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Introduction

Uncertainty is ubiquitous in microstructures and structure-property linkage
with ICME models.
Sources of uncertainty:
I aleatory uncertainty (irreducible):

I natural randomness of microstructures
I epistemic uncertainty (reducible):

I numerical approximation in numerical solvers
I model-form error, e.g. lack of modeling for internal state variables
I model discrepancy – disagreement between experiment and

computation
I plasticity constitutive modeling assumptions
I mesh discretization

UQ in CPFEM: why is it interesting?
I stochastic: RVE
I deterministic: RVE, constitutive models, solvers
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(1) High-throughput model calibration under microstructure-induced
uncertainty
(joint work w/ Hojun Lim)

Reference
Anh Tran and Hojun Lim (2023). “An asynchronous parallel
high-throughput model calibration framework for crystal plasticity finite
element constitutive models”. In: Computational Mechanics (accepted)

Summary:
I calibrate constitutive model parameters in a high-throughput manner
I run concurrently more than 20 CPFEM simulations on HPC with

scheduler
I using an asynchronous parallel Bayesian optimization workflow

(Anh Tran et al. (2022). “aphBO-2GP-3B: a budgeted asynchronous
parallel multi-acquisition functions for constrained Bayesian
optimization on high-performing computing architecture”. In:
Structural and Multidisciplinary Optimization 65.4, pp. 1–45)

I loss function is a weighted Sobolev norm to account for hardening
I optimize under (microstructure-induced) uncertainty: average loss by

Monte Carlo estimator over an ensemble of RVEs
I demonstrate on (1) SS304L, (2) Tantalum, (3) Cantor high-entropy

alloy
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(1) High-throughput model calibration under microstructure-induced
uncertainty
(joint work w/ Hojun Lim)

Comparison of homogenized materials properties between experimental data and
computational results for SS304L across different mesh resolutions and for
different SERVEs. material variability. : experimental data.
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(1) High-throughput model calibration under microstructure-induced
uncertainty
(joint work w/ Hojun Lim)

Comparison of homogenized materials properties between experimental data and
computational results for Tantalum across different mesh resolutions and for
different SERVEs. material variability. : experimental data.
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(1) High-throughput model calibration under microstructure-induced
uncertainty
(joint work w/ Hojun Lim)

Comparison of homogenized materials properties between experimental data and
computational results for Cantor high-entropy alloy across different mesh
resolutions and for different SERVEs. material variability. : experimental data.
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(2) UQ of constitutive models
(joint work w/ Tim Wildey, Hojun Lim)

Reference
Anh Tran, Tim Wildey, and Hojun Lim (2022). “Microstructure-sensitive
uncertainty quantification for crystal plasticity finite element constitutive
models using stochastic collocation method”. In: Frontiers in Materials 9,
pp. 1–20

Summary:
I quantify uncertainty of homogenized σY /εY (initial yield) induced by

uncertain constitutive model parameters by stochastic collocation
method (Xiu and Karniadakis 2002) (polynomial chaos expansion +
sparse grid)

I apply on fcc Cu (phenom model w/o twinning), hcp Mg (phenom
model w/ twinning), and bcc W (dislocation-density-based)

I global sensitivity analysis using Sobol’ indices
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(2) UQ of constitutive models
(joint work w/ Tim Wildey, Hojun Lim)

I uncertainty quantification
I sensitivity analysis

I representative volume element
I grain geometries + orientations

I crystal plasticity finite element
I spectral solver via PETSc

Anh Tran (anhtran@sandia.gov) Multifaceted UQ/Opt/ML for CPFEM in Structure-Property [9 / 34] TMS 2023

anhtran@sandia.gov


(2) UQ of constitutive models
(joint work w/ Tim Wildey, Hojun Lim)

Generalized polynomial chaos expansion
Dongbin Xiu and George Em Karniadakis (2002). “The Wiener–Askey
polynomial chaos for stochastic differential equations”. In: SIAM Journal
on Scientific Computing 24.2, pp. 619–644

The second-order random process f (θ) can be represented as

f (θ) = c0I0 +
∑∞

i1=1 ci1 I1(ξi1(θ))

+
∑∞

i1=1

∑∞
i2=1 ci1 i2 I2(ξi1(θ), ξi2(θ))

+
∑∞

i1=1

∑∞
i2=1

∑∞
i3=1 ci1 i2 i3 I3(ξi1(θ), ξi2(θ), ξi3(θ)) + · · · ,

(1)

