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Outline

* Overall Materials Science at SNL

* Why Energy Efficiency in Computing ?

* Materials discovery and Engineering for energy-efficient
computing

* Chips + Science Act

* Boost Domestic Research & Manufacturing in Microelectronics
 Why Sandia?
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Materials Research Foundations advance the frontier-of-knowledge in‘
the physical, engineering, and computer/information science
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Global Energy Consumption in Information & Computing Technology
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Fig. 1. Projected growth of global energy consumption by information and
computing technology (ICT). On the basis of optimistic (top) and expected
(bottom) estimates, ICT will by 2030 account for 7% and 20% of global

demand, respectively [1].

Chasing Carbon: The Elusive Environmental Footprint of Computing (2021)
Harvard University, Facebook and Arizona State University
DOI 10.1109/HPCA51647.2021.00076



Energy-efficiency of computing platforms

:g - I
5 100 pJ—— _—_—_— —1—
3 %
£ 10pd—T _ E ] 1
8 1 uJ—— 1486DX PC ‘-_;E"}'E]@L{;&,[ﬁ;f Dennard _|_ 1 mOPs/W
5 . Scaling
ug 100 nJ— —
3 10 nJ ——
§ 1n—— T Quip ~f— 1 GOPs/W

100 pJ— Architecture—|
5 P Nvidia P100 Innovation
Z 10 pJ— 1
w1 pJ ?99.9!91?9 ............... 1 1TOPS/W
"% 100 fJ CMOS Limits MR LN
E 10 fJ—— New paradigms: Q; ‘e, Pessimistic —
(o] . %
g R analog, auantum g [~ 1POPSIW
< 100 aJ—|— 9 9 0 0_? |

| | | | | | |
1946 /1980 1990 2000 2010 2020 2030 2040
Year

Adapted from: Marinella and Agarwal, Nature Electronics 2, 437, 2019




Materials Science
and Englneerlng

Quantum materials
Nanoscale materials
Optoelectronic
materials

Organic synapses
Superconductors
Topological materials
Atomic
manufacturing
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Microsystems
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(SFQ)
Single-electron
transistors
Magnomics
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Optical interconnects

Computing &
Information
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computing
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computing
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computing
Specialized
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Quantum information
science
Low-power
architectures

Research areas needed to advance low-energy information processing n
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Multi-scale and interdisciplinary co-design approach is required to meet
requirements for energy-efficient computing

BEYOND MOORE CO-DESIGN FRAMEWORK

10,000x improvement: 20 fJ per instruction equivalent

Beyond Moore Co-design Framework
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Process Module Modeling

+ Diffusion, etch, implant

« Simulation

* EUV and novel lithography model

Process Module Demonstrations
» EUV and novel lithography
+ Diffusion, etch, implant
simulation
Fundamental Materials Science
* Understanding Properties/Defects via
Electron, Photon, & Scanning Probes
» Novel Materials Synthesis

Atomistic and Ab-Initio Modeling
» DFT - VASP, Socorro
MD - LAMMPS

IR

Example activities
within a MCF

Comprehensive view of the many computational and experimental techniques needed in the rational design of new microelectronics.
Shows the need for strong integration across many levels during the design phase. McPAT = multicore power, area, and timing modeling;
. . . NVSim = nonvolatile memory simulator; TCAD = technology computer-aided design; EUV = extreme ultraviolet lithography; DFT = density
DOE BaS|C Resear’ch Needs for M|Croe|eCtr’0n ICS, 2028 functional theory; VASP = Vienna ab initio simulator package; MD = molecular dynamics; LAMMPS = large-scale atomic/molecular massively
parallel simulator; MCF = Moore co-design framework; ASIC = application-specific integrated circuit. Courtesy of Matt Marinella, Sandia
Mational Laboratories.



Energy-efficient Information processing at the “edge” of a network

Thousands

CLOUD | Data Centers

Millions

FOG | Nodes

EDGE | Devices

« Edge computing pushes applications, data and computing power away from centralized points (the “core” or
“cloud”) to the extremes of a network (the “edge”) which makes contact with the physical world or end users.
« Edge computing de-emphasizes the core computing environment, limiting or removing a major bottleneck

and a potential single point of failure.
« By performing analytics and knowledge generation at the edge, communications bandwidth between

systems under control and the central data center is reduced.




