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Outline

• Application/Needs of the Potential(s)

• Potential Development Workflow (W-ZrC)

• DFT Training Data

• Objective functions vs. energy and force errors

• Example of the W-ZrC Potential’s Performance: Bicrystal Tensile Tests

• Preliminary W-ZrC-H properties and performance
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How can we predict fusion material performance?
• W suffers from a high brittle-to-ductile transition 

temperature (>473 K)2 and may undergo 
recrystallization and grain growth above 1000 K3.

• Strengthening W with zirconium carbide (ZrC) can 
improve mechanical properties, but these 
mechanisms and effects on hydrogen fuel retention 
are not well understood.
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SEM of ZrC dispersoid strengthened W4

The divertor in a fusion 
reactor will control the waste 
and withstand the highest 
heat loads of the machine1.

[1] www.iter.org/mach
[2] Xie, et al. Sci. Rep. 5, 1-11 (2015)
[3] Lang, et al. J. Nucl. Mater. 545, 152613 (2021)
[4] Kolasinski, et al. Int. J. Refract. Met. Hard Mater. 60 (2016).

http://www.iter.org/mach


The divertor in ITER is expected to reach up to 2573 K under 
normal operation.4

Linke, et al. Matter Radiat. Extremes 4, 056201 (2019)



The Spectral Neighbor Analysis Potential (SNAP) can map 
quantum data to a classical interatomic potential.5

Code available: https://github.com/FitSNAP/FitSNAP 
 

Aidan Thompson et al. / J. Comput. Phys. 285 (2015)
Mitch Wood et al. / Phys. Rev. B 99 184305 (2019) 

Model Form

• Each neighbor position,                 , is mapped to a 

point,                 , on the unit 3-sphere.

• The basis can be described with bispectrum 

components,       .

• Fitting the  linear coefficients,      , produces the 

SNAP potential:

Linear Regression

Work flow

group 
weight

 

DFT 
training

 

descriptor
prediction

 →(Now with docs! https://fitsnap.github.io/ )

https://github.com/FitSNAP/FitSNAP
https://fitsnap.github.io/


What is an objection function? Example using Radial Distribution 
Function

• NPT run @ 2000K

• 3x3x3 supercell with 1U 
and 1N interstitial

• RDF calculated with 50 bins 
and 4 Å cutoff

• Objective function takes 
the absolute value of the 
difference between SNAP 
and DFT for each bin

• Throws arbitrary error if 
atoms cluster
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Starting structure AIMD after 817 fs

Penalty value 2113Obj. f. value 5.33



How to make a transferable potential – “domain expertise” (DE) 
vs. “entropy maximized” (EM)7

David Montes de Oca Zapiain, et al. npj Comput. Mater. 8 (2022)



What is in the training set? (~9,000 structures)
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(DFT)

(AIMD)

W

Zr

C

Ember Sikorski et al. / J. Chem. Phys. 158 (2023) 
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(a) (b) (c)

(d) (e) (f)

How does this configuration data look to SNAP?

(a) All data
     *labels omitted

(b) By constituents

W        ZrC       C

(c) Ground states

EOS         unit cells, defects, etc.

(d) AIMD – 300K
 (e) AIMD – 1000 – 5000K

     W/ZrC/C      >200 atoms      interfaces
 

(f) Beyond domain expertise

     liquid           USPEX               corrective    

t-SNE visualization of 
SNAP descriptors in 2D 

Ember Sikorski et al. / J. Chem. Phys. 158 (2023) 



Do low force and energy errors prove a potential is good?
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→ No, low force and energy errors may be promising, but provide no information on the accuracy of material properties or 
dynamics.

Production 
Potential

Drop ground 
state

Drop 
corrective Drop USPEX Drop AIMD 

High T
Drop AIMD 

300K Drop Liquid
Drop 

surfaces and 
ints

Energy error 
(eV/atom) 0.43 0.34 0.43 0.25 0.41 0.55 0.44 0.44

Force error 
(eV/Å) 1.02 0.78 0.95 0.62 1.53 1.22 0.95 1.04

Removed training group
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Ember Sikorski et al. / J. Chem. Phys. 158 (2023) (see supplementary material)



The W-ZrC SNAP agrees well with DFT and can now run 10s of 
nm/10 million atom structures.11

  BW BZrC
Esurf W 
(100)

Esurf W 
(110)

Esurf ZrC 
(100)

Esurf ZrC 
(110) ɑW

2600K ɑZrC
2600K

DFT/expt. 301.4 216.0 4.13 3.18 1.63 3.31 1.31 1.85

SNAP 303.3 209.0 3.38 3.22 1.40 2.75 1.05 1.50

• The W-ZrC SNAP potential yields material properties in good 
agreement with DFT values for lattice parameter, a (Å), bulk 
modulus, B (GPa), and surface energies, Esurf (eV/Å).

