
ProvSec: Cybersecurity System Provenance
Analysis Benchmark Dataset

Madhukar Shrestha, Yonghyun Kim, Jeehyun Oh,
Junghwan Rhee, Yung Ryn Choe∗, Fei Zuo, Myungah Park, Gang Qian

University of Central Oklahoma, ∗Sandia National Laboratories
{mshrestha21,ykim26,joh8,jrhee2,fzuo,mpark5,gqian}@uco.edu, ∗yrchoe@sandia.gov

Abstract—System provenance forensic analysis has been stud-
ied by a large body of research work. This area needs fine
granularity data such as system calls along with event fields to
track the dependencies of events. While prior work on security
datasets has been proposed, we found a useful dataset of realistic
attacks and details that can be used for provenance tracking is
lacking. We created a new dataset of eleven vulnerable cases
for system forensic analysis. It includes the full details of system
calls including syscall parameters. Realistic attack scenarios with
real software vulnerabilities and exploits are used. Also, we
created two sets of benign and adversary scenarios which are
manually labeled for supervised machine-learning analysis. We
demonstrate the details of the dataset events and dependency
analysis.

I. INTRODUCTION

Cybersecurity incidents on our nation’s government and
commerce are soaring. In 2021 alone, critical infrastructures
[1], companies [2], schools [3], [4], and municipal agencies
[5] suffered major ransomware attacks and data breaches.
The cybersecurity company Kaseya estimated that ransomware
compromised up to 1500 businesses during this time [6].
Industry statistics show that more than a thousand annual data
breach cases have occurred since 2016 [7] and federal agencies
experience more than 30,000 cyber incidents annually [8].

System forensic analysis also known as system provenance
analysis [9]–[15] is an effective technique to track the depen-
dencies across system events in a cyber incident, therefore,
assessing the scope of damage and understanding the attack
route of an intrusion. Previous approaches in security datasets
have been proposed for research and educational purposes.
However, they lack the following characteristics to be used
for provenance analysis research and education.

• RQ1: Dependencies Across Events. — To conduct
provenance analysis, such datasets should have depen-
dency information intact so that the causality of events
can be systematically reasoned. Operating system calls
with required parameters are an example that qualifies
for this purpose.

• RQ2: Realistic Threat Behavior. — The datasets should
be based on a realistic scenario and real vulnerability
exploits to reflect the characteristics and complexity of
real software exploit attacks.

• RQ3: Accurate Labeling. — The dataset should be
labeled to be useful for validation purposes. Especially

Fig. 1. Architecture of ProvSec Dataset.

machine learning tasks with supervision require accurate
labels.

This paper proposes a new dataset for system provenance
analysis called ProvSec1 to meet this need. Cyber attacks
simulated in a cloud-based virtual environment provide de-
tailed digital forensic artifacts. This paper is organized in the
following way. Section II presents the design of the dataset.
Its evaluation is presented in Section III. Section IV presents
related work. Lastly, Section V concludes this paper.

II. DESIGN OF PROVSEC

To meet the aforementioned requirements, we propose
ProvSec, a cybersecurity provenance analysis dataset (Figure
1) comprising the following:

A. Cloud Incident

Virtual machines simulating the hosts of cyber attacks will
provide realistic and safe sandbox environments for cyberse-
curity experiments while preventing any unintended damages
such as mistaken security operations during course modules.
Also, virtualization technology is useful for integrating the
management of virtual environments and data transfer so
that forensic data are collected, labeled, and managed with
convenience.

B. Provenance Data

In practical incident response research and education, ob-
taining high quality data is critical to successfully expose attack
sequences from piles of evidence. This is one important im-
plementation goal. In real incidents, investigators may end up
with an incomplete attack scenario due to various reasons such
as an organization’s unprepared cyber infrastructure against

1ProvSec is an acronym of System Provenance Analysis Security Dataset.

SAND2023-02103CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do
not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly
owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract
DE-NA0003525.

potential incidents (e.g., lack of monitoring software, loss of
logs).