I In(ξi1 , · · · , ξin): the Wiener-Askey polynomial chaos of order n in
terms of the random vector ξ = (ξi1 , ξi2 , . . . , ξin)

I c’s are polynomial chaos expansion coefficients
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(2) UQ of constitutive models
(joint work w/ Tim Wildey, Hojun Lim)

Without loss of generality, we can rewrite the previous equation as

f (θ) =
∞∑

j=0

f̂jΦj(ξ(θ)), (2)

I there is a one-to-one correspondence between the function
In(ξi1 , · · · , ξin) and Φj(ξ)

I Φj(ξ(θ)) are orthogonal polynomials in terms of ξ := {ξi(θ)}d
i=1,

I coefficients are determined by projection, exploiting the fact that {Φj}
is an orthogonal basis (problem: ξ may be high-dimensional)

f̂j =
〈f ,Φj〉
〈Φj ,Φj〉

. (3)
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(2) UQ of constitutive models
(joint work w/ Tim Wildey, Hojun Lim)

Comparison of 2D Smolyak nested sparse grids at various level `, 1 ≤ ` ≤ 5, with
the number of abscissas varies at 5, 17, 49, 97, 161, respectively, using Gaussian
abscissas for quadrature.
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(2) UQ of constitutive models
(joint work w/ Tim Wildey, Hojun Lim)

Table: The number of collocation points used by sparse grid and full tensor grid.

Level n = 5 n = 7 n = 16
` sparse full sparse full sparse full
0 1 1 1 1 1 1
1 11 243 15 2187 33 4.3e+7
2 71 16807 127 823543 577 3.3e+13
3 351 759375 799 170859375 7105 6.5e+18
4 1391 28629151 4047 27512614111 68865 7.2e+23
5 4623 992436543 17263 3938980639167 556801 6.1e+28
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(2) UQ of constitutive models
(joint work w/ Tim Wildey, Hojun Lim)

fcc Cu

Sobol’ indices for σY for fcc Cu.

hcp Mg

Sobol’ indices for σY for hcp Mg.

bcc W

Sobol’ indices for σY for bcc W.
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(3) Multi-fidelity UQ for CPFEM
(joint work w/ Pieterjan Robbe, Hojun Lim)

Reference
Anh Tran, Pieterjan Robbe, and Hojun Lim (2023). “Multi-fidelity
microstructure-induced uncertainty quantification by advanced Monte Carlo
methods”. In: Materialia 27, p. 101705

Summary:
I treat statistically equivalent RVEs (SERVEs) as i.i.d. Monte Carlo

samples
I use multi-level Monte Carlo (MLMC) (1-d) and multi-index Monte

Carlo (MIMC) (multi-d) to adaptively estimate effective materials
property at various levels of fidelity

I MIMC is a generalization of MLMC in multi-dimensional spaces
I fidelity: mesh resolutions and constitutive models
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(3) Multi-fidelity UQ for CPFEM
(joint work w/ Pieterjan Robbe, Hojun Lim)

Adaptive sampling SERVEs with multiple mesh resolutions and multiple
constitutive model using MLMC and MIMC. Top row: dislocation-density-based;
Bottom row: phenomenological. Left to right: coarse to fine
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(3) Multi-fidelity UQ for CPFEM
(joint work w/ Pieterjan Robbe, Hojun Lim)

References
Michael B Giles (2015). “Multilevel Monte Carlo methods”. In: Acta
Numerica 24, pp. 259–328; Abdul-Lateef Haji-Ali, Fabio Nobile, and
Raúl Tempone (2016). “Multi-index Monte Carlo: when sparsity meets
sampling”. In: Numerische Mathematik 132.4, pp. 767–806

Multi-level Monte Carlo in the nutshell:

E [QL(ω)] =
L∑

`=1

E [Q`(ω)− Q`−1(ω)] + E [Q0(ω)] =
L∑

`=0

E [∆Q`(ω)], (4)

where ω is a RVE realization.
Goal: efficiently estimate homogenized material properties
I by a multi-fidelity approach, exploiting cost-accuracy trade-off
I Equation 4 can evaluate homogenized property of fine mesh with a

series of coarser meshes
I by a telescoping sum: QL = fine mesh; Q`(1 ≤ ` ≤ L): series of

coarsening meshes
I E [·] to average over a microstructure ensemble (multiple ω) and

account for aleatory uncertainty
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(3) Multi-fidelity UQ for CPFEM
(joint work w/ Pieterjan Robbe, Hojun Lim)

