ −Mℎ ∥2

s.t. Mℎ = Jsℎ ; A(1) , . . . ,A(𝑑)K for all ℎ = 1, . . . , 𝑡 . (16)

3.6 Other Works
Numerous other streaming methods have been studied in the liter-
ature that are less relevant to the method proposed here. Several
prominent examples summarized below.

OnlineCP. The OnlineCP method [32] works for arbitrary 𝑑-way
tensors and solves exactly the standard least squares subproblems,
regularizing by taking only a single step of ALS. The innovation
is the clever reuse of expensive calculations when folding in each
time slice. It effectively assumes that the factor matrices are fixed.

OLSTEC. The Online Low-Rank Subspace Tracking by Tensor
CP Decomposition (OLSTEC) method [16] is similar to one of the
methods proposed in [22], but it can handle missing data and is
the first paper to consider changes in the factor matrices in its

Streaming GCP Tensor Decompositions PASC ’23, June 26–28, 2023, Davos, Switzerland

experimental results. The experiment results show that they do
better in this regime than Online SGD [21].

MAST. Multi-aspect Streaming Tensor (MAST) [28] is notable
because it allows for the non-temporal modes to grow in time.

SamBaTen. Sampling-Based Incremental Tensor Decomposition
(SamBaTen) [12] samples multiple subtensors, factors those inde-
pendently, and then merges the results. It depends heavily on the
results being essentially unique and consistent across the subten-
sors, which necessarily assumes that the factors are not changing
in time. The temporal aspect is not clear since the entire tensor
(across all time) seems to be saved.

SeekAndDestroy. SeekAndDestory [23] handles concept drift by
allowing the addition of new factors as time progresses. It is not
specifically a streaming algorithm because it is not updating the
factorization so much as augmenting it. It receives data in batches,
computes the CP decomposition from scratch, and then it merges
this with the information from prior batches. We do not consider
this to be a streaming method because the existing decomposition
is not updated directly. Instead, SeekAndDestroy finds those factors
that are overlapping and then identifies older factors that do not
appear in the new batch as well as any new factors in the new
batch. For rank determination on each batch, it uses a heuristic
called AutoTen. This method depends heavily on each new batch
having sufficient information to compute a full and essentially
unique decomposition as this is the only way to ensure that overlap
with past factors can be identified.

The ENSIGN software [20] implements a method similar to
SeekAndDestroy. In addition to CP-ALS, they include CP-APR [5]
and CP-ALS-NN [4].

Bayesian Methods. Probabilistic Streaming Tensors (POST) [8]
and Variational Bayesian Inference (VBI) [31] are two papers that
propose priors for the tensor model. POST considers models for
both continuous and binary data. VBI models each time step as a
CP model plus sparse noise (S𝑡) and Gaussian noise (E𝑡):

X𝑡 = Js𝑡 ; A(1) , . . . ,A(𝑑)K + S𝑡 + E𝑡 ,

A(𝑘) (𝑖𝑘 , 𝑗) ∼ N (0, 𝜆 𝑗)
s𝑡 (𝑗) ∼ N (0, 𝜆 𝑗) 𝜆 𝑗 ∼ InvGamma(𝛼𝜆, 𝛽𝜆)

S𝑡 (𝑖1, 𝑖2, . . . , 𝑖𝑑) ∼ N (0, 𝛾𝑖1𝑖2 · · ·𝑖𝑑) 𝛾𝑖1𝑖2 · · ·𝑖𝑑 ∼ InvGamma(𝛼𝛾 , 𝛽𝛾)
E𝑡 (𝑖1, 𝑖2, . . . , 𝑖𝑑) ∼ N (0, 𝜏) 𝜏 ∼ InvGamma(𝛼𝜏 , 𝛽𝜏)

The prior on the 𝜆’s encourages low-rank, and prior on the 𝛾 ’s
allows for sparse outliers. Both methods consider decomposition
of tensors with missing data for tensor completion.

4 STREAMING GCP
We now consider GCP factorization in the streaming context. We
first motivate and describe the minimization problem for the stream-
ing GCP problem, then describe the solution strategy, and then
conclude with a summary of the solution algorithm which we call
OnlineGCP.

4.1 Streaming GCP Problem Formulation
We are primarily interested in the infinite streaming problem where
at each time step 𝑡 , a new 𝑑-dimensional tensor X𝑡 ∈ R𝐼1×···×𝐼𝑑
is observed. We assume the dimensions 𝐼1, . . . , 𝐼𝑑 of each tensor
do not change, and at each time step, a complete 𝑑-way tensor is
observed. Our work focuses on sparse tensors, but the method is
equally applicable to dense. Since both the non-streaming GCP
and Online SGD solution algorithms rely on gradient descent, our
approach for streaming GCP is inspired by Online SGD.

For simplicity, we begin with the problem for a single temporal
slice,X𝑡 , and add on history in the discussion that follows. For just
time slice 𝑡 , we pose the optimization problem for given rank 𝑅 as

min
M𝑡

∑︁
𝑖∈I

𝑓 (𝑥𝑖𝑡 ,𝑚𝑖𝑡) +
𝜆

2

𝑑∑︁
𝑘=1

∥A(𝑘) ∥2
𝐹 + 𝜇

2
∥s𝑡 ∥2

2

s.t. M𝑡 = Js𝑡 ; A(1) , . . . ,A(𝑑)K, A(1) , . . . ,A(𝑑) , s𝑡 ≥ 𝑙 .

