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Abstract—System provenance forensic analysis has been stud-
ied by a large body of research work. This area needs fine
granularity data such as system calls along with event fields to
track the dependencies of events. While prior work on security
datasets has been proposed, we found a useful dataset of realistic
attacks and details that can be used for provenance tracking is
lacking. We created a new dataset of eleven vulnerable cases
for system forensic analysis. It includes the full details of system
calls including syscall parameters. Realistic attack scenarios with
real software vulnerabilities and exploits are used. Also, we
created two sets of benign and adversary scenarios which are
manually labeled for supervised machine-learning analysis. We
demonstrate the details of the dataset events and dependency
analysis.

I. INTRODUCTION

Cybersecurity incidents on our nation’s government and
commerce are soaring. In 2021 alone, critical infrastructures
[1], companies [2], schools [3], [4], and municipal agencies
[5] suffered major ransomware attacks and data breaches.
The cybersecurity company Kaseya estimated that ransomware
compromised up to 1500 businesses during this time [6].
Industry statistics show that more than a thousand annual data
breach cases have occurred since 2016 [7] and federal agencies
experience more than 30,000 cyber incidents annually [8].

System forensic analysis also known as system provenance
analysis [9]–[15] is an effective technique to track the depen-
dencies across system events in a cyber incident, therefore,
assessing the scope of damage and understanding the attack
route of an intrusion. Previous approaches in security datasets
have been proposed for research and educational purposes.
However, they lack the following characteristics to be used
for provenance analysis research and education.

• RQ1: Dependencies Across Events. — To conduct
provenance analysis, such datasets should have depen-
dency information intact so that the causality of events
can be systematically reasoned. Operating system calls
with required parameters are an example that qualifies
for this purpose.

• RQ2: Realistic Threat Behavior. — The datasets should
be based on a realistic scenario and real vulnerability
exploits to reflect the characteristics and complexity of
real software exploit attacks.

• RQ3: Accurate Labeling. — The dataset should be
labeled to be useful for validation purposes. Especially

Fig. 1. Architecture of ProvSec Dataset.

machine learning tasks with supervision require accurate
labels.

This paper proposes a new dataset for system provenance
analysis called ProvSec1 to meet this need. Cyber attacks
simulated in a cloud-based virtual environment provide de-
tailed digital forensic artifacts. This paper is organized in the
following way. Section II presents the design of the dataset.
Its evaluation is presented in Section III. Section IV presents
related work. Lastly, Section V concludes this paper.

II. DESIGN OF PROVSEC

To meet the aforementioned requirements, we propose
ProvSec, a cybersecurity provenance analysis dataset (Figure
1) comprising the following:

A. Cloud Incident

Virtual machines simulating the hosts of cyber attacks will
provide realistic and safe sandbox environments for cyberse-
curity experiments while preventing any unintended damages
such as mistaken security operations during course modules.
Also, virtualization technology is useful for integrating the
management of virtual environments and data transfer so
that forensic data are collected, labeled, and managed with
convenience.

B. Provenance Data

In practical incident response research and education, ob-
taining high quality data is critical to successfully expose attack
sequences from piles of evidence. This is one important im-
plementation goal. In real incidents, investigators may end up
with an incomplete attack scenario due to various reasons such
as an organization’s unprepared cyber infrastructure against

1ProvSec is an acronym of System Provenance Analysis Security Dataset.
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potential incidents (e.g., lack of monitoring software, loss of
logs).

ProvSec records and safely preserves system forensic event
history and artifacts so that we can analyze and recover the de-
tails of attack and defense system activities. This architecture
will offer cyber analysts/investigators realistic environments,
data navigation interfaces, and quality forensic data. They will
access these historical data through well-defined interfaces and
available functions for manual and automated investigation.

One important design issue of ProvSec is deciding which
data to collect. Traditionally, provenance analysis research
relies on the following:

• System calls — A system call is a lower-level interface
invoked by software to use the services of the operating
system kernel. Critical services for resources and priv-
ileges (e.g., memory, file, network, and processes) are
performed via system calls. Therefore, this interface is
important to monitor to understand attack activities and
determine their causalities (e.g., a network intrusion →
login → data copy).