ProvSec records and safely preserves system forensic event
history and artifacts so that we can analyze and recover the de-
tails of attack and defense system activities. This architecture
will offer cyber analysts/investigators realistic environments,
data navigation interfaces, and quality forensic data. They will
access these historical data through well-defined interfaces and
available functions for manual and automated investigation.

One important design issue of ProvSec is deciding which
data to collect. Traditionally, provenance analysis research
relies on the following:

• System calls — A system call is a lower-level interface
invoked by software to use the services of the operating
system kernel. Critical services for resources and priv-
ileges (e.g., memory, file, network, and processes) are
performed via system calls. Therefore, this interface is
important to monitor to understand attack activities and
determine their causalities (e.g., a network intrusion →
login → data copy).

• Software logs — Most server programs commonly use
log files to record any errors and operation status (e.g.,
access logs in web servers). Since the content of a log
file is typically intended to be read by humans, it is gen-
erally easier to understand in higher-level formats (e.g.,
a web page access) compared to low-level operations
addressed by system calls (e.g., file descriptors). This
would provide useful and complementary information to
understand software behavior. Therefore, it is widely used
by Security Information and Event Management (SIEM)
software for security purposes.

• OS Service/System logs — Operating systems have es-
sential software services also known as daemons (e.g.,
init, systemd, crond, sshd), which also generate useful
logs in the system administrator’s perspective to indicate
any notable events during the operations of a system. For
instance, reconnaissance activities targeting OS services
may leave unusual trails in their logs, which provide
additional evidence for incident response.

C. Provenance Analysis with Graph Augmentation

These events are analyzed by event dependence analysis
[16] known as a backtracking algorithm. We made several
improvements in the original backtracking algorithm as shown
in Algorithm 1 due to the following practical issues:

1) Augmentation #1: Incomplete capture of all processes:
Unlike the original algorithm [16] where the data recorder is
integrated with the hypervisor, we use a data recorder (sysdig)
on top of a COTS operating system (ubuntu) which initiates
recording after the machine has finished the booting sequence
and daemons. This deployment issue causes the data recorder
to miss the creation of certain processes.

While this issue can be partially alleviated by starting the
recording software as early as possible in the booting stage,
there is always a chance that some process starts could be
missed from the recording while their behavior is recorded.

Algorithm 1 Enhanced Backtracking Algorithm
Require: Backtrack graph G = (N,E)
Require: Log / System call trace L
Require: Anonymization list A

1: for foreach event e in log L do
2: if e.src /∈ N then
3: E = ∪{e.src.parent → fork → e.src}
4: N = N ∪ {e.src.parent, e.src}
5: end if
6: if e.tgt /∈ N then
7: E = ∪{e.tgt.parent → fork → e.tgt}
8: N = N ∪ {e.tgt.parent, e.tgt}
9: end if

10: if e.tgt == null then
11: e.tgt = ExtractTarget(e.metadata)
12: end if
13: for object O in N do
14: if e.tgt == O by the time threshold for O then
15: if e.src /∈ N then
16: N = N ∪ {e.src}
17: set time threshold for e.src to time of e
18: end if
19: E = E ∪ {e}
20: end if
21: end for
22: end for
23: for n ∈ N do
24: for (orig, new) in A do
25: if n == orig then
26: n = new
27: else
28: n2 = Anonymize(n)
29: n = n2

30: A = A ∪ (n, n2)
31: end if
32: end for
33: end for

We handled this issue for practical usage by including such
programs into the graph using artificial process creation when
their behavior is observed for the first time. As shown in the
lines 2-9 of Algorithm 1, when their first behavior is processed,
the algorithm creates an artificial fork (process creation) event.

2) Augmentation #2: Limited data fields from sysdig: We
found some recording fields from sysdig are missing as such
data may not be available at the time when the data are
retrieved and stored inside the OS kernel. We added logic
to supplement such missing information as much as possible
by extracting it from the event’s metadata and other recorded
history. This part is shown in lines 10-12.

3) Augmentation #3: Anonymization: There are some
names of processes or resources that might be sensitive to
be identified. We applied an anonymization process to replace
such names with artificial names. The lines 23-33 show this
process. Generally, the anonymization of events is a compli-

cated process. However, this is not the case for our approach
because we use a fixed list of event fields that can be properly
examined and anonymized.