(17)

As above, we use the shorthand 𝑥𝑖𝑡 ≡ X𝑡 (𝑖1, . . . , 𝑖𝑑) and 𝑚𝑖𝑡 ≡
M𝑡 (𝑖1, . . . , 𝑖𝑑),A(𝑘) ∈ R𝐼𝑘×𝑅 for𝑘 = 1, . . . , 𝑑 are the factormatrices,
and s𝑡 ∈ R𝑅 is the weight for time 𝑡 . We incorporate the option
for a lower bound 𝑙 on the factor matrix/weight entries (with the
understanding that 𝑙 = 0 for nonnegativity constraints and 𝑙 = −∞
for problems where there is no lower bound). As in Online SGD,
we include regularization terms for the factor matrices A(𝑘) and
weights s𝑡 with multipliers 𝜆 and 𝜇, respectively, to encourage low-
rank solutions [2]. We do not explicitly include the dependency
of the factor matrices on 𝑡 since they are, ideally, less sensitive to
time.

In general, we want to incorporate historical information to keep
the factor matrices from changing toomuch at each time step. There
are many ways such historical information could be included, and
several of these have been used in the previous work discussed in
Section 3. One possible approach is to add historical regularization
to eq. (17) via the second term in the following where we define
the historical model to be the old weight with the current factor
matrices, i.e.,Mℎ ≡ Jsℎ ; A(1) , . . . ,A(𝑑)K:

min
M𝑡

∑︁
𝑖∈I

𝑓 (𝑥𝑖𝑡 ,𝑚𝑖𝑡) +
∑︁

ℎ∈H𝑡

𝑤ℎ

∑︁
𝑖∈I

𝑓 (𝑥𝑖ℎ,𝑚𝑖ℎ)

+ 𝜆

2

𝑑∑︁
𝑘=1

∥A(𝑘) ∥2
𝐹 + 𝜇

2
∥s𝑡 ∥2

2

s.t. M𝑡 = Js𝑡 ; A(1) , . . . ,A(𝑑)K, A(1) , . . . ,A(𝑑) , s𝑡 ≥ 𝑙 . (18)

Here, H𝑡 ⊆ {1, . . . , 𝑡 − 1}. The terms 𝑥𝑖ℎ = Xℎ (𝑖1, . . . , 𝑖𝑑) and
𝑚𝑖ℎ = Mℎ (𝑖1, . . . , 𝑖𝑑) index the “historical” tensors. The weights
𝑤ℎ control the importance of historical terms.

The time index 𝑡 could be infinite, so we limit ourselves to a
history window of fixed size such that |H𝑡 | = min { 𝑡 − 1, 𝐻 } for
some fixed constant𝐻 . Moreover, we imposeH𝑡 ⊆ H𝑡−1 ∪{ 𝑡 − 1 }
so that no older information is ever added to the history. This means
that we can discard all older information except what’s in the history.
There are many ways in which the history window and weighting
could be chosen. In our work, we use reservoir sampling [30] which
works as follows. For 𝑡 ≤ 𝐻 + 1 we set H𝑡 = {1, . . . , 𝑡 − 1}. Then
for 𝑡 > 𝐻 + 1, We set H𝑡 = H𝑡−1 with probability 1 − 𝐻/(𝑡 − 1);
otherwise, we setH𝑡 to beH𝑡−1 where we have ejected one existing

PASC ’23, June 26–28, 2023, Davos, Switzerland Eric T. Phipps, Nicholas T. Johnson, and Tamara G. Kolda

element and replaced it with 𝑡 −1. This ensures thatH𝑡 is a uniform
random sample of { 1, . . . , 𝑡 − 1 }. We use exponential weighting
of the form 𝑤ℎ = 𝑤𝜃𝑡−ℎ where 0 < 𝜃 ≤ 1 and 𝑤 is a multiplier
allowing the entire history term to be scaled by a constant.

The approach outlined so far stores at most 𝐻 temporal slices,
which could require significant memory storage if a large window
size 𝐻 is desired. Following the approach of CP-Stream (see Subsec-
tion 3.5), we would like to reduce storage costs further in the case
where the factor matrices are assumed to change slowly in time by
approximating these slices using the factor matrices Ā(1)

, . . . , Ā(𝑑)

from the previous time step. It is tempting to replace 𝑥𝑖ℎ in eq. (18)
with 𝑚̄𝑖ℎ where M̄ℎ ≡ Jsℎ ; Ā(1)

, . . . , Ā(𝑑)K is the CP model de-
rived from the prior factor matrices and the historical weights, and
𝑚̄𝑖ℎ = M̄ℎ (𝑖1, . . . , 𝑖𝑑). However, this is not a valid approximation
in general because, as described in Subsection 2.2, the CP model
generated in the GCP method does not directly approximate the
data tensor, but instead the parameter of the assumed probability
distribution (in fact, the support of 𝑥𝑖ℎ may not even coincide with
𝑚̄𝑖ℎ , e.g., for a binary tensor, 𝑥𝑖ℎ ∈ {0, 1} whereas 𝑚̄𝑖ℎ ∈ (0,∞)).
Instead, we propose adding a historical regularization term that
penalizes changes in the CP model using the Frobenius norm:

min
M𝑡

∑︁
𝑖∈I

𝑓 (𝑥𝑖𝑡 ,𝑚𝑖𝑡) +
1
2

∑︁
ℎ∈H𝑡

𝑤ℎ ∥M̄ℎ −Mℎ ∥2
𝐹

+ 𝜆

2

𝑑∑︁
𝑘=1

∥A(𝑘) ∥2
𝐹 + 𝜇

2
∥s𝑡 ∥2

2

s.t. M𝑡 = Js𝑡 ; A(1) , . . . ,A(𝑑)K, A(1) , . . . ,A(𝑑) , s𝑡 ≥ 𝑙 (19)

We reiterate that in eq. (19), the optimization is over the factor
matrices A(1) , . . . ,A(𝑑) and temporal weights s𝑡 for each time step
𝑡 , with Ā(1)

