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« Application/Needs of the Potential(s)

- Potential Development Workflow (W-Zr(C)
* DFT Training Data

« Objective functions vs. energy and force errors

- Example of the W-ZrC Potential’'s Performance: Bicrystal Tensile Tests
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* Preliminary W-ZrC-H properties and performance



s I How can we predict fusion material performance?

W suffers from a high brittle-to-ductile transition TR
temperature (>473 K)? and may undergo » T~
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o

recrystallization and grain growth above 1000 K3. - e e

Strengthening W with zirconium carbide (ZrC) can
improve mechanical properties, but these
mechanisms and effects on hydrogen fuel retention
are not well understood.

The divertor in a fusion
reactor will control the waste
and withstand the highest
heat loads of the machine?!.

o
!
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The divertor in ITER is expected to reach up to 2573 K under

I
4+ I'normal operation. m
I
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FIG. 3. Schematic presentation of the surface temperature of tungsten-armored
divertor targets in ITER at three different power density levels (5, 10, and
20 MW m~). Thermal spikes caused by mitigated ELMs with an assumed intensity
of 10 MW m~2 s*° are shown in dark blue." Reproduced with permission from
Rieth et al., J. Nucl. Mater. 519, 334-368 (2019). Copyright 2019 Elsevier.

Linke, et al. Matter Radiat. Extremes 4, 056201 (2019)



The Spectral Neighbor Analysis Potential (SNAP) can map |
s 1 quantum data to a classical interatomic potential. m

Model Form Work flow

- Each neighbor position, (7,8, ¢), is mapped to a

point, (fg, @, ), on the unit 3-sphere.

* The basis can be described with bispectrum

B’; “e“e
components, B . optimize ® ¢| Training Fo &8 dhitile
hyper-parameters Data f:".; S letesel

= 5,

« Fitting the linear coefficients, ﬁk, produces the /—\ /\
SNAP potential:

Esnap = fo + Z Bk(By — B,0) DAKOTA vy il
k=1 genetic algorithm o
Linear Regression \_J /\A"\
- 2 energy and force errors Eurr'rr,'t
min (| |E ) (Dﬁ o T)“ ) material propertyljobjective functions I
group descriptor DFT Code available: https://github.com/FitSNAP/FitSNAP

weight  prediction  training —(Now with docs! https://fitsnap.github.io/) I

Aidan Thompson et al. / J. Comput. Phys. 285 (2015)
Mitch Wood et al. / Phys. Rev. B 99 184305 (2019)



https://github.com/FitSNAP/FitSNAP
https://fitsnap.github.io/

What is an objection function? Example using Radial Distribution
s | Function

* NPT run @ 2000K

«  3x3x3 supercell with 1U
and 1N interstitial

 RDF calculated with 50 bins
and 4 A cutoff

* Objective function takes
the absolute value of the
difference between SNAP
and DFT for each bin

« Throws arbitrary error if
atoms cluster

Obj. f. value 5.33 Penalty value 2113 |



How to make a transferable potential - “"domain expertise” (DE) |
7 1 vs. “entropy maximized" (EM) m
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David Montes de Oca Zapiain, et al. npj Comput. Mater. 8 (2022) I



What is in the training set? (~9,000 structures)
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9

How does this configuration data look to SNAP? m

Ember Sikorski et al. /J. Chem. Phys. 158 (2023)
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t-SNE visualization of
SNAP descriptors in 2D

(a) All data
*|labels omitted

(b) By constituents
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(c) Ground states
@c0s @ unit cells, defects, etc.

(d) AIMD - 300K
(e) AIMD - 1000 - 5000K
@/ zrc/iC . >200 atoms . interfaces

(f) Beyond domain expertise I
| liquid @ usPex @ corrective
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Do low force and energy errors prove a po

tential is good?

Removed training group

Drop
surfaces and
ints

Production
Potential

Drop ground
state

Drop
corrective

Drop AIMD
High T

Drop AIMD

Drop USPEX 300K

Drop Liquid

Energy error 0.43 0.34 0.43 0.25 0.41 0.55 0.44 0.44
(eV/atom)

Force error

S 1.02 0.78 0.95 0.62 1.53 1.22 0.95 1.04

— No, low force and energy errors may be promising, but provide no information on the accuracy of material properties or
dynamics.

Ember Sikorski et al. /). Chem. Phys. 158 (2023) (see supplementary material)



The W-ZrC SNAP agrees well with DFT and can now run 10s of
11 1 nm/10 million atom structures.