• Using the W-ZrC SNAP potential we can run millions of atom 
simulations at divertor temperature ranges (~373 – 2573 K8).

Spherical ZrC in 
crystalline W at 1700 K
(~10 million atoms, 56 

nm per side)

W

Zr

C

Material properties predicted by DFT vs. SNAP

Ember Sikorski et al. / J. Chem. Phys. 158 (2023) 



Example of W-ZrC Performance: bicrystals for tensile testing
12

Ember Sikorski et al. / J. Chem. Phys. 158 (2023) 



SNAP candidates often exhibit trade-offs.
13

AIMD Candidate 985Candidate 420

CH RDF

SNAP (1012) DFT

H tetrahedral - W -0.89 0.88

H octahedral – W -0.71 1.26

H tetrahedral - ZrC 4.53 11.33

H substitional C - ZrC 1.61 -1.44



W-ZrC-H (SNAP candidate 1012) is stable at 1000 K.
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→ Check NEB in DFT compared to SNAP.436 fs in AIMD

W

Zr

C

400 ps 
in MD

200 ps 
in MD

H



Remaining Machine-Learned Potential Questions/Next Steps

• Can we combine objective function 

optimization with other MLP forms (ACE, Neural 

Networks, POD, etc.)? Will these yield lower 

force, energy, and objective function errors?

• Can we use active learning alongside objective 

functions?

• What is the best way to capture rare events? 

Can we train on NEB calculations?
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Nguyen and Rohskopf / J. Comput. Phys. 480 (2023)



Summary16

• We developed a W-ZrC SNAP potential that agrees well with DFT and can run 
millions of atom MD simulations at high temperature.

• Robust training sets include “domain expertise” and “beyond domain expertise” 
structures.

• → cover large regions of descriptor space with USPEX and large AIMD simulations

• Low force and energy errors alone do not ensure good potentials.

• W-C bonds correlate to high tensile strength, though at high temperature 
much of the C in terminating layers diffuses into W.

• Preliminary W-ZrC-H potentials exhibit objective function tradeoffs but can run 
stable dynamics at 1000 K.

Contact info: elsikor@sandia.gov



Additional slides



Inner cutoff is now live in FitSNAP and LAMMPS.18



Candidate potentials need to be checked in NVT/NPT simulations 
for stability.19

Cluster 
analysis 
<2.2 Å

“Black holing” “Laminating” 

• Increase group weight for forces on 
surface training data

• Add training with low interatomic 
distances

• Tune zbl overlay
• Increase repulsive diameter
• Decrease radial cutoff



Why do we separate DFT training into different groups?

• (“traditional”) DFT

• Surfaces and Interfaces

• AIMD – 300K

• AIMD 1000 - 5000K

• MACtive

• Liquid 

• USPEX
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Training groups in the W-ZrC potential:

Group weights of final potential:

“Traditional” DFT

• Unit cells – small supercells (3-64 atoms)

• High cutoff energy (~500 eV)

• Really high k-points (~8x8x8)

Ab initio Molecular Dynamics (AIMD)

• Supercells (100-700 atoms)

• Really high cutoff energy (~500 - 750 eV)

• Sampled at gamma point (1x1x1)



Highlights of Dakota optimization21

t-SNE of quality candidates 
produced by two replacement types



USPEX – genetic algorithm structure predictor

1. Create training data (bypass intended use; generate 1 giant first generation)

2. Test SNAP candidates/produce active training (follows intended use)
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Genetic Algorithm

• 200 population size/1 
generation

• 50 population size/~20 
generations

Code

• VASP
• LAMMPS

Choose structure 
constraints

• Element types
• Number of atoms
• Composition

https://uspex-team.org/en

“USPEX allows to predict crystal structure with arbitrary P-T conditions by knowing only chemical 

composition of the material.”

• USPEX generates trial structures which are then relaxed and evaluated by an external code 

interfaced with USPEX

• Based on the ranking of the relaxed structures, USPEX generates new structures, which are again 

relaxed and ranked



USPEX (method 1) - composition sweeps for training (about 200 
structures each)

• WZr

• ZrC

• WC
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USPEX (method 2)– Testing SNAP candidates on W 2C  
24

SNAP - without USPEX training SNAP - with USPEX 
training
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“Active” USPEX (method 2) – Using a SNAP candidate to produce 
training25