, . . . , Ā(𝑑) and sℎ for ℎ ∈ H𝑡 held fixed.3

4.2 Streaming GCP Solution Strategy
We now describe the proposed solution strategy for eq. (19), which
we call OnlineGCP. Assume eq. (19) has already been solved for ℎ =

1, 2, . . . , 𝑡 − 1 resulting in the current approximations Ā(1)
, . . . , Ā(𝑑) ,

s𝑡−1, with sℎ forℎ ∈ H𝑡−1 known from prior iterations. First choose
the new history window H𝑡 ⊆ H𝑡−1 ∪ { 𝑡 }. Given the new tensor
slice X𝑡 , define

𝐹 (X𝑡 ,A(1) , . . . ,A(𝑑) , s𝑡) =
∑︁
𝑖∈I

𝑓 (𝑥𝑖𝑡 ,𝑚𝑖𝑡)

+ 1
2

∑︁
ℎ∈H𝑡

𝑤ℎ ∥M̄ℎ −Mℎ ∥2
𝐹 + 𝜆

2

𝑑∑︁
𝑘=1

∥A(𝑘) ∥2
𝐹 + 𝜇

2
∥s𝑡 ∥2

2 (20)

to be the streaming GCP objective function. We then solve eq. (19)
using a two-step minimization procedure inspired by Online SGD.
In particular, we first solve eq. (19) for s𝑡 with A(𝑘) = Ā(𝑘) held

3We note that a third possible approach is to directly penalize changes in the factor
matrices by replacing the history regularization term in eq. (19) with a term of the
form

∑𝑑
𝑘=1 𝑤̃𝑘 ∥Ā(𝑘) − A(𝑘) ∥2

𝐹
. However such an approach requires careful tuning of

the regularization parameters 𝑤̃𝑘 since it does not incorporate the historical weights
sℎ .

fixed, namely

min
s𝑡

𝐹 (X𝑡 ,M𝑡) =
∑︁
𝑖∈I

𝑓 (𝑥𝑖𝑡 ,𝑚𝑖𝑡) +
𝜇

2
∥s𝑡 ∥2

2 s.t. s𝑡 ≥ 𝑙 . (21)

The history term and factor matrix regularization terms are dropped
because they have no dependence on s𝑡 . To solve eq. (21), we use
the SGD solver described in Subsection 2.2 for the static GCP prob-
lem, modified to only solve for s𝑡 with the factor matrices fixed.
Leveraging eq. (5), the gradient for this subproblem is

𝜕𝐹

𝜕s𝑡
= Z⊺y𝑡 + 𝜆s𝑡 , (22)

where as before y𝑡 = vec(Y𝑡) and Y𝑡 ∈ R𝐼1×···×𝐼𝑑 is the gradient
tensor for slice X𝑡 defined by 𝑦𝑖𝑡 =

𝜕𝑓
𝜕𝑚 (𝑥𝑖𝑡 ,𝑚𝑖𝑡). As in the static

case, this tensor is sampled each SGD iteration resulting in each
stochastic gradient.

Once s𝑡 is computed, the factor matrices A(𝑘) are computed
by applying a fixed number of ADAM SGD iterations to eq. (20),
holding s𝑡 fixed. Using eq. (4), the corresponding gradients can be
shown to be

𝜕𝐹

𝜕A(𝑘) = (Y𝑡)(𝑘)Z𝑘 diag(s𝑡) + 𝜆A(𝑘)+∑︁
ℎ∈H𝑡

𝑤ℎ

(
A(𝑘) diag(sℎ)Z𝑇𝑘 Z𝑘 diag(sℎ) −

Ā(𝑘) diag(sℎ)Z̄𝑇𝑘 Z𝑘 diag(sℎ)
)

(23)

for 𝑘 = 1, . . . , 𝑑 , where

Z𝑘 = A(𝑑) ⊙ · · · ⊙ A(𝑘+1) ⊙ A(𝑘−1) ⊙ · · · ⊙ A(1) , (24)

Z̄𝑘 = Ā(𝑑) ⊙ · · · ⊙ Ā(𝑘+1) ⊙ Ā(𝑘−1) ⊙ · · · ⊙ Ā(1)
. (25)

For both the temporal weight and factor matrix solves we employ
the ADAM SGD update strategy [17] to make the SGD solves less
sensitive to the choice of learning rate. Since the weights may
change substantially from step to step, we restart each ADAM
SGD solve anew with no tracking of ADAM moments across steps.
However, for the factor matrix solves the ADAM moments are
tracked across time steps as the changes in factor matrices from
step to step are expected to be small.

4.3 Sampling for Streaming Stochastic GCP
Approximations

Since each Y𝑡 is in general dense, we must compute sampled ap-
proximations (denoted by Ỹ𝑡) for each SGD iteration. In principle,
any sampling method can be used, but in this work we employ the
stratified sampling approach of [19] where for each time step 𝑡 , the
set of sampled coordinates I𝑡 for computing Ỹ𝑡 , is partitioned into
two disjoint sets consisting of indices corresponding to nonzeros
and zeros in X𝑡 . As in [19], we assume these sets are formed by
sampling uniformly, with replacement, 𝑝 and 𝑞 times from the sets
of nonzeros and zeros, respectively (zeros are sampled by searching
the tensor after each candidate is computed to verify the candidate
is not a nonzero, and this continues until 𝑞 samples have been gen-
erated). For each 𝑖 ∈ I, let 𝑝𝑖𝑡 be the number of times 𝑖 is selected
as a nonzero and 𝑞𝑖𝑡 the number of times it is selected as a zero.