D. Attack Cases

We created several scenarios of cyber attacks where their
data are generated by setting up virtual machines, software,
and triggering attack actions along with manual labeling of
behavior.

• C01 - Nginx integer overflow vulnerability: This case
represents an integer overflow vulnerability that exists in
Nginx software whose versions are between 0.5.6 and
1.13.2. This vulnerability is caused by insufficient bound
checking (CVE-2017-7529).

• C02 - Path traversal and file disclosure vulnerability
in Apache HTTP Server: Apache 2.4.49 has a vulner-
ability that allows a path traversal attack to map URLs
to files outside the expected document root (CVE-2021-
41773). We used this vulnerability to execute several
UNIX commands.

• C03 - Python PIL/Pillow Remote Shell Command
Execution via Ghostscript: Ghostscript whose version
is before 9.24 has a vulnerability that allows the ex-
ploitation of a remote shell command. We create a file
/tmp/test.txt remotely in the target server as a
demonstration. (CVE-2018-16509)

• C04 - PHP IMAP Remote Command Execution Vul-
nerability: The PHP IMAP extension is used to send
and receive emails. imap_open call internally uses ssh
and an attacker can inject a parameter for a remote com-
mand execution. We conducted an attack to execute the
command echo ’1234567890’>/tmp/test0001.
(CVE-2018-19518)

• C05 - Apache Log4j2 lookup feature JNDI injection
with a reverse shell: Apache Log4j, a Java-based logging
utility, has a vulnerability CVE-2021-44228 in its support
for JNDI (Java Naming and Directory Interface). We
used this vulnerability to initiate a reverse shell.

• C06 - Apache Tomcat AJP Arbitrary File Read /
Include Vulnerability: Apache Tomcat has a vulnera-
bility CVE-2020-1938 known as Ghostcat that allows
an attacker a file read. We used this vulnerability to
read a sensitive password file, /etc/passwd, as a
demonstration of an arbitrary file read.

• C07 - Redis Lua Sandbox Escape and Remote Code
Execution: Redis, an open source in-memory data struc-
ture store, has a vulnerability CVE-2022-0543 to allow an
escape of Lua sandbox and an execution of an arbitrary
remote command. We used this vulnerability to run UNIX
commands and dump the password file.

• C08 - Consul service APIs misconfiguration leading
to Remote Code Execution (RCE) and reverse shell:
Consul is an open-source software to discover and con-
figure services. It has a vulnerability that allows remote
code execution. We created a remote shell followed by
several attack commands.

• C09 - Path traversal and file disclosure vulnerability
in Apache HTTP Server: This attack case is regarding
CVE-2021-42013 which is a vulnerability caused by an
incomplete fix of CVE-2021-41773. After the fix, the
Apache server still allows path traversals and execution
of remote commands.

• C10 - Django QuerySet.order by SQL Injection Vul-
nerability: Django has a vulnerability that allows SQL
injection (CVE-2021-35042). We used this vulnerability
to collect information from the machine as an error
message.

• C11 - Escape from a Docker container: Vulnerability
on docker: Docker has a vulnerability for an attacker
to escape a container and run commands (CVE-2019-
5736). We used this vulnerability to create a backdoor
and execute several UNIX commands.

E. Dependency Graph Reduction

We identified a detection point of each dataset case and
conducted dependency analysis to reduce the graph size.
The examples of several dataset cases are presented in the
evaluation section. They show a significant reduction in the
sizes and complexity of graphs.

III. EVALUATION

This section presents the evaluation of ProvSec datasets. We
created a total of eleven attack scenarios using widely used
software and vulnerabilities.

We created the ProvSec dataset using docker containers and
sysdig on top of Ubuntu 20.04. We have prepared total of
eleven real attack scenarios for this dataset. The details for
these cases are illustrated in Figure 2 and 4, which respectively
show the full attack behavior of C02 and C03 scenarios. In
each figure, the red nodes and edges represent processes and
process creation events such as execve, fork and clone
system calls. Blue nodes and edges represent files and file
activities. Their examples include open, close, read, and
write system calls and their variants. The green nodes and
edges represent network addresses and network activities such
as connect and accept system calls.

