Achieving very-high current density with
GaN nanoscale field emitters array
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> ‘ Vacuum Devices - Still Around! m

« Solid state devices began to replace vacuum tubes more than 60 years ago

« Butvacuum electron devices have distinct advantages and are still in
limited use!

« Communication: Radar, RF broadcasting

High power, high frequency

A Multiple 3 GHz ~ Few

« NASA: Satellite communications, Electronics for space missions o echmologes ) technclogies
: : : , . == : Vv Tub
« Industry: Industrial RF heating, THz technologies, Microwave electronic [[SIC MESFET | acHm TERhes
applications 10— Slicon \i | Gan HEMT
% 10— GuAsHBTE
Advantages of vacuum electron devices 3 |
« Ballistic transport in vacuum channel - GoAs HEMT
* No heat generation during electron transport in vacuum o
’ I | |
* No dielectric breakdown (Dielectric strength = 10'8V/m) | Froqueny (G 100
» Operation in harsh environments (radiation, temperature): no junction, vacuum optimize power-scheme tnese-trapsient imes. I
channel unaffected

As a result, vacuum devices can operate at higher frequencies & power than solid- I
state semiconductor devices £ A

Drawbacks of vacuum tubes: Size, cost, reliability, energy efficiency, integration,

vacuum requirement ' i
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s 1 Solid-State, Vacuum-Free “Vacuum” Electronics

v" Electron transport in air is vacuum-like if nanogap << A, (~ 500 nm)
v" Nanogap field emitters can operate in air and can be used for “vacuum”
electronics
Needs Vacuum Works in Air !

VIEc Nanogap
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Nanogap << A, (electron mean free path)

Solid state “vacuum” nanoelectronics integrates advantages of vacuum tubes and semiconductor nanofabrication
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1.

4 | GaN: Superior Platform for Vacuum Nanoelectronics

Fowler-Nordheim (FN) equation
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Major Challenges for Vacuum Nanoelectronics

Difficult to get low voltage field emission

@ ~ X (electron affinity) for n-doped semiconductor

GaN: low x = Low voltage field emission
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2. Device degradation/chemical

instability

GaN has significantly higher bond

strength

v' Sputtering resistance and low
degradation

v' Chemical stability

v Operable at high temperature

v' Radiation hardness
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3. High Power Operation

GaN has High Breakdown
Field

v High power operation

v High frequency operation

© Avogy Diodes
® Avogy FET
® HEMT-1
® SiC-MOS
HEMT-2
® SiC-VIFET
& HEMT-3
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Breakdown Voltage (V)
Source: https://compoundsemiconductor.net/article/98990
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s | Nanofabrication of GaN Lateral Field Emission (FE) Structures

I1I-N top-down fabrication process

100 nm n-GaN on C-GaN 7_ : 100 nm n-GaN on C-GalNes &

Electron

Dry Etching | Wet Etching

Sl (ICP/RIE) (KOH based)

Lithography

From knowledge of KOH wet etching of GaN:

« Orient collector // to m-plane to avoid microfacet protrusions
* Limit wet etch time to reduce wedge retraction effect

» consider dependence of wet etch on doping and composition

ICP dry etch: Angled side walls + AZ400K wet etch: Vertical
- variable gap size, possible side walls, cleared gap,

shorting at bottom, sidewall remove sidewall damage, |

damage smoother m-face collector

T - GaN structures down to ~30 nm gaps
Epilayer designs: 200 nm n-GaN (doping ~5E18) on 2 pm GaN:C and ~20 nm wide emitters
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6 | Working GaN Field Emission Devices

Successful field emission (FE) in air with low turn on voltage and high emission current!

Field emission is diode-like for sharp emitter and flat collector (expected)

Device Geometry:
Gap =30 nm, Emitter ry, ~ 17nm

500 14
—0— 28nm gap Al r ; 1 % —o—28nm gap
400+ 3 ; 159 %
| F-N plot
-16 4 .
3004 : \,  straight line equation Field enhancement factor
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IV measurement: Diode characteristics
Sapkota, Keshab R., et al. "Ultralow voltage GaN vacuum nanodiodes in air." Nano Letters 21.5 (2021): 1928-1934.

Very low turn on and very high FE current!
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7 | Effect of Emitter Size on Field Emission

]
. : . . . . 2772 3/2
Sharper emitter is desired for low voltage field emission  ;_ 4 (ﬂ;’; )exp (_B‘ﬁ{;‘f)
* Increases field enhancement ¢ A
* Reduces the device turn on voltage B => Field enhancement factor, depends on geometry
Emitter r,,, = 17 nm Emitter ry, =31 nm
500 ”
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» Field enhancement factor () = 920 Field enhancement factor () = 32

« Turn on voltage = 0.24V @ 50pA Turn on voltage = 1.9 V @ 50pA
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: ‘ Nanogap Size Dependency of the Field Emission

Devices with various nanogap sizes were fabricated

« Emitter tip radius ~ 30 £ 2nm

« Field emission observed in air (atmospheric pressure) with gap size as large as 93 nm
« |V data for different nanogap sizes can be explained by Fowler-Nordheim field emission

« Turn-on voltage depends linearly with nanogap size

» Field enhancement factor decreases with increase in gap size
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o I Optimization of GaN VED: 3D Simulation

» Developed 3D COMSOL model to simulate field emission
current as a function of various device parameters

Electricfield: E = VV

Poisson’s Equation: V. (e,€,E) = py,

Fowler Nordheim equatiohs A(
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0 | Designing array of diodes: Electric field screening effect m

 Array of diodes suffer from the electric field screening due to

presence of neighboring emitters

 Field emission current

is significant impacted for short

emitter periodicity (emitter pitch).
« Optimal design: emitter pitch > 500nm for current emitter

geometry

3D model of 10 diodes array
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« Typical rating of GaN emitter: 1TuA/emitter
Fabricated 1000 FE diodes in 20um x 50um area

Diodes are operated in parallel

Record high current density = 171 A/cm?

Previous record! of 100A/cm? for semiconductor field

emitters

Diode arrays for achieving milliamps of field emission current
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Field emission current from 1000 diodes array

Further optimization of arrays can significantly improve the field emission current density

" Guerrera, IEEE ELECTRON DEVICE LETTERS, VOL. 37, NO. 1 (2016)
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12 1 Conclusions

All GaN-based nanogap field emission vacuum nanodiode devices were successfully
demonstrated

If nanogap size << electron mean free path, field emission in nanogap device can be
achieved in air

Low turn-on voltage down to 0.24 V is achieved with high field emission current for 28nm
gap, ~20 nm radius sharp emitter tip device

Developed 3D COMSOL model and optimized the GaN nanoscale vacuum electron diode
(NVED) device by simulated field emission current as a function of various device
parameters

For optimal field emission: a wide collector and a long and narrow emitter are desired

3D simulation of array of GaN NVED revealed that dense array of field emitters suffer from
electric field effect

We experimentally demonstrated field emission current up to 2mA from 1000 diodes and
record high current density of 171 A/cm?
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