Meeting energy-efficiency and performance requirements for edge
information processing and sensing: Computing at the point-of-

sensing

Drivers: Several applications require information
processing at the point-of-sensing for real-time analysis
without data transmission to centralized computer:
Information processing at the “edge”

Requirements: Moving processing power to the edge
1.Low SWaP (size, weight, and power)

2.Radiation (including strategic) environments

3.Trusted and secure

4.Re-configurable circuits for evolving threats

Energy challenge:
1.The (performance/power) ratio is levelling
2.Too much power is required to process too much data

Information processing at the edge




Energy-efficient ultra-scale-class computing at the edge will open new
applications that cannot be anticipated with today’s technology

Enabled by Enabled by Enabled by
Mega/Gigascale Terascale Peta/Exascale

>1000x
improvement

>1000x
improvement

1990 2000



An example:

Hypothetical power performance needs for highly automated vehicles

(2019)

Sandia
National _
Laboratories

Energy Efficient Computing
R&D Roadmap Outline for
Automated Vehicles

August 17, 2021

computing must
meet SWaP
constraint

>10x
® compute

>10x less
power

~100 teraflops
~1000 W (system)
~1 TOPS/watt
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2100 W (sysom i~

00 TOPS/watt

Highly automated drivin
>100x gnty 9
power
performance TOPS = trillion (tera) operations

Significant innovation will be required in
microelectronic materials and devices,
sensing and computing architectures, and
computer algorithms.


https://www.wired.com/story/self-driving-cars-power-consumption-nvidia-chip/
https://www.wired.com/story/self-driving-cars-power-consumption-nvidia-chip/
https://www.wired.com/story/self-driving-cars-power-consumption-nvidia-chip/

Commercial Leap-Ahead Technologies

Neuromorphic, probabilistic and reversible Computing

Devices and circuits CMOS Integration
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Quantum Technologies

Facilities

* MESA: low volume, high mix fabrication

*  QSCOUT: open ion trap testbed

* IBL: counted ion implantation

* CINT: advanced fabrication, quantum materials

*  QPL: benchmarking tools, like gate-set tomography

* (CDC: science and technology of HW trust and security
* PRF: plasma research, including processing

b o ] Activities

all ' *  Working devices in multiple technologies: trapped ions, semiconductor spins,
superconducting circuits, neutral atoms, and optomechanical technologies.

» Applications ranging from quantum computing, quantum sensing, and networks

* Application-oriented benchmarking of noisy, intermediate scale quantum systems

*  Quantum Systems Accelerator (DOE quantum hub): co-design algorithms, devices, and
engineering solutions needed to deliver certified quantum advantage

* Re-application of technologies developed for quantum computing to traditional
microelectronics, including computing, failure analysis, and trust/security
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Cryogenic Computing
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* Electricity use of information and communications technology may exceed 20% of all global electricity by 2030.
* Need to increase energy efficiency of microelectronics.
* Cryogenic computing as a promising approach for low-energy, power efficient circuit applications.

* Two examples:
* Josephson junction (J]) field-effect-transistors (FFTs) for Boolean operations.
e Superconducting neuromorphic computing for beyond CMOS computing

* Cryogenic computing scheme is compatible with superconducting interconnects, huge reduction of power
dissipation.
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MATERIALS SCIENCE CAPABILITIES AND USER FACILITIES AT SANDIA

icrs_tems and : Advanced Materials Laboratory (AML)

60+ years as DOE/NNSA mission lead in electronics
Silicon and IlI-V Materials

Center for Integrated
Nanotechnologies
(CINT)

= DOE BES-SUF NSRC
= Celebrating 10t Anniversary e
» Focus on Integration of Nanoscience and Technology * Radiation-effects in materials

Courtesy of J. Nelson, Sandia National Laboratories



Capabilities for security and trust, extreme environments, and the science of

semiconductors amplify our mission impact for NNSA, DOE, and the Nation

Sandia’s Priority S&T Drivers

Heterointegration technologies to
enable rapid realization of novel/reliable
functionality for emergent applications:
lon-traps w/integrated photonics,
MEMS sensors, chip-stacked FPAs

Flexible, low-volume, high-mix

fabrication capabilities for agile
delivery of innovative low-volume technologies:
Needs span > 7 technology platforms

=300,000 parts across 44 products:
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Workforce &
Partnership

Specialized computational

accelerators and architectures that
use quantum, neuromorphic, and other bespoke
accelerators for revolutionary performance and
efficiency in Edge and HPC applications.
Neuromorphic FPA

Datecton 5tack

« & II-V HBT S5ICs
+ 1 multi-kW GaN Diode
= 1 MEMS Sensor
* 2 Photonic Arrays
= 1 Optoelectronic Device
= 2 Focal Plane Arrays
* 16 RFICs
Modernized power
electronics systems using
wide bandgap semiconductors and magnetic
materials for agile ND systems, power grid, and
electric drive trains with resiliency, radiation
hardness, and energy-efficiency: modular ND Power
Bus architectures and modules

Quantum Accelerator
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Science Frontiers

Novel metrology, materials, and

nanoscience innovations that accelerate
technology development

Atomic-scale manufacturing capabilities
that surpass limitations in current fabrication

A laboratory of the future paradigm

exploits Al-enhanced co-design for
semiconductor-based technologies