The graph complexity of each case is presented in Table I.
|N | represents the total number of nodes where |Np|, |Nf |, and
|Nn| respectively represent the counts of nodes for processes,
files, and network entities like IP addresses. Similarly, |E|
represents the total number of edges. |Ep|, |Ef |, and |En|
respectively show the total counts of edges for processes, files,
and network entities.

This table also shows the complexity of backtrack graphs
which are simplified by applying a dependency analysis on the
detection points. Their nodes and edges are shown in |Nbt| and
|Ebt| columns and their reduction rates compared to the full
graphs are respectively shown in |Nbt|

|N | and |Ebt|
|E| . The nodes

are simplified to 0.5%–17.9% of the original graphs. The edge
complexity got lower to 0.015%–9.5%.

As an example, Figure 3 shows the sequence of processes
caused by the path traversal exploit (C02 scenario). Figure 5

500 systemd

500 gmain

#AEXEC1

500 - 4 - <N/A> (event)write
read

1 systemd

AFORK

161 systemd

AFORK

32568 systemd
AFORK

402 systemdAFORK

1133 systemd

AFORK

2043 systemd

AFORK

404 systemd

AFORK

529 systemd

AFORK

328 systemd

AFORK

193 systemd

AFORK

161 systemd-journal
#AEXEC1

32568 dockerd#AEXEC1

402 systemd-network#AEXEC1

1133 cloud-soft-01

#AEXEC1

2043 snapd

#AEXEC1

404 systemd-resolve

#AEXEC1

529 systemd-logind#AEXEC1

328 systemd-timesyn
#AEXEC1

193 systemd-udevd#AEXEC1

402 - 19 - <N/A> (unix)
close

1167 cloud-soft-01
AFORK

1133 - 19 - <N/A> (pipe)
close

1133 - 18 - <N/A> (pipe)close

1133 - 17 - <N/A> (pipe)

close

1133 - 16 - <N/A> (pipe)
close

2043 - 4 - <NA> : <NA> (unix)
connect

2043 - 4 - <NA> : 0 (unix)

connect

2043 - 4 - <N/A> (unix)
write

404 - 15 - <N/A> (unix)close

529 - 22 - <N/A> (unix)close

328 - 15 - <N/A> (unix)close

193 - 14 - <N/A> (unix)
close

1167 cloud-soft-02

#AEXEC1

read

read

500 - 7 - <N/A> (inotify)
read

83151 bash

83151 grpc_global_tim#AEXEC1

82799 bash

clone

161 - 17 - <N/A> (timerfd) read

83031 httpd

83031 - 10 - <N/A> (ipv4)
close

access_log (file)

write

index.html (file)

close

read

82983 httpd

AFORK

83032 httpd
AFORK

83030 httpd

AFORK

83029 httpd

AFORK

write

close

83032 - 10 - <N/A> (ipv4)

close

83032 - 11 - <NA> : <NA> (unix)connect

83032 - 11 - <NA> : 0 (unix)connect

83032 - 11 - <N/A> (unix)write

83032 - 12 - <NA> : <NA> (unix)

connect

83032 - 12 - <NA> : 0 (unix)

connect

83032 - 12 - <N/A> (unix)write

write

close

83030 - 10 - <N/A> (ipv4)close

83029 - 7 - <N/A> (unix)

close

83029 - 8 - <N/A> (unix)close

83029 - 11 - <N/A> (unix)
close

error_log (file)

close

83029 - 12 - <N/A> (pipe)

close

83029 - 10 - <N/A> (pipe)

close

83029 - 9 - <N/A> (pipe)

close

83158 httpdclone

read

read

read

read

read

close

83158 - 3 - <N/A> (unix)close

83158 sh

execve 68.31

83159 sh

clone

83160 shclone

172.20.0.2 : 80 (ip)