• Software logs — Most server programs commonly use
log files to record any errors and operation status (e.g.,
access logs in web servers). Since the content of a log
file is typically intended to be read by humans, it is gen-
erally easier to understand in higher-level formats (e.g.,
a web page access) compared to low-level operations
addressed by system calls (e.g., file descriptors). This
would provide useful and complementary information to
understand software behavior. Therefore, it is widely used
by Security Information and Event Management (SIEM)
software for security purposes.

• OS Service/System logs — Operating systems have es-
sential software services also known as daemons (e.g.,
init, systemd, crond, sshd), which also generate useful
logs in the system administrator’s perspective to indicate
any notable events during the operations of a system. For
instance, reconnaissance activities targeting OS services
may leave unusual trails in their logs, which provide
additional evidence for incident response.

C. Provenance Analysis with Graph Augmentation

These events are analyzed by event dependence analysis
[16] known as a backtracking algorithm. We made several
improvements in the original backtracking algorithm as shown
in Algorithm 1 due to the following practical issues:

1) Augmentation #1: Incomplete capture of all processes:
Unlike the original algorithm [16] where the data recorder is
integrated with the hypervisor, we use a data recorder (sysdig)
on top of a COTS operating system (ubuntu) which initiates
recording after the machine has finished the booting sequence
and daemons. This deployment issue causes the data recorder
to miss the creation of certain processes.

While this issue can be partially alleviated by starting the
recording software as early as possible in the booting stage,
there is always a chance that some process starts could be
missed from the recording while their behavior is recorded.

Algorithm 1 Enhanced Backtracking Algorithm
Require: Backtrack graph G = (N,E)
Require: Log / System call trace L
Require: Anonymization list A

1: for foreach event e in log L do
2: if e.src /∈ N then
3: E = ∪{e.src.parent → fork → e.src}
4: N = N ∪ {e.src.parent, e.src}
5: end if
6: if e.tgt /∈ N then
7: E = ∪{e.tgt.parent → fork → e.tgt}
8: N = N ∪ {e.tgt.parent, e.tgt}
9: end if

10: if e.tgt == null then
11: e.tgt = ExtractTarget(e.metadata)
12: end if
13: for object O in N do
14: if e.tgt == O by the time threshold for O then
15: if e.src /∈ N then
16: N = N ∪ {e.src}
17: set time threshold for e.src to time of e
18: end if
19: E = E ∪ {e}
20: end if
21: end for
22: end for
23: for n ∈ N do
24: for (orig, new) in A do
25: if n == orig then
26: n = new
27: else
28: n2 = Anonymize(n)
29: n = n2

30: A = A ∪ (n, n2)
31: end if
32: end for
33: end for

We handled this issue for practical usage by including such
programs into the graph using artificial process creation when
their behavior is observed for the first time. As shown in the
lines 2-9 of Algorithm 1, when their first behavior is processed,
the algorithm creates an artificial fork (process creation) event.

2) Augmentation #2: Limited data fields from sysdig: We
found some recording fields from sysdig are missing as such
data may not be available at the time when the data are
retrieved and stored inside the OS kernel. We added logic
to supplement such missing information as much as possible
by extracting it from the event’s metadata and other recorded
history. This part is shown in lines 10-12.

3) Augmentation #3: Anonymization: There are some
names of processes or resources that might be sensitive to
be identified. We applied an anonymization process to replace
such names with artificial names. The lines 23-33 show this
process. Generally, the anonymization of events is a compli-



cated process. However, this is not the case for our approach
because we use a fixed list of event fields that can be properly
examined and anonymized.

D. Attack Cases

We created several scenarios of cyber attacks where their
data are generated by setting up virtual machines, software,
and triggering attack actions along with manual labeling of
behavior.

• C01 - Nginx integer overflow vulnerability: This case
represents an integer overflow vulnerability that exists in
Nginx software whose versions are between 0.5.6 and
1.13.2. This vulnerability is caused by insufficient bound
checking (CVE-2017-7529).

• C02 - Path traversal and file disclosure vulnerability
in Apache HTTP Server: Apache 2.4.49 has a vulner-
ability that allows a path traversal attack to map URLs
to files outside the expected document root (CVE-2021-
41773). We used this vulnerability to execute several
UNIX commands.