Yield strength σY : MLMC is ∼ 11.6× faster compared to MC, adaptive MIMC is
∼ 2.7× faster compared to MLMC. Overall speedup ∼ 31.5×.
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(4) Stochastic inverse problems in structure-property
(joint work w/ Tim Wildey)

Reference
Anh Tran and Tim Wildey (2020). “Solving stochastic inverse problems for
property-structure linkages using data-consistent inversion and machine
learning”. In: JOM 73, pp. 72–89

Summary:
I Problem statement: given (1) a target distribution of QoIs associated

with materials properties (e.g. σY) and (2) a structure-property
forward model (CPFEM or a ML model, e.g. GPR), infer a
distribution of microstructure features, such that the push-forward
distribution is consistent with the target distribution of QoIs

I using a stochastic inverse method (T Butler, J Jakeman, and T Wildey (2018a).

“Combining push-forward measures and Bayes’ rule to construct consistent solutions to stochastic

inverse problems”. In: SIAM Journal on Scientific Computing 40.2, A984–A1011; T Butler,

J Jakeman, and T Wildey (2018b). “Convergence of Probability Densities Using Approximate Models

for Forward and Inverse Problems in Uncertainty Quantification”. In: SIAM Journal on Scientific

Computing 40.5, A3523–A3548 )
I example:

I given a deterministic Hall-Petch relationship
I given a distribution of σY
I solve for distribution of grain size D
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(4) Stochastic inverse problems in structure-property
(joint work w/ Tim Wildey)

Hall-Petch by OLS and GPR.
Uniform prior and updated
posterior.

Matching target pdf with
push-forward posterior.

πup
Λ (λ) = πinit

Λ (λ)
πobs
D (Q(λ))

π
Q(init)
D (Q(λ))

, λ ∈ Λ.
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(5) Proper orthogonal decomposition ROM
(joint work w/ David Montes de Oca Zapiain, Hojun Lim)

Reference
Wednesday AM | March 22, 2023
Cobalt 502B | Hilton
9:30 AM
Development of Structure-property Linkages for Damage in Crystalline
Microstructures Using Bayesian Inference and Unsupervised Learning:
David Montes de Oca Zapiain1 ; Anh Tran1; Hojun Lim1; 1 Sandia
National Labs
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(5) Proper orthogonal decomposition ROM
(joint work w/ David Montes de Oca Zapiain, Hojun Lim)

Capturing effects of voids using CPFEM.

Summary:
I investigate anisotropic effect of spherical void in a single crystal cube
I current stage: vary t; next stage: vary Euler angles (t, ρ1,Φ, ρ2)

I QoIs: full-field von Mises σ, equivalent plastic strain, stress triaxiality at various times t
I develop a parametric reduced-order model using proper-orthogonal decomposition

(SVD-based) method
I interpolate coefficients using GP
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(5) Proper orthogonal decomposition ROM
(joint work w/ David Montes de Oca Zapiain, Hojun Lim)

SciML - (ρ1,Φ, ρ2) = (145, 90, 45)
EQPS

POD
σvM

POD

CPFEM - (ρ1,Φ, ρ2) = (145, 90, 45)
EQPS

POD
σvM

POD
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(5) Proper orthogonal decomposition ROM
(joint work w/ David Montes de Oca Zapiain, Hojun Lim)

SciML - (ρ1,Φ, ρ2) = (135, 90, 90)
EQPS

POD
σvM

POD

CPFEM - (ρ1,Φ, ρ2) = (135, 90, 90)
EQPS

POD
σvM

POD
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Conclusion

In this talk:
I we cover 5 different topics of UQ for CPFEM in ICME context

1. high-throughput model calibration with Bayesian optimization
2. UQ of constitutive models in CPFEM
3. MIMC/MLMC for multi-fidelity UQ of CPFEM
4. stochastic inverse from property to structures
5. parametric ROM for CPFEM

I we analyze why that structure-property may be more vulnerable to
uncertainty than process-structure (due to aleatory uncertainty),

I both aleatory and epistemic uncertainty are important and needed to
be quantified for a robust and reliable ICME prediction.
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I a hybrid (complete virtual possible / optional on-site @ Boston)
hackathon event

I featuring exascale materials design with monetary prizes
I students and postdocs are welcome
I Google “asme hackathon”
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Thank you for listening.