accept

accept

accept

1 <NA>

#AEXEC1

0 <NA>

AFORK

1167 - 13 - <N/A> (unix)
read

1133 - 14 - <N/A> (unix)
read

83156 cloud-soft-01

83156 ps

execve 34.96

online (file)close

83156 - 1 - <N/A> (pipe)
write

83156 - 5 - <N/A> (directory)close

83156 - 2 - <N/A> (pipe)

close

read

83161 ps

read

close

83161 - 1 - <N/A> (pipe)

write

83161 - 5 - <N/A> (directory)
close

83161 - 2 - <N/A> (pipe)close

1168 cloud-soft-01

clone

83159 ls

execve 68.31

83160 idexecve 68.31

83029 - 7 - <NA> : <NA> (unix) accept

close
83159 - 3 - <N/A> (directory)close

close 83160 - 3 - <NA> : <NA> (unix)

connect

83160 - 3 - <N/A> (unix)
close

passwd (file)
close

group (file)
close

read

read

83161 cloud-soft-01

execve 95.96

1153 cloud-soft-01

clone

404 - 6 - <N/A> (timerfd)
read

529 - 6 - <N/A> (timerfd) read

328 - 6 - <N/A> (timerfd) read

193 - 11 - <N/A> (timerfd)
read

0 VIRTUAL_ROOT

#VIRTUAL 0

#VIRTUAL 0

#VIRTUAL 0

#VIRTUAL 0

#VIRTUAL 0

Fig. 2. Dependency Graph of C02 - Path traversal and file disclosure vulnerability in Apache HTTP Server.

83159 sh 83159 lsexecve83158 sh clone83158 httpd execve

83029 httpd

clone

83029 - 7 - <N/A> (unix)

close

read

83029 - 7 - <NA> : <NA> (unix)
accept

82983 httpd

AFORK

Fig. 3. Simplified Backtrack Graph of C02 - Path traversal and file disclosure vulnerability in Apache HTTP Server.

highlights a part of the original graph by removing unrelevant
nodes and edges of the C03 scenario.

IV. RELATED WORK

In this section, we compare our work with multiple prior
works proposed for security datasets.
Network-oriented dataset Many existing work focuses on
network-oriented data such as five-tuples or full packet record-
ings (e.g., PCAP) [17]–[22]. While these datasets have an
influence on multiple research works, they lack the information

necessary to conduct dependency analysis of operating system
events for system provenance analysis.

Software vulnerability dataset Other dataset work [23]–[26]
is regarding software vulnerability including useful features
such as source code information, CWE (Common Weakness
Enumeration), CVE (Common Vulnerability Enumeration),
code metrics, etc. The datasets of this category have full details
at the code level. However, they do not provide the runtime
data on how they use operating system services and their

45187 systemd

45187 dockerd
#AEXEC1

45187 - 22 - <N/A> (unix)write

0608affbf802cfa06e2222ef3bfcd0f9bdcb1bdac4e00d0ae155f94fa276f001-json.log (file)
write

read

1 systemd

AFORK

501 systemd

AFORK

85886 systemd

AFORK

161 systemd

AFORK

1136 systemd

clone

403 systemdAFORK

63918 systemd

AFORK

63920 systemd

AFORK

501 gmain
#AEXEC1

85886 rtkit-daemon#AEXEC1

161 systemd-journal

#AEXEC1

1136 cloud-soft-01#AEXEC1

403 systemd-network#AEXEC1

63918 kerneloops#AEXEC1

63920 kerneloops#AEXEC1

501 - 4 - <N/A> (event)
write

85886 - 5 - <N/A> (event)write

1165 cloud-soft-01AFORK

read

read

1165 cloud-soft-02#AEXEC1

45187 - 22 - <NA> : <NA> (unix)
accept

501 - 7 - <N/A> (inotify)

read

86995 sudo 86995 grpc_global_tim#AEXEC186994 sudo clone

161 - 17 - <N/A> (timerfd)
read

1165 - 13 - <N/A> (unix)
read1136 - 14 - <N/A> (unix)

read

87001 cloud-soft-01 87001 psexecve 8.57

87001 - 3 - <N/A> (inotify)

close

87001 - 4 - <N/A> (eventpoll)