• C03 - Python PIL/Pillow Remote Shell Command
Execution via Ghostscript: Ghostscript whose version
is before 9.24 has a vulnerability that allows the ex-
ploitation of a remote shell command. We create a file
/tmp/test.txt remotely in the target server as a
demonstration. (CVE-2018-16509)

• C04 - PHP IMAP Remote Command Execution Vul-
nerability: The PHP IMAP extension is used to send
and receive emails. imap_open call internally uses ssh
and an attacker can inject a parameter for a remote com-
mand execution. We conducted an attack to execute the
command echo ’1234567890’>/tmp/test0001.
(CVE-2018-19518)

• C05 - Apache Log4j2 lookup feature JNDI injection
with a reverse shell: Apache Log4j, a Java-based logging
utility, has a vulnerability CVE-2021-44228 in its support
for JNDI (Java Naming and Directory Interface). We
used this vulnerability to initiate a reverse shell.

• C06 - Apache Tomcat AJP Arbitrary File Read /
Include Vulnerability: Apache Tomcat has a vulnera-
bility CVE-2020-1938 known as Ghostcat that allows
an attacker a file read. We used this vulnerability to
read a sensitive password file, /etc/passwd, as a
demonstration of an arbitrary file read.

• C07 - Redis Lua Sandbox Escape and Remote Code
Execution: Redis, an open source in-memory data struc-
ture store, has a vulnerability CVE-2022-0543 to allow an
escape of Lua sandbox and an execution of an arbitrary
remote command. We used this vulnerability to run UNIX
commands and dump the password file.

• C08 - Consul service APIs misconfiguration leading
to Remote Code Execution (RCE) and reverse shell:
Consul is an open-source software to discover and con-
figure services. It has a vulnerability that allows remote
code execution. We created a remote shell followed by
several attack commands.

• C09 - Path traversal and file disclosure vulnerability
in Apache HTTP Server: This attack case is regarding
CVE-2021-42013 which is a vulnerability caused by an
incomplete fix of CVE-2021-41773. After the fix, the
Apache server still allows path traversals and execution
of remote commands.

• C10 - Django QuerySet.order by SQL Injection Vul-
nerability: Django has a vulnerability that allows SQL
injection (CVE-2021-35042). We used this vulnerability
to collect information from the machine as an error
message.

• C11 - Escape from a Docker container: Vulnerability
on docker: Docker has a vulnerability for an attacker
to escape a container and run commands (CVE-2019-
5736). We used this vulnerability to create a backdoor
and execute several UNIX commands.

E. Dependency Graph Reduction

We identified a detection point of each dataset case and
conducted dependency analysis to reduce the graph size.
The examples of several dataset cases are presented in the
evaluation section. They show a significant reduction in the
sizes and complexity of graphs.

III. EVALUATION

This section presents the evaluation of ProvSec datasets. We
created a total of eleven attack scenarios using widely used
software and vulnerabilities.

We created the ProvSec dataset using docker containers and
sysdig on top of Ubuntu 20.04. We have prepared total of
eleven real attack scenarios for this dataset. The details for
these cases are illustrated in Figure 2 and 4, which respectively
show the full attack behavior of C02 and C03 scenarios. In
each figure, the red nodes and edges represent processes and
process creation events such as execve, fork and clone
system calls. Blue nodes and edges represent files and file
activities. Their examples include open, close, read, and
write system calls and their variants. The green nodes and
edges represent network addresses and network activities such
as connect and accept system calls.

The graph complexity of each case is presented in Table I.
|N | represents the total number of nodes where |Np|, |Nf |, and
|Nn| respectively represent the counts of nodes for processes,
files, and network entities like IP addresses. Similarly, |E|
represents the total number of edges. |Ep|, |Ef |, and |En|
respectively show the total counts of edges for processes, files,
and network entities.

This table also shows the complexity of backtrack graphs
which are simplified by applying a dependency analysis on the
detection points. Their nodes and edges are shown in |Nbt| and
|Ebt| columns and their reduction rates compared to the full
graphs are respectively shown in |Nbt|

|N | and |Ebt|
|E| . The nodes

are simplified to 0.5%–17.9% of the original graphs. The edge
complexity got lower to 0.015%–9.5%.