Streaming GCP Tensor Decompositions PASC ’23, June 26–28, 2023, Davos, Switzerland

Then the entries of the sampled gradient tensor Ỹ𝑡 are given by

𝑦𝑖𝑡 =

(
𝑝𝑖𝑡

𝜂𝑡

𝑝
+ 𝑞𝑖𝑡

𝜔 − 𝜂𝑡

𝑞

)
𝜕𝑓

𝜕𝑚
(𝑥𝑖𝑡 ,𝑚𝑖𝑡) (26)

where 𝜂𝑡 = nnz(X𝑡) is the number of nonzeros in X𝑡 and 𝜔 =∏𝑑
𝑘=1 𝐼𝑘 is the total number of elements ofX𝑡 (which is independent

of 𝑡). Since E[𝑝𝑖𝑡] = 𝑝/𝜂𝑡 and E[𝑞𝑖𝑡] = 𝑞/(𝜔 − 𝜂𝑡), it is easy
to see that E[𝑦𝑖𝑡] = 𝑦𝑖𝑡 . The history and regularization terms in
eq. (23) could also be sampled, but since their true values can be
computed efficiently, there is no reason to do so and their true
gradient contributions are included in each stochastic gradient.

Similar sampling calculations are required for efficiently approx-
imating the objective function 𝐹 in eq. (20); however, as in [19],
there are a few changes. First, we use a much larger number of
samples when approximating 𝐹 to ensure accuracy. Second, we
use the same set of samples across all epochs within the temporal
and factor matrix solvers for consistent estimations of convergence
(but compute a different set of samples for the temporal and factor
matrix solvers, and also for each slice X𝑡). As before, we sample
uniformly with replacement 𝑝′ and 𝑞′ times from the sets of in-
dices corresponding to nonzeros and zeros, respectively. As in the
gradient, the true value of the history and regularization objective
terms can be efficiently computed, so the sampled approximation
𝐹 to 𝐹 is given by

𝐹 (X𝑡 ,A(1) , . . . ,A(𝑑) , s𝑡) =∑︁
𝑖∈I𝑡

(
𝑝′𝑖𝑡

𝜂𝑡

𝑝′
+ 𝑞′𝑖𝑡

𝜔 − 𝜂𝑡

𝑞′

)
𝑓 (𝑥𝑖𝑡 ,𝑚𝑖𝑡) +

∑︁
ℎ∈H𝑡

𝑤ℎ ∥M̄ℎ −Mℎ ∥2
𝐹

+ 𝜆

2

𝑑∑︁
𝑘=1

∥A(𝑘) ∥2
𝐹 + 𝜇

2
∥s𝑡 ∥2

2, (27)

with similar definitions of 𝑝′
𝑖𝑡
and 𝑞′

𝑖𝑡
. It is straightforward to see

that E[𝐹] = 𝐹 .

5 SOFTWARE IMPLEMENTATION
An open-source software implementation of the OnlineGCP ap-
proach described above is provided in the GenTen package for
performance-portable tensor decompositions [24, 25]. This soft-
ware package implements the required sampling procedures, MT-
TKRP, and SGD step procedures using the Kokkos C++ performance
portability API [9, 10] allowing a single C++ implementation of
each kernel to be executed with high performance on a variety of
contemporary architectures, including multicore CPUs and many-
core GPUs. For brevity, the details of this implementation are not
provided here.

6 NUMERICAL EXPERIMENTS
We now present several numerical experiments that compare the
accuracy of the OnlineGCP method with several static and stream-
ing alternatives for Gaussian, Poisson, and Bernoulli loss functions.
The static methods are applied to the entire 𝑑+1-way tensor formed
by stacking the streamed slices across the temporal mode, whereas
the streaming methods update their decomposition one slice at a
time. For the streaming methods, we generate an initial CP model

by applying an appropriate static decomposition method (i.e., CP-
ALS for Gaussian, CP-APR for Poisson, or GCP for Bernoulli) to a
small portion of the streaming data, which we call a warm-start.
Throughout these experiments we will measure the effectiveness of
the OnlineGCP approach by comparing local and global normalized
reconstruction losses. In the context of streaming we define the
local normalized reconstruction loss as the total loss for a given
decomposition, divided by the norm of the data, for every observed
time slice:

𝐹𝑙𝑜𝑐𝑎𝑙 (X𝑡 ,M𝑡) =
1

∥X𝑡 ∥2
𝐹

∑︁
𝑖∈I

𝑓 (𝑥𝑖𝑡 ,𝑚𝑖𝑡) (28)

whereM𝑡 = Js𝑡 ; A(1) , . . . ,A(𝑑)K and A(1) , . . . ,A(𝑑) indicate the val-
ues of factor matrices computed at that point in time. This evaluates
how well our current model fits the most recently observed data.
For OnlineGCP, we compute a sampled approximation to 𝐹𝑙𝑜𝑐𝑎𝑙 by
subsampling I but not including history, factor matrix, or temporal
weight regularization terms.

For the global normalized reconstruction loss we “back-test” the
model at our final time step against all previously observed data. In
particular, the functional form is the same as in eq. (28) however
we use the factor matrices A(1) , . . . ,A(𝑑) from the final time step.
This evaluates how well the final model approximates all observed
data. For OnlineGCP, we compute the true value of the global loss
instead of a sampled approximation. Since the static methods use
all available data, the local and global normalized reconstruction
losses are identical.

The OnlineGCP method has numerous hyperparameters. The
values used in each experiment are summarized in table 1. These
values were chosen empirically to produce good results through
hand-tuning, but are not necessarily optimal. Furthermore, On-
lineGCP requires choosing the number of samples for the objective
function and gradient evaluation for each iteration of SGD, and
these values were chosen empirically to yield similar results to the
other static and streaming methods. In comparing to static GCP,
we used the same total number of samples as OnlineGCP by mul-
tiplying the number of samples used by OnlineGCP for each time
slice by the number of slices.