close

87001 - 1 - <N/A> (unix)write

read

1168 cloud-soft-01 clone

86844 containerd-shim

86844 python

#AEXEC1

86823 containerd-shim AFORK

87002 containerd-shim

clone

86823 - 20 - <N/A> (pipe)write

87002 python

#AEXEC1

87002 - 5 - <N/A> (eventpoll)write

/tmp/nem6mhal

unlink

87003 python

clone

/tmp/tmpoebrk_iu
unlink

/tmp/tmpezg5fonatest..jpg
unlink

87002 - 2 - <N/A> (pipe)

write

read

87003 gs#AEXEC4
172.19.0.2 : 8000 (ip)

accept 87004 gsclone 87004 sh#AEXEC4 87005 shclone 87005 touch#AEXEC4

45187 - 45 - <N/A> (pipe) read

0 VIRTUAL_ROOT

#VIRTUAL 0

#VIRTUAL 0

#VIRTUAL 0

#VIRTUAL 0

Fig. 4. Dependency Graph of C03 - Python PIL/Pillow Remote Shell Command Execution via Ghostscript.

87005 sh 87005 touch#AEXEC487004 sh clone87004 gs #AEXEC487003 gs clone87003 python #AEXEC4

87002 python

clone

87002 - 5 - <N/A> (eventpoll)

write

read

87002 containerd-shim #AEXEC186823 containerd-shim clone

Fig. 5. Simplified Backtrack Graph of C03 - Python PIL/Pillow Remote Shell Command Execution via Ghostscript.

TABLE I
DETAILS OF THE PROVENANCE GRAPHS OF INCIDENT CASES.

Name CVE |N | |Np| |Nf | |Nn| |E| |Ep| |Ef | |En| |Nbt| |Ebt| |Nbt|
|N|

|Ebt|
|E|

1 nginx CVE-2017-7529 124 48 48 48 2758 42 2572 144 4 3 3.2% 0.11%
2 apache CVE-2021-41773 99 45 45 9 1044 40 946 58 8 8 8.1% 0.77%
3 ghostscript CVE-2018-16509 56 36 18 2 105 35 68 2 10 10 17.9% 9.5%
4 php CVE-2018-19518 212 70 110 32 1454 64 1283 107 11 13 5.2% 0.89%
5 log4j CVE-2021-44228 601 110 445 46 6177 135 5915 127 9 10 1.5% 0.16%
6 tomcat CVE-2020-1938 143 66 69 8 898 64 785 49 7 8 4.9% 0.89%
7 redis CVE-2022-0543 80 57 27 3 202 51 143 8 10 10 12.5% 5.0%
8 consul N/A 1203 281 392 530 34173 291 32789 1093 6 5 0.5% 0.015%
9 apache CVE-2021-42013 117 48 52 17 1383 44 1268 71 8 8 6.8% 0.59%
10 django CVE-2021-35042 176 42 41 93 1704 36 1402 266 5 5 2.8% 0.29%
11 docker CVE-2019-5736 1764 358 1263 143 47183 557 46272 354 295 729 16.7% 1.55%

parameters which are necessary to conduct system provenance
analysis.
System call dataset ISOT-CID dataset [27] includes data
of multiple formats including network traffic, system logs,
performance data (e.g. CPU utilization), and system calls.
While this data is quite close to what we provide, the system
call data are incomplete and not structured. They lack full
details and the records are in a non-standard format similar to
the strace output. Therefore, it takes manual effort to parse,
curate, and extract useful information from the records.

Compared to these approaches, ProvSec has several ad-
vantages. Our dataset has full details of system calls and
parameters that enable the construction of operating system
dependencies and system provenance analysis. We utilized
real vulnerabilities to simulate attack scenarios inside docker
environments which are recorded in the operating system
kernel. Our manual labeling of the attacks are helpful to
identify the root causes of attacks and the full details of attack
behavior which will help experiments that need ground truth
validation or supervised machine learning experiments.

V. CONCLUSION

In this paper, we introduce a new dataset for security
provenance analysis. This dataset is differentiated from past
work in that it provides detailed data with causal dependencies
across events, it uses real vulnerabilities and exploits, and it
provides manual labeling so that it can be used for validation
and supervised machine learning tasks. We performed an
enhanced causality dependence analysis and demonstrated how
the dependency analysis can simplify the analysis of each
attack scenario.