 The W-ZrC SNAP potential yields material properties in good
agreement with DFT values for lattice parameter, a (A), bulk
modulus, B (GPa), and surface energies, E, ; (eV/A).

* Using the W-ZrC SNAP potential we can run millions of atom
simulations at divertor temperature ranges (~373 — 2573 K3).

crystalline W at 1700 K

Material properties predicted by DFT vs. SNAP (~10 million atoms, 56
nm per side)

S R W e

DFT/expt. 301.4 2160  4.13 3.18 1.63 3.31 1.31 1.85 .Zr

]
Spherical ZrC in |

SNAP 303.3 209.0 3.38 3.22 1.40 2.75 1.05 1.50 O C

Ember Sikorski et al. /J. Chem. Phys. 158 (2023)
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Example of W-ZrC Performance: bicrystals for tensile testing

W(110)-ZrC(111) C-terminated
 T=300K UTS=32.2 GPa
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3 SNAP candidates often exhibit trade-offs.

1
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table at 1000 K.
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15 | Remaining Machine-Learned Potential Questions/Next Steps m

Can we combine objective function
optimization with other MLP forms (ACE, Neural
Networks, POD, etc.)? Will these yield lower

force, energy, and objective function errors?

Can we use active learning alongside objective

functions?

What is the best way to capture rare events?

Can we train on NEB calculations?

Training error in energy (eV/atom)

—
o
[=]

—@—ACE
—@8— SNAP

10° 10 103
Computational cost s/(time step x atom) I

Nguyen and Rohskopf /). Comput. Phys. 480 (2023)



« We developed a W-ZrC SNAP potential that agrees well with DFT and can run
millions of atom MD simulations at high temperature.

» Robust training sets include “domain expertise” and “beyond domain expertise”
structures.

* = cover large regions of descriptor space with USPEX and large AIMD simulations
- Low force and energy errors alone do not ensure good potentials.

«  W-C bonds correlate to high tensile strength, though at high temperature
much of the C in terminating layers diffuses into W.

* Preliminary W-ZrC-H potentials exhibit objective function tradeoffs but can run
stable dynamics at 1000 K.

|
16 1 Summary m
|
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Additional slides




15 I lnner cutoff is now live in FitSNAP and LAMMPS.
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“Black holing”
* Add training with low interatomic
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Candidate potentials need to be checked in NVT/NPT simulations

for stability.

Cluster
analysis
<22 A

19

distances
* Tune zbl overlay

min([|e- (DB — T)|[?)
Increase group weight for forces on

surface training data

Increase repulsive diameter

Decrease radial cutoff



20 1 Why do we separate DFT training into different groups?

&

Training groups in the W-ZrC potential:

« (“traditional”) DFT « AIMD - 300K *  MACtive USPEX

« Surfaces and Interfaces « AIMD 1000 - 5000K « Liquid

“Traditional” DFT ADb initio Molecular Dynamics (AIMD)

« Unit cells - small supercells (3-64 atoms) « Supercells (100-700 atoms)

« High cutoff energy (~500 eV) » Really high cutoff energy (~500 - 750 eV)
« Really high k-points (~8x8x8) « Sampled at gamma point (1x1x1)

Group weights of final potential:

dft F uspex E uspex F surf E surfF aimd1 E aimd1F aimd2 E aimd2 F mactive E mactive F liquid E

dft E
132 3.94 6.41 3.04 8136 652 35 3.74 a1 7sa S 3.62 3.68

liquid F I
5.36




1 1 Highlights of Dakota optimization
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USPEX - genetic algorithm structure predictor

22

“USPEX allows to predict crystal structure with arbitrary P-T conditions by knowing only chemical

composition of the material.”

« USPEX generates trial structures which are then relaxed and evaluated by an external code

interfaced with USPEX

- Based on the ranking of the relaxed structures, USPEX generates new structures, which are again

relaxed and ranked

1. Create training data (bypass intended use; generate 1 giant first generation)

2. Test SNAP candidates/produce active training (follows intended use)

Code

VASP
LAMMPS

https://uspex-team.org/en

Choose structure
constraints

Genetic Algorithm

200 population size/1

Element types generation
Number of atoms 50 population size/~20
Composition generations




USPEX (method 1) - composition sweeps for training (about 200
23 | structures each)




y | USPEX (method 2)- Testing SNAP candidates on W ,C

SNAP - without USPEX training SNAP - with USPEX Materials Project
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“Active” USPEX (method 2) - Using a SNAP candidate to produce
training
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