Table 1: OnlineGCP hyperparameters for the numerical ex-
periments. Here 𝑅 is the rank of the CP model, 𝛼𝑤 , 𝛼 𝑓 are
the ADAM learning rates of the temporal weight and factor
matrix solvers, respectively, 𝜅𝑤 , 𝜅𝑓 are the number of epochs
for each solver,𝑤 is the multiplicative weight of the history
term, 𝐻 is the size of the history window, and 𝐻𝑖𝑛𝑖𝑡 is the size
of the warm-start. All experiments used 𝜃 = 1 (no exponen-
tial down-weighting of historical slices), 𝜆 = 𝜇 = 0 (no rank
regularization penalty), 𝜏𝑤 = 𝜏𝑓 = 100 iterations per epoch,
and the default ADAMupdate parameters (𝛽1 = 0.9, 𝛽2 = 0.999,
and 𝜖 = 10−8).

Experiment 𝑅 𝛼𝑤 𝜅𝑤 𝛼𝑓 𝜅𝑓 𝑤 𝐻 𝐻𝑖𝑛𝑖𝑡

Synth. Gaussian 20 10.0 20 10−4 5 1 50 10
Synth. Poisson 20 1.0 20 10−4 10 10 50 10
Chicago Binary 50 0.1 5 10−3 5 10 500 20
ArXiv Poisson 50 10.0 5 5 · 10−4 10 1 100 20

PASC ’23, June 26–28, 2023, Davos, Switzerland Eric T. Phipps, Nicholas T. Johnson, and Tamara G. Kolda

6.1 Synthetic Data Experiments
We first describe experiments with two synthetic data sets derived
from randomly generated K-tensors which the computed decom-
position methods should recover. For these experiments we also
measure the congruence [29] between it and the K-tensor computed
by each method (called the KTensor Score in the plots). A perfect
recovery corresponds to a score of 1.0.

Gaussian. To construct a Gaussian-distributed synthetic data set,
we first constructed a random 3-way, rank-20 K-tensor with factor
matrices of size 300 × 20, 300 × 20, and 200 × 20, respectively.
Each factor matrix entry was drawn uniformly at random from
(0, 1). This K-tensor provides the ground truth for the model. A
dense tensor was then generated by multiplying out the K-tensor
and perturbing each entry by draws from a zero-mean Gaussian
distribution with a standard deviation of 0.2. This tensor is then
streamed slice-by-slice, where each slice is a dense 300×300 matrix.
The warm-start was generated by applying CP-ALS to the first 10
slices. We then compared our method using 10,000 nonzero samples
for each objective/gradient evaluation, no zero samples (since the
tensor is dense), and the remaining hyperparameters as indicated
in table 1 to static CP-ALS and GCP applied to the full 300 × 300 ×
200 tensor, OnlineCP, and Online SGD. In fig. 1a we demonstrate
comparable results for the local and global reconstruction loss, and
K-tensor score with respect to the ground truth for the considered
methods (although CP-ALS is able to achieve a somewhat better
K-tensor score than all of the other methods).

Poisson. To generate a Poisson-distributed synthetic data set, we
used the procedure described in [5] to generate a sparse 3-way ten-
sor of size 300×300×200, 𝑅 = 20 factors, and roughly 3.2% nonzero
sparsity. We then stream this tensor slice-by-slice in OnlineGCP
as before, but this time comparing to static CP-APR and GCP with
Poisson loss computed from the full tensor dataset. OnlineGCP
used a warm-start constructed from applying CP-APR to the first
10 slices, all tensor nonzeros in the objective/gradient evaluations,
and 50,000 and 10,000 zero samples for the objective and gradient,
respectively. In fig. 1b we see fairly comparable results in losses
and scores among all of the methods.

6.2 Realistic Data Experiments
We now present several experiments using real data tensors with
non-Gaussian loss functions.

Chicago Crime. To demonstrate the approach for non-Gaussian
loss, we used the Chicago Crime tensor provided by FROSTT [26]
converted to a binary tensor where any nonzero value was replaced
by one (this is reasonable since a majority of the entries are one any-
way). Sticking with our streaming convention across the last mode,
we oriented the tensor such that entryX(𝑖, 𝑗, 𝑘, 𝑙) denoted whether
on hour 𝑖 , crime 𝑗 was committed in neighborhood 𝑘 for day 𝑙 from
our first date. We used a starting data of 𝑙 = 500 because there is sig-
nificantly less data for days prior to this date. The resulting tensor is
of size 24× 77× 32× 5687 with roughly 1.6% sparsity. A warm-start
for the first 20 days was generated via GCPwith Bernoulli loss using
50,000 zero/nonzero samples for the objective function and 10,0000
zero/nonzero samples for the gradient. Given the relatively small
tensor slices each time step, OnlineGCP used all nonzeros along

with 10,000 and 1,000 zero samples for each objective function and
gradient evaluation, respectively. In fig. 1c we again see comparable
results in terms of the achieved local/global loss compared to the
static GCP method. Note that OnlineGCP required a much larger
history window (𝐻 = 500) than the other experiments to maintain
consistent global loss over the entire streaming experiment. This,
in conjunction with the observed slightly better local loss for the
OnlineGCPmethod, indicates the method is somewhat over-solving
each slice, suggesting the number of samples and/or temporal and
factor matrix SGD iterations could be reduced.