As an example, Figure 3 shows the sequence of processes
caused by the path traversal exploit (C02 scenario). Figure 5
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Fig. 2. Dependency Graph of C02 - Path traversal and file disclosure vulnerability in Apache HTTP Server.
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Fig. 3. Simplified Backtrack Graph of C02 - Path traversal and file disclosure vulnerability in Apache HTTP Server.

highlights a part of the original graph by removing unrelevant
nodes and edges of the C03 scenario.

IV. RELATED WORK

In this section, we compare our work with multiple prior
works proposed for security datasets.
Network-oriented dataset Many existing work focuses on
network-oriented data such as five-tuples or full packet record-
ings (e.g., PCAP) [17]–[22]. While these datasets have an
influence on multiple research works, they lack the information

necessary to conduct dependency analysis of operating system
events for system provenance analysis.

Software vulnerability dataset Other dataset work [23]–[26]
is regarding software vulnerability including useful features
such as source code information, CWE (Common Weakness
Enumeration), CVE (Common Vulnerability Enumeration),
code metrics, etc. The datasets of this category have full details
at the code level. However, they do not provide the runtime
data on how they use operating system services and their
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TABLE I
DETAILS OF THE PROVENANCE GRAPHS OF INCIDENT CASES.

# Name CVE |N | |Np| |Nf | |Nn| |E| |Ep| |Ef | |En| |Nbt| |Ebt| |Nbt|
|N|

|Ebt|
|E|

1 nginx CVE-2017-7529 124 48 48 48 2758 42 2572 144 4 3 3.2% 0.11%
2 apache CVE-2021-41773 99 45 45 9 1044 40 946 58 8 8 8.1% 0.77%
3 ghostscript CVE-2018-16509 56 36 18 2 105 35 68 2 10 10 17.9% 9.5%
4 php CVE-2018-19518 212 70 110 32 1454 64 1283 107 11 13 5.2% 0.89%
5 log4j CVE-2021-44228 601 110 445 46 6177 135 5915 127 9 10 1.5% 0.16%
6 tomcat CVE-2020-1938 143 66 69 8 898 64 785 49 7 8 4.9% 0.89%
7 redis CVE-2022-0543 80 57 27 3 202 51 143 8 10 10 12.5% 5.0%
8 consul N/A 1203 281 392 530 34173 291 32789 1093 6 5 0.5% 0.015%
9 apache CVE-2021-42013 117 48 52 17 1383 44 1268 71 8 8 6.8% 0.59%
10 django CVE-2021-35042 176 42 41 93 1704 36 1402 266 5 5 2.8% 0.29%
11 docker CVE-2019-5736 1764 358 1263 143 47183 557 46272 354 295 729 16.7% 1.55%

parameters which are necessary to conduct system provenance
analysis.
System call dataset ISOT-CID dataset [27] includes data
of multiple formats including network traffic, system logs,
performance data (e.g. CPU utilization), and system calls.
While this data is quite close to what we provide, the system
call data are incomplete and not structured. They lack full
details and the records are in a non-standard format similar to
the strace output. Therefore, it takes manual effort to parse,
curate, and extract useful information from the records.

Compared to these approaches, ProvSec has several ad-
vantages. Our dataset has full details of system calls and
parameters that enable the construction of operating system
dependencies and system provenance analysis. We utilized
real vulnerabilities to simulate attack scenarios inside docker
environments which are recorded in the operating system
kernel. Our manual labeling of the attacks are helpful to
identify the root causes of attacks and the full details of attack
behavior which will help experiments that need ground truth
validation or supervised machine learning experiments.



V. CONCLUSION

In this paper, we introduce a new dataset for security
provenance analysis. This dataset is differentiated from past
work in that it provides detailed data with causal dependencies
across events, it uses real vulnerabilities and exploits, and it
provides manual labeling so that it can be used for validation
and supervised machine learning tasks. We performed an
enhanced causality dependence analysis and demonstrated how
the dependency analysis can simplify the analysis of each
attack scenario.
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