VI. ACKNOWLEDGEMENT

Sandia National Laboratories is a multimission laboratory
managed and operated by National Technology and Engineer-
ing Solutions of Sandia, LLC., a wholly owned subsidiary
of Honeywell International, Inc., for the U.S. Department
of Energy’s National Nuclear Security Administration under
contract DE-NA0003525. This article describes objective tech-
nical results and analysis. Any subjective views or opinions
that might be expressed in the article do not necessarily
represent the views of the U.S. Department of Energy or the
United States Government. This work was supported through
contract #70RSAT21KPM000105 with the U.S. Department of
Homeland Security Science and Technology Directorate.

Junghwan Rhee is the corresponding author of this work.

REFERENCES

[1] Bloomberg, “Colonial pipeline paid hackers nearly 5 million
in ransom,” https://www.bloomberg.com/news/articles/2021-05-
13/colonial-pipeline-paid-hackers-nearly-5-million-in-ransom/.

[2] Reuters, “Toshibas european business hit by cyberattack,”
https://www.reuters.com/business/autos-transportation/toshibas-
european-business-hit-by-cyberattack-source-2021-05-14/ .

[3] O. of the Superintendent, “Cybersecurity attack on the buffalo public
schools.”

[4] S. Magazine, “Now ransomware is inundating public school systems,”
https://www.securitymagazine.com/articles/95164-now-ransomware-is-
inundating-public-school-systems.

[5] . N. Oklahoma, “Tulsa system shutdown alters backside
operations ransomware attack still being investigated,”
https://www.kjrh.com/news/local-news/tulsa-system-shutdown-alters-
backside-operations-ransomware-attack-still-being-investigated .

[6] CNN, “Kaseya ransomware attack businesses affected,”
https://www.cnn.com/2021/07/06/tech/kaseya-ransomware-attack-
businesses-affected/index.html.

[7] Statista, “Annual number of data breaches and exposed
records in the united states from 2005 to 2020,”
https://www.statista.com/statistics/273550/data-breaches-recorded-
in-the-united-states-by-number-of-breaches-and-records-exposed/.

[8] ——, “Number of cyber security incident reports by federal
agencies in the united states from fy 2006 to 2018,”
https://www.statista.com/statistics/677015/number-cyber-incident-
reported-usa-gov/.

[9] Y. Liu, M. Zhang, D. Li, K. Jee, Z. Li, Z. Wu, J. Rhee, and P. Mittal,
“Towards a timely causality analysis for enterprise security.” in NDSS,
2018.

[10] Q. Wang, W. U. Hassan, D. Li, K. Jee, X. Yu, K. Zou, J. Rhee, Z. Chen,
W. Cheng, C. A. Gunter et al., “You are what you do: Hunting stealthy
malware via data provenance analysis.” in NDSS, 2020.

[11] Z. Xu, Z. Wu, Z. Li, K. Jee, J. Rhee, X. Xiao, F. Xu, H. Wang, and
G. Jiang, “High fidelity data reduction for big data security dependency
analyses,” in Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, 2016.

[12] Y. Tang, D. Li, Z. Li, M. Zhang, K. Jee, X. Xiao, Z. Wu, J. Rhee, F. Xu,
and Q. Li, “Nodemerge: Template based efficient data reduction for
big-data causality analysis,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, 2018.

[13] W. U. Hassan, D. Li, K. Jee, X. Yu, K. Zou, D. Wang, Z. Chen, Z. Li,
J. Rhee, J. Gui et al., “This is why we can’t cache nice things: Lightning-
fast threat hunting using suspicion-based hierarchical storage,” in Annual
Computer Security Applications Conference, 2020.