ArXiv Abstracts. Kaggle provides a readily available collection of
metadata from ArXiv papers that is updated regularly [7]. The
metadata includes research categories (cs.LG:Machine Learning,
etc.), date published, and full abstracts. We built a count tensor
from these fields such that X(𝑖, 𝑗, 𝑘) corresponds to the number of
abstracts with primary category 𝑖 , that contain word 𝑗 , and are 𝑘
months from our start point. ArXiv was founded in 1991 but the
earliest paper is back dated to 1986. We selected our start point
as 120 months from this first paper once the volume of papers
increased to a sufficient amount. We used Spacy’s English core
parser trained on over a million documents to preprocess all of the
abstracts and extract unique words across the corpus [15]. Once the
unique words were identified, we eliminated rarely occurring words
by selecting words that occurred more than 100 times. The resulting
tensor is of size 172× 24558× 300 with approximately 2.4% sparsity.
A warm-start for the first 20 months was generated via CP-APR.
Decompositions were computed using OnlineGCPwith Poisson loss
(streamed one slice per month with 50,000 zero/nonzero samples
for the objective and 10,000 zero/nonzero samples for the gradient),
static GCP, and CP-APR. This data set demonstrates an example
of concept drift where a large change in the factors is observed
around month 160, causing a spike in local and global loss for the
streaming method. The loss then slowly converges back to the loss
obtained from the static methods as it gradually updates the factors.
However, this then causes the global loss for the early time steps
to degrade since they are not captured in the history window.

These experiments demonstrate the streaming GCPmethod is ca-
pable of producing decompositions with a similar level of accuracy
as measured by the reconstruction loss as the static GCP method.
Furthermore, in the synthetic experiments where the accuracy of
the resulting K-tensor can be measured, it also achieves a similar
score as the static GCP method (and most of the other methods con-
sidered). The approach uses significantly less memory, as it requires
only storing a single tensor slice, and is applicable to the infinite
streaming case where the number of time steps is unbounded. Fur-
thermore, it is substantially more efficient when using the same
total number of samples between streaming and static GCP, which
is due to the significantly small number of SGD iterations required
by the streaming method: the static GCP method uses 1000 itera-
tions per epoch, with the number of epochs determined adaptively,
whereas the streaming method uses in the range of 1–20 epochs
with 100 iterations per epoch for each temporal and factor matrix
solve, as shown in table 1. In fig. 2 we show the run time for each of
the above synthetic and realistic data experiments, executed on a
dual-socket Intel Xeon Platinum 8260 CPU with 24 cores per socket
and an NVIDIA Volta V100 GPU. For the CPU experiments, we use

Streaming GCP Tensor Decompositions PASC ’23, June 26–28, 2023, Davos, Switzerland

3.7
3.8
3.9
4.0

×10−2 Local Normalized Loss

3.8

3.9

4.0
×10−2 Global Normalized Loss

0 20 40 60 80 100 120 140 160 180 200

0.7
0.8
0.9
1.0

slice

K-tensor Score

OnlineGCP OnlineCP Online SGD GCP (static) CP-ALS (static) True

(a) Synthetic Gaussian

0.5

1.0

Local Normalized Loss

0.5

1.0

1.5
Global Normalized Loss

0 20 40 60 80 100 120 140 160 180 200
0.75
0.80
0.85

slice

K-tensor Score

OnlineGCP GCP (static) CP-APR (static) True

(b) Synthetic Poisson

3.5

4.0

4.5

Local Normalized Loss

0 1,000 2,000 3,000 4,000 5,000

3.5

4.0

4.5

days

Global Normalized Loss

OnlineGCP GCP (static)

(c) Chicago Crime (Bernoulli)

−0.1

0.0

0.1

0.1

Local Normalized Loss

0 50 100 150 200 250 300

0.0

0.1

0.1

months

Global Normalized Loss

OnlineGCP GCP (static) CP-APR (static)

(d) ArXiv Abstracts (Poisson)

Figure 1: Results of the synthetic Gaussian and Poisson experiments as well as Chicago Crime with Bernoulli loss and ArXiv
Abstracts with Poisson loss experiments showing comparable performance between OnlineGCP and appropriate methods
including static GCP, Online SGD, OnlineCP, static CP-ALS and static CP-APR. Note, to make the Chicago Crime plot more
legible, the maximum loss over 10 consecutive days is displayed.

the Kokkos OpenMP backend running with 48 threads, and for the
GPU experiments we use the Kokkos CUDA backend. We see the
OnlineGCP method provides comparable performance, and often
substantially better performance, as the static GCP method while
providing similar accuracy.

7 CONCLUSIONS
In this work, we developed a method called OnlineGCP for effi-
ciently computing GCP decompositions of streaming tensor data.
Themethod extends prior work in the literature on streaming CP de-
compositions to the GCP case allowing for arbitrary objective/loss
functions defining the CP optimization problem. Similar to other
streaming CP methods, the approach incrementally updates the
temporal weights and CP model factors as each new tensor slice

is observed without revisiting prior data. It includes a tunable his-
tory term to balance reconstruction of new and old tensor data,
and employs stochastic gradient descent solvers enabling scalabil-
ity to large, sparse tensors. The effectiveness of the approach was
demonstrated on several synthetic and real datasets incorporating
Gaussian, Poisson, and Bernoulli loss functions, where compara-
ble losses were observed compared to other streaming and static
methods appropriate for the chosen form of loss.

While the approach was shown to be effective and scalable, it
relies on expert choice of numerous hyperparameters that can
dramatically affect accuracy and computational cost. Unfortunately,
our experience has shown these parameters must be empirically
chosen on a case-by-case basis. The sensitivity of the method to
these hyperparameters primarily derives from its use of stochastic

PASC ’23, June 26–28, 2023, Davos, Switzerland Eric T. Phipps, Nicholas T. Johnson, and Tamara G. Kolda

Synthetic
(Gaussian)

Synthetic
(Poisson)

Chicago Crime
(Bernoulli)

ArXiv Abstracts
(Poisson)

1

10

100

1000

10000

Se
co
nd

s

Run Time

OnlineGCP (CPU) Static GCP (CPU) OnlineGCP (GPU) Static GCP (GPU)

Figure 2: Running times in seconds of the streaming and static GCP methods showing comparable, and often substantially
reduced, times on both CPU and GPU architectures for OnlineGCP compared to static GCP.

gradient descent as an optimization strategy, so future work will
involve investigation of alternative solution strategies that rely on
fewer hyperparameters and are more robust to their values.

