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Hydrogen degrades fracture toughness of Austenitic Stainless Steel

Crack Growth Resistance (J-R) Curve Microvoid initiation at
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Microvoid nucleation at planar deformation band intersections
with grain boundaries

Fracture processes in H-Charged 304L associated with void nucleation
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What are the deformation bands and how do they depend on hydrogen?




Focus for this talk:

e Structure of the planar
deformation bands

-Influence of hydrogen on
formation of e-martensite

* Intersection of shear-bands

-nucleation of a’ martensite
-twinning at intersecting €-laths




Material: Forged 304L Austenitic Stainless Steel
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e Initial state: Forged, strain-
hardened condition

 H-Charged material:
-Increased YS and UTS

-Reduced ductility




Material: Forged 304L Austenitic Stainless Steel
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Material: Forged 304L Austenitic Stainless Steel
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e Initial state: Forged, strain-
hardened condition

 H-Charged material:
-Increased YS and UTS

-Reduced ductility

e Microstructure analysis from
interrupted tensile tests




Initial As-forged microstructure
EBSD Measurements

Log10(pGND) m'z

Misorientation

5.00° — » Some pre-existing twins within the microstructure
20°-55° * Dense distribution of geometrically necessary

dislocations (GNDs)

55°-60°




As-forged microstructure: dense dislocation network

Diffraction Contrast Scanning Transmission Electron Microscopy
(DC-STEM)

1 micron




Object-Based Dislocation Tomographic Reconstruction
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STEM: Insight to Development of Shear Bands

5% strain (140 ppm H)

As-forged and H-charged 20% strain(140 ppm H)
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STEM: Insight to Development of Shear Bands

5% strain (140 ppm H)

As-forged and H-charged

Dislocation cells and extended
stacking faults

Scanning
diffraction to
determine
interphase

crystallography at

nanometer-scale
resolution

Parallel bands of deformation twins and
e-martensite (no a'-martensite observed)

Example
from 5%
strain
sample

20% strain(140 ppm H)

e . RN A “:
Intersecting shear bands (twins, e-martensite)
o' — martensite at intersections

Key techniques:

-Diffraction-Contrast STEM
-Scanning nano-beam diffraction
-Atomic-resolution STEM

J.E.C. Sabisch et al. Metallurgical and Materials Transactions 2021



Orientations and phases in shear-bands can be
distinguished through nanobeam diffraction

Austenite: Austenite & Austenite &
matrix & twin  e-martensite  o'-martensite
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Hydrogen charging promotes
g-martensite formation in shear bands

Nanobeam diffraction line-scan analysis
Twinning in non-charged material
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HRSTEM: detail of deformation bands

5% strain

Non-Charged Hydroe-Charged

J.E.C. Sabisch et al. Metallurgical and Materials Transactions 2021




0% Strain: only very limited initiation of e-martensite
in non-charged material

Faulting in vicinity of
twin boundaries

1-2 layers of -
martensite

SN r e

Londay



Promotion of e-martensite by hydrogen:
an open mechanistic question

Understanding relationship of H to stacking fault formation
and partial dislocation motion is critical

-Reduction in SFE is often invoked

) - FCC to HCP transformation by passage
as explanation H-influence on of series of (1/6)<112> dislocations
shear localization. FCC () HCP (¢)

Existing experimental literature shows

erime . 1—C AL
small reductions in SFE with H. B B
(e.g., Ferreira, Mat Sci Forum 1996,
Pontini, Scripta Mat 1997) 1= A A ....... 'L .
© = B
-Solute drag effects: 1— B AL
Preferential pinning of trailing partials by A B
hydrogen gives kinetic mechanism for fault
extension. (e.g., Sills et al., 2016) i=c AL
B B
-Does not explain how faults would A A
order into required ABAB... stacking
sequence




Twinning and martensite nucleation kinetics:

sensitive to Stacking Fault Energy (SFE)

Recent micro-mechanics model describes balance between
nucleating deformation twins and martensite

Critical embryo (twin or €)

>0 r
E.l. Galindo-Nava and P.E.J. Rivera-Diaz-deI-CastiIIo,

Acta Mat. 128 (2017) 120-134

Model predicts narrow region for which € martensite

dominates over twinning.
Dependent on SFE and loading conditions

Dislocation dissociation
under applied strain

Volume fraction (%)

Even small (few mJ/m2) reductions in SFE from hydrogen may
be sufficient to transition from twinning to € martensite.
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Influence of Hydrogen on Strain-induced a’-martensite
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Influence of Hydrogen on Strain-induced a’-martensite
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a'-martensite at shear band intersections: importance of e-martensite

¢- and a'-martensite at shear bands in
SC;STEM,304L, tensile-strained 304L stainless steel
0% strain, .
140 ppm H (20% strain, 140 ppm H)
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Olsen & Cohen model: a'-martensite nucleation
at shear-band intersections with e-martensite
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Colocation of € and a' in hydrogen-charged 304L specimens

20% tensile strain
Non-Charged ° Pre-charged (140 ppm H

. 1"
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Transmission Kikuchi Diffraction (TKD) on electro-polished TEM specimens
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Colocation of € and a' in hydrogen-charged 304L specimens

20% tensile strain
Non-Charged _Pre-charged (140 ppm_H)

® Austenite
® c-Martensite
® o'-Martensite

Transmission Kikuchi Diffraction (TKD) on electro-polished TEM specimens
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Olsen & Cohen model: a'-martensite nucleation at shear band

intersections with e-martensite
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o' nucleation at e-martensite intersection

C.W. Sinclair and R.G. Hoagland, Acta Materialia 2008

Atomistic calculations
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BCC Cohesive Energy, eV
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Shear Band Intersections:
More complicated that
simple models

Geometric Phase Analysis (GPA)
from HAADF-STEM




1 micron

" c-gintersections

An alternative to
nucleating o' martensite:
Twinning of the € phase

304L, 5% strain, -50 C, 140 wppm H




e-€ intersection: Analysis of variants

HAADF-STEM Power Spectrum

4096X4096 Pixel sampling
DFCI




e-€ intersection: Analysis of variants

Power Spectrum

Map of phase distribution:
(amplitudes of selected
spatial frequency
components)




e-€ intersection: {1 0-1 1} twinning
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Circuit Mapping: b = —(C, + PC,)

A. Serra, R.C. Pond, D.J. Bacon, Acta Mat 1991
{10-11} Twins in HCP
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e-€ intersection: {1 0-1 1} twinning
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Conclusions

 Complex, multiscale evolution of microstructure under tensile strain in
forged austenitic stainless steel.

* Microstructure affected by presence of internal hydrogen
-Strain localization into planar deformation bands
-Twinning in non-charged 304L

-Both twinning and martensite formation in H-charged 304L
& —martensite in shear-bands
a'-martensite at intersections of shear-bands

- —martensite provides a favorable pathway to o'.
-Likely that the initial increase in o' with H is a secondary
effect of hydrogen promoting s-martensite formation,
aiding a' nucleation

* Ongoing work:
-Promotion of e-martensite formation by H?

-Low T reduction of a' by presence of H?
-Detailed atomistic processes at shear-band intersections
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