[14] S. Ma, K. H. Lee, C. H. Kim, J. Rhee, X. Zhang, and D. Xu,
“Accurate, low cost and instrumentation-free security audit logging
for windows,” in Proceedings of the 31st Annual Computer Security
Applications Conference, ser. ACSAC 2015. New York, NY, USA:
Association for Computing Machinery, 2015. [Online]. Available:
https://doi.org/10.1145/2818000.2818039

[15] Y. Sun, K. Jee, S. Sivakorn, Z. Li, C. Lumezanu, L. Korts-Parn, Z. Wu,
J. Rhee, C. H. Kim, M. Chiang et al., “Detecting malware injection with
program-dns behavior,” in 2020 IEEE European Symposium on Security
and Privacy (EuroS&P). IEEE, 2020.

[16] S. T. King and P. M. Chen, “Backtracking intrusions,” in
Proceedings of the Nineteenth ACM Symposium on Operating
Systems Principles, ser. SOSP ’03. New York, NY, USA: Association
for Computing Machinery, 2003, p. 223–236. [Online]. Available:
https://doi.org/10.1145/945445.945467

[17] R. Lippmann, D. Fried, I. Graf, J. Haines, K. Kendall, D. McClung,
D. Weber, S. Webster, D. Wyschogrod, R. Cunningham, and M. Ziss-
man, “Evaluating intrusion detection systems: the 1998 darpa off-
line intrusion detection evaluation,” in Proceedings DARPA Information
Survivability Conference and Exposition. DISCEX’00, vol. 2, 2000, pp.
12–26 vol.2.

[18] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed
analysis of the kdd cup 99 data set,” in 2009 IEEE Symposium on
Computational Intelligence for Security and Defense Applications, 2009,
pp. 1–6.

[19] Y. M. Banadaki, “Detecting malicious dns over https traffic in domain
name system using machine learning classifiers,” Journal of Computer
Sciences and Applications, vol. 8, no. 2, pp. 46–55, 2020. [Online].
Available: http://pubs.sciepub.com/jcsa/8/2/2

[20] N. Koroniotis, N. Moustafa, E. Sitnikova, and B. Turnbull, “Towards
the development of realistic botnet dataset in the internet of things
for network forensic analytics: Bot-iot dataset,” Future Generation
Computer Systems, vol. 100, pp. 779–796, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167739X18327687

[21] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating a
new intrusion detection dataset and intrusion traffic characterization,” in
International Conference on Information Systems Security and Privacy,
2018.

[22] M. Jonker, A. King, J. Krupp, C. Rossow, A. Sperotto, and A. Dainotti,
“Millions of targets under attack: A macroscopic characterization of
the dos ecosystem,” in Proceedings of the 2017 Internet Measurement
Conference, ser. IMC ’17. New York, NY, USA: Association
for Computing Machinery, 2017, p. 100–113. [Online]. Available:
https://doi.org/10.1145/3131365.3131383

[23] A. Gkortzis, D. Mitropoulos, and D. Spinellis, “Vulinoss: A
dataset of security vulnerabilities in open-source systems,” in
Proceedings of the 15th International Conference on Mining Software
Repositories, ser. MSR ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 18–21. [Online]. Available:
https://doi.org/10.1145/3196398.3196454

[24] V. Nguyen, “Some software vulnerability real-world data sets,” 2021.
[Online]. Available: https://dx.doi.org/10.21227/1m98-5h52

[25] D. Kim, E. Kim, S. K. Cha, S. Son, and Y. Kim, “Revisiting binary
code similarity analysis using interpretable feature engineering and
lessons learned,” CoRR, vol. abs/2011.10749, 2020. [Online]. Available:
https://arxiv.org/abs/2011.10749

[26] A. Marcelli, M. Graziano, X. Ugarte-Pedrero, Y. Fratantonio,
M. Mansouri, and D. Balzarotti, “How machine learning is
solving the binary function similarity problem,” in 31st USENIX
Security Symposium (USENIX Security 22). Boston, MA:
USENIX Association, Aug. 2022, pp. 2099–2116. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity22/presentation/marcelli

[27] A. Aldribi, I. Traore, and B. Moa, Data Sources and Datasets for
Cloud Intrusion Detection Modeling and Evaluation. Cham: Springer
International Publishing, 2018, pp. 333–366. [Online]. Available:
https://doi.org/10.1007/978-3-319-73676-113