REFERENCES
[1] Brett W. Bader and Tamara G. Kolda. 2007. Efficient MATLAB Computations

with Sparse and Factored Tensors. SIAM Journal on Scientific Computing 30, 1
(Dec. 2007), 205–231. https://doi.org/10.1137/060676489

[2] J. A. Bazerque, G. Mateos, and G. B. Giannakis. 2013. Rank Regularization and
Bayesian Inference for Tensor Completion and Extrapolation. IEEE Transactions
on Signal Processing 61, 22 (2013), 5689–5703. https://doi.org/10.1109/TSP.2013.
2278516

[3] J. D. Carroll and J. J. Chang. 1970. Analysis of individual differences in multidi-
mensional scaling via an N-way generalization of “Eckart-Young” decomposition.
Psychometrika 35 (1970), 283–319. https://doi.org/10.1007/BF02310791

[4] Donghui Chen and Robert J. Plemmons. 2007. Nonnegativity constraints in
numerical analysis. 109–139. https://doi.org/10.1142/9789812836267_0008

[5] Eric C. Chi and Tamara G. Kolda. 2012. On Tensors, Sparsity, and Nonnegative
Factorizations. SIAM J. Matrix Anal. Appl. 33, 4 (Dec. 2012), 1272–1299. https:
//doi.org/10.1137/110859063

[6] City of Chicago. 2023. Chicago Crime Dataset. https://data.cityofchicago.org/
Public-Safety/Crimes-2001-to-Present/ijzp-q8t2

[7] Cornell University. 2023. arXiv Dataset. https://www.kaggle.com/Cornell-
University/arxiv Accessed:2020-11-10.

[8] Yishuai Du, Yimin Zheng, Kuang chih Lee, and Shandian Zhe. 2018. Probabilistic
Streaming Tensor Decomposition. In 2018 IEEE International Conference on Data
Mining (ICDM). IEEE, 99–108. https://doi.org/10.1109/icdm.2018.00025

[9] H. Carter Edwards, Daniel Sunderland, Vicki Porter, Chris Amsler, and Sam Mish.
2012. Manycore performance-portability: Kokkos multidimensional array library.
Scientific Programming 20, 2 (2012), 89–114. https://doi.org/10.3233/SPR-2012-
0343

[10] H. Carter Edwards, Christian R. Trott, and Daniel Sunderland. 2014. Kokkos:
Enablingmanycore performance portability through polymorphicmemory access
patterns. J. Parallel and Distrib. Comput. 74 (2014), 3202–3216. Issue 12. https:
//doi.org/10.1016/j.jpdc.2014.07.003

[11] João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid
Bouchachia. 2014. A survey on concept drift adaptation. ACM computing surveys
(CSUR) 46, 4 (2014), 1–37.

[12] Ekta Gujral, Ravdeep Pasricha, and Evangelos E. Papalexakis. 2018. SamBaTen:
Sampling-based Batch Incremental Tensor Decomposition. In Proceedings of the
2018 SIAM International Conference on Data Mining. 387–395. https://doi.org/10.
1137/1.9781611975321.44

[13] Richard A. Harshman. 1970. Foundations of the PARAFAC procedure: Models
and conditions for an “explanatory" multi-modal factor analysis. UCLA working
papers in phonetics 16 (1970), 1–84.

[14] David Hong, Tamara G. Kolda, and Jed A. Duersch. 2020. Generalized Canonical
Polyadic Tensor Decomposition. SIAM Rev. 62, 1 (2020), 133–163. https://doi.
org/10.1137/18M1203626

[15] Matthew Honnibal and Ines Montani. 2017. spaCy 2: Natural language under-
standing with Bloom embeddings, convolutional neural networks and incremen-
tal parsing. (2017). To appear.

[16] Hiroyuki Kasai. 2016. Online Low-rank Tensor Subspace Tracking from Incom-
plete Data by CP Decomposition Using Recursive Least Squares. In 2016 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE.
https://doi.org/10.1109/ICASSP.2016.7472131

[17] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. arXiv:1412.6980v9 [cs.LG] Published as a conference paper at the 3rd
International Conference for Learning Representations, San Diego, 2015.

[18] Tamara G. Kolda and Brett W. Bader. 2009. Tensor Decompositions and Applica-
tions. SIAM Rev. 51, 3 (Sept. 2009), 455–500. https://doi.org/10.1137/07070111X

[19] Tamara G. Kolda and David Hong. 2020. Stochastic Gradients for Large-Scale
Tensor Decomposition. SIAM Journal on Mathematics of Data Science 2, 4 (Oct.
2020), 1066–1095. https://doi.org/10.1137/19m1266265 arXiv:1906.01687

[20] Pierre-David Letourneau, Muthu Baskaran, Tom Henretty, James Ezick, and
Richard Lethin. 2018. Computationally Efficient CP Tensor Decomposition Update
Framework for Emerging Component Discovery in Streaming Data. In HPEC’18
Proceedings.