References
I Anh Tran and Hojun Lim (2023). “An asynchronous parallel

high-throughput model calibration framework for crystal plasticity
finite element constitutive models”. In: Computational Mechanics

I Anh Tran, Pieterjan Robbe, and Hojun Lim (2023). “Multi-fidelity
microstructure-induced uncertainty quantification by advanced Monte
Carlo methods”. In: Materialia 27, p. 101705

I Anh Tran, Tim Wildey, and Hojun Lim (2022).
“Microstructure-sensitive uncertainty quantification for crystal
plasticity finite element constitutive models using stochastic
collocation method”. In: Frontiers in Materials 9, pp. 1–20

I Anh Tran and Tim Wildey (2020). “Solving stochastic inverse
problems for property-structure linkages using data-consistent
inversion and machine learning”. In: JOM 73, pp. 72–89

Thank you for listening.
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Beyond forward ICME models: MGI as inverse problems (2010s)

US NSTC 2011 Holdren et al. 2014 Lander et al. 2021
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Beyond forward ICME models: MGI as inverse problems (MGI in 2020s)

REVIEW ARTICLE OPEN

New frontiers for the materials genome initiative
Juan J. de Pablo1, Nicholas E. Jackson1, Michael A. Webb1, Long-Qing Chen2, Joel E. Moore3, Dane Morgan 4, Ryan Jacobs4,
Tresa Pollock5, Darrell G. Schlom6, Eric S. Toberer7, James Analytis3, Ismaila Dabo2, Dean M. DeLongchamp8, Gregory A. Fiete9,
Gregory M. Grason10, Geoffroy Hautier11, Yifei Mo 12, Krishna Rajan13, Evan J. Reed14, Efrain Rodriguez15, Vladan Stevanovic16,
Jin Suntivich6, Katsuyo Thornton17 and Ji-Cheng Zhao 18

The Materials Genome Initiative (MGI) advanced a new paradigm for materials discovery and design, namely that the pace of new
materials deployment could be accelerated through complementary efforts in theory, computation, and experiment. Along with
numerous successes, new challenges are inviting researchers to refocus the efforts and approaches that were originally inspired by
the MGI. In May 2017, the National Science Foundation sponsored the workshop “Advancing and Accelerating Materials Innovation
Through the Synergistic Interaction among Computation, Experiment, and Theory: Opening New Frontiers” to review
accomplishments that emerged from investments in science and infrastructure under the MGI, identify scientific opportunities in
this new environment, examine how to effectively utilize new materials innovation infrastructure, and discuss challenges in
achieving accelerated materials research through the seamless integration of experiment, computation, and theory. This article
summarizes key findings from the workshop and provides perspectives that aim to guide the direction of future materials research
and its translation into societal impacts.

npj Computational Materials �����������(2019)�5:41� ; https://doi.org/10.1038/s41524-019-0173-4

INTRODUCTION
In 2011, the announcement of The Materials Genome Initiative
(MGI) challenged the scientific and engineering communities to
accelerate the pace of materials discovery, design, and deploy-
ment by synergistically combining experiment, theory, and
computation in a tightly integrated, high-throughput manner.1

In this approach, vast materials datasets could be generated,
analyzed, and shared; researchers could collaborate across
conventional boundaries to identify attributes underpinning
materials functionality; and the time for the deployment of new
materials could be shortened considerably. While the drive to
uncover the “materials genome” is the all-encompassing goal of
the MGI, the impetus to find and design new materials that solve
problems and improve societal well-being has been at the heart of
human advancement for thousands of years. Indeed, the materials
available to us (and those that are not) affect the ways we think
about, interact with, and manipulate the world around us. Prior to
the Industrial Age, it was unimaginable that the coordinated
movements of metals as mechanical parts, as exemplified by
Charles Babbage’s difference engine or the Scheutzian calculation
engine, could be used to accelerate basic computations by orders
of magnitude. Similarly, the creators of such mechanical

computers could not have envisioned further increases in
computational power enabled by the development of semicon-
ducting materials for transistors. Further still, those working on the
Apollo 11 guidance computer would not have wagered that more
than half of Earth’s population in 2018 would have devices in the
palms of their hands featuring x1000 more computational power
than a computer developed to guide spaceflight. Yet, progres-
sively, materials discovery and engineering ingenuity open new
frontiers for technological advancement. Today, we have realized
the creation of metallic hydrogen, devised multijunction photo-
voltaics to exceed the Schockley-Queisser limit, succeeded in
pinpoint gene editing, and developed an infrastructure that
supports near instantaneous access to petabytes of information
with the click of a button.
Analogous to these past developments, further pursuing design