[21] Morteza Mardani, Gonzalo Mateos, and Georgios B. Giannakis. 2015. Subspace
Learning and Imputation for Streaming Big Data Matrices and Tensors. IEEE
Transactions on Signal Processing 63, 10 (may 2015), 2663–2677. https://doi.org/
10.1109/tsp.2015.2417491

[22] D. Nion and N. D. Sidiropoulos. 2009. Adaptive Algorithms to Track the PARAFAC
Decomposition of a Third-Order Tensor. IEEE Transactions on Signal Processing
57, 6 (June 2009), 2299–2310. https://doi.org/10.1109/TSP.2009.2016885

[23] Ravdeep Pasricha, Ekta Gujral, and Evangelos E. Papalexakis. 2019. Identifying
and Alleviating Concept Drift in Streaming Tensor Decomposition. In Machine
Learning and Knowledge Discovery in Databases. Springer International Publish-
ing, 327–343. https://doi.org/10.1007/978-3-030-10928-8_20

[24] Eric T. Phipps et al. 2020. GenTen: Software for Generalized Canonical Polyadic
Tensor Decompositions. Available online. https://gitlab.com/tensors/genten

[25] Eric T. Phipps and Tamara G. Kolda. 2019. Software for Sparse Tensor Decom-
position on Emerging Computing Architectures. SIAM Journal on Scientific
Computing 41, 3 (2019), C269–C290. https://doi.org/10.1137/18M1210691

[26] Shaden Smith, Jee W. Choi, Jiajia Li, Richard Vuduc, Jongsoo Park, Xing Liu, and
George Karypis. 2017. FROSTT: The Formidable Repository of Open Sparse Tensors
and Tools. http://frostt.io/

[27] Shaden Smith, Kejun Huang, Nicholas D. Sidiropoulos, and George Karypis.
2018. Streaming Tensor Factorization for Infinite Data Sources. In Proceedings
of the 2018 SIAM International Conference on Data Mining. SIAM, 81–89. https:
//doi.org/10.1137/1.9781611975321.10

[28] Qingquan Song, Xiao Huang, Hancheng Ge, James Caverlee, and Xia Hu. 2017.
Multi-Aspect Streaming Tensor Completion. In Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM.
https://doi.org/10.1145/3097983.3098007

[29] Giorgio Tomasi and Rasmus Bro. 2006. A comparison of algorithms for fitting
the PARAFAC model. Computational Statistics & Data Analysis 50, 7 (2006),
1700–1734. https://doi.org/10.1016/j.csda.2004.11.013

[30] Jeffrey S. Vitter. 1985. Random Sampling with a Reservoir. ACM Trans. Math.
Softw. 11, 1 (March 1985), 37–57. https://doi.org/10.1145/3147.3165

[31] Zheng Zhang and Cole Hawkins. 2018. Variational Bayesian Inference for Ro-
bust Streaming Tensor Factorization and Completion. In 2018 IEEE International
Conference on Data Mining (ICDM). IEEE, 1446–1451. https://doi.org/10.1109/
ICDM.2018.00200

[32] Shuo Zhou, Nguyen Xuan Vinh, James Bailey, Yunzhe Jia, and Ian Davidson. 2016.
Accelerating Online CP Decompositions for Higher Order Tensors. In KDD’16:
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. https://doi.org/10.1145/2939672.2939763

https://doi.org/10.1137/060676489
https://doi.org/10.1109/TSP.2013.2278516
https://doi.org/10.1109/TSP.2013.2278516
https://doi.org/10.1007/BF02310791
https://doi.org/10.1142/9789812836267_0008
https://doi.org/10.1137/110859063
https://doi.org/10.1137/110859063
https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-Present/ijzp-q8t2
https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-Present/ijzp-q8t2
https://www.kaggle.com/Cornell-University/arxiv
https://www.kaggle.com/Cornell-University/arxiv
https://doi.org/10.1109/icdm.2018.00025
https://doi.org/10.3233/SPR-2012-0343
https://doi.org/10.3233/SPR-2012-0343
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1137/1.9781611975321.44
https://doi.org/10.1137/1.9781611975321.44
https://doi.org/10.1137/18M1203626
https://doi.org/10.1137/18M1203626
https://doi.org/10.1109/ICASSP.2016.7472131
https://arxiv.org/abs/1412.6980v9
https://doi.org/10.1137/07070111X
https://doi.org/10.1137/19m1266265
https://arxiv.org/abs/1906.01687
https://doi.org/10.1109/tsp.2015.2417491
https://doi.org/10.1109/tsp.2015.2417491
https://doi.org/10.1109/TSP.2009.2016885
https://doi.org/10.1007/978-3-030-10928-8_20
https://gitlab.com/tensors/genten
https://doi.org/10.1137/18M1210691
http://frostt.io/
https://doi.org/10.1137/1.9781611975321.10
https://doi.org/10.1137/1.9781611975321.10
https://doi.org/10.1145/3097983.3098007
https://doi.org/10.1016/j.csda.2004.11.013
https://doi.org/10.1145/3147.3165
https://doi.org/10.1109/ICDM.2018.00200
https://doi.org/10.1109/ICDM.2018.00200
https://doi.org/10.1145/2939672.2939763

	Abstract
	1 Introduction
	2 Background and Notation
	2.1 Canonical Polyadic (CP) Tensor Decompositions
	2.2 Generalized CP Decompositions

	3 Related Work
	3.1 Problem Setup for Two-way Temporal Slices
	3.2 Problem Setup for Higher-order Temporal Slices
	3.3 Earliest Work
	3.4 Online SGD
	3.5 CP-Stream
	3.6 Other Works

	4 Streaming GCP
	4.1 Streaming GCP Problem Formulation
	4.2 Streaming GCP Solution Strategy
	4.3 Sampling for Streaming Stochastic GCP Approximations

	5 Software Implementation
	6 Numerical Experiments
	6.1 Synthetic Data Experiments
	6.2 Realistic Data Experiments

	7 Conclusions
	References