and discovery of new materials via scientific research will dictate
future societal developments. Flexible biosensors could be
implanted in vivo and harmlessly degrade when their job is done.
Recyclable plastics could be created from excess carbon dioxide
towards a waste-free circular materials economy. Materials that
harvest static electricity and thermoelectric power derived during
daily activities could be integrated to power personal electronic
devices. 3D printers could print bone implants, braces, or contact
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TMS Studies

IV.  Industrial Sector Focus: Automotive i

The Minerals, Metals & Materials Society

Integrated Computational 

Materials Engineering (ICME):

Implementing ICME in the Aerospace,  

Automotive, and Maritime Industries

A Study Organized by The Minerals, Metals & Materials Society  

Modeling Across Scales:

A Roadmapping Study for Connecting 
Materials Models and Simulations 
Across Length and Time Scales

A Study Organized by The Minerals, Metals & Materials Society  A Study Organized by The Minerals, Metals & Materials Society  

Opening New Pathways to Discovery and 
Innovation in Science and Engineering

A Study Organized by The Minerals, Metals & Materials Society  

A WORKSHOP STUDY ORGANIZED BY  

The Minerals, Metals & Materials Society (TMS) on behalf of 
MForesight: Alliance for Manufacturing Foresight

A Study Organized by The Minerals, Metals & Materials Society  A Study Organized by The Minerals, Metals & Materials Society  A Study Organized by The Minerals, Metals & Materials Society  

A Study Organized by The Minerals, Metals & Materials Society  

CREATING THE NEXT-GENERATION

MATERIALS GENOME INITIATIVE 
WORKFORCE 

ACCELERATOR STUDYA

A Study Organized by The Minerals, Metals & Materials Society  A Study Organized by The Minerals, Metals & Materials Society  A Study Organized by The Minerals, Metals & Materials Society  
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DOE Office of Science / ASCR-BES-FES

BASIC ENERGY SCIENCES

NOVEMBER 3–5, 2015

ROCKVILLE, MARYLAND

BES
EXASCALE 
REQUIREMENTS 
REVIEW
An Office of Science review sponsored jointly by  
Advanced Scientific Computing Research and Basic Energy Sciences

ENERGY
U.S. DEPARTMENT OF

Advanced Manufacturing Office 

Workshop on Artificial Intelligence 
Applied to Materials Discovery and 
Design 
Workshop Summary Report 

August 9–10, 2017 

Pittsburgh, PA 

DATA AND MODELS:   
A FRAMEWORK FOR ADVANCING AI IN SCIENCE

Report of the Office of Science Roundtable on Data for AI June 5, 2019

Anh Tran (anhtran@sandia.gov) Multifaceted UQ/Opt/ML for CPFEM in Structure-Property [31 / 34] TMS 2023

anhtran@sandia.gov


Beyond forward ICME models: MGI as inverse problems

The Fourth Paradigm:

Data-Intensive Scientific

Discovery Hey, Tansley,

Tolle, et al. 2009.

The four paradigms of science: empirical, theoretical, computational, and

AI. Agrawal and Choudhary 2016.

I ICME is the 3rd paradigm,
I AI is the 4th paradigm,
I Is SciML the 5th?
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Beyond forward ICME models: MGI as inverse problems

Challenges:
I optimization under (microstructure-induced) uncertainty
I small (sparse) + noisy datasets, high-dimensional
I high computational cost for ICME models → sample-efficient

Goals:
I traditional approach: 20+ years
I accelerate materials design by “2× at a fraction of the cost” (original)

Accelerators:
I ICME: experimental2 → computational3

I ML/AI: computational3 → ML4

COMPOSITION PROCESS STRUCTURE PROPERTY PERFORMANCE
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Process-structure-property relationship

Nature of inverse problems
The nature of the input, i.e. deterministic or stochastic, determines the
methodology for solving the inverse problem in PSPP.

I for deterministic variables in process→composition, process→structure:
Bayesian optimization (or any other optimization methods)

I for stochastic variables (typically affiliated with microstructure), such
as grain size distribution, orientation distribution, in
structure→property: Bayesian inference is more appropriate to infer a
distribution of features
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