

Machine-learned Interatomic Potential Development for H Trapping in ZrC Strengthened W

Ember Sikorski¹, Mary Alice Cusentino², Megan McCarthy¹, Julien Tranchida³, Mitch Wood¹, Aidan Thompson¹

¹Center for Computing Research, Sandia National Laboratories, USA

²Materials, Physical, and Chemical Sciences Center, Sandia National Laboratories, USA

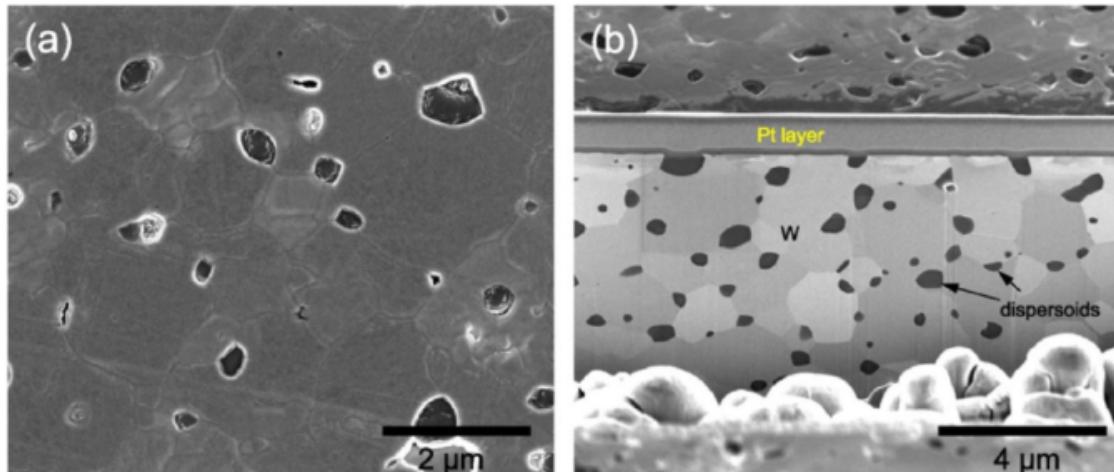
³CEA Cadarache, France

Outline

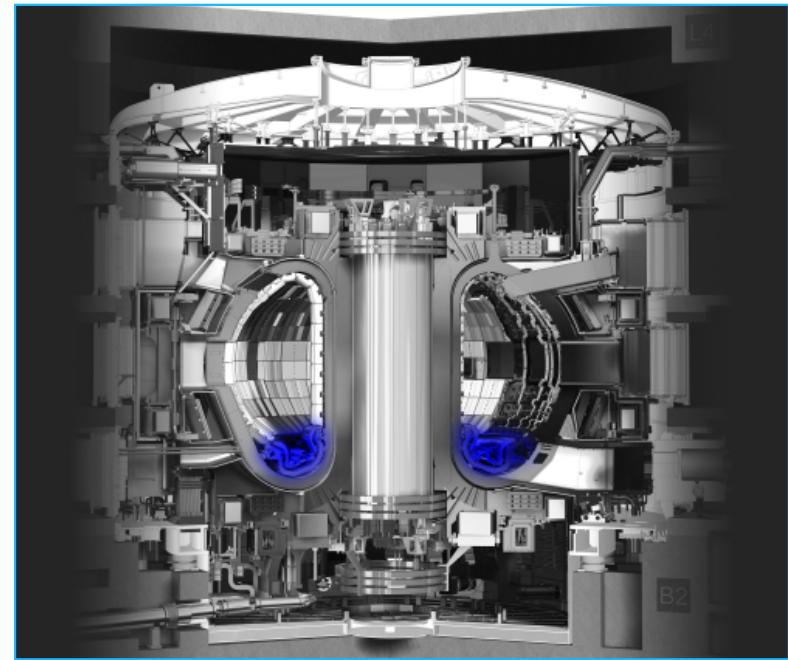
- Application/Needs of the Potential(s)
- Potential Development Workflow (W-ZrC)
 - DFT Training Data
 - Objective functions vs. energy and force errors
- Example of the W-ZrC Potential's Performance: Bicrystal Tensile Tests
- Preliminary W-ZrC-H properties and performance

How can we predict fusion material performance?

- W suffers from a high brittle-to-ductile transition temperature (>473 K)² and may undergo recrystallization and grain growth above 1000 K³.
- Strengthening W with zirconium carbide (ZrC) can improve mechanical properties, but these mechanisms and effects on hydrogen fuel retention are not well understood.



SEM of ZrC dispersoid strengthened W⁴



The divertor in a fusion reactor will control the waste and withstand the highest heat loads of the machine¹.

[1] www.iter.org/mach

[2] Xie, et al. Sci. Rep. 5, 1-11 (2015)

[3] Lang, et al. J. Nucl. Mater. 545, 152613 (2021)

[4] Kolasinski, et al. Int. J. Refract. Met. Hard Mater. 60 (2016).

The divertor in ITER is expected to reach up to 2573 K under normal operation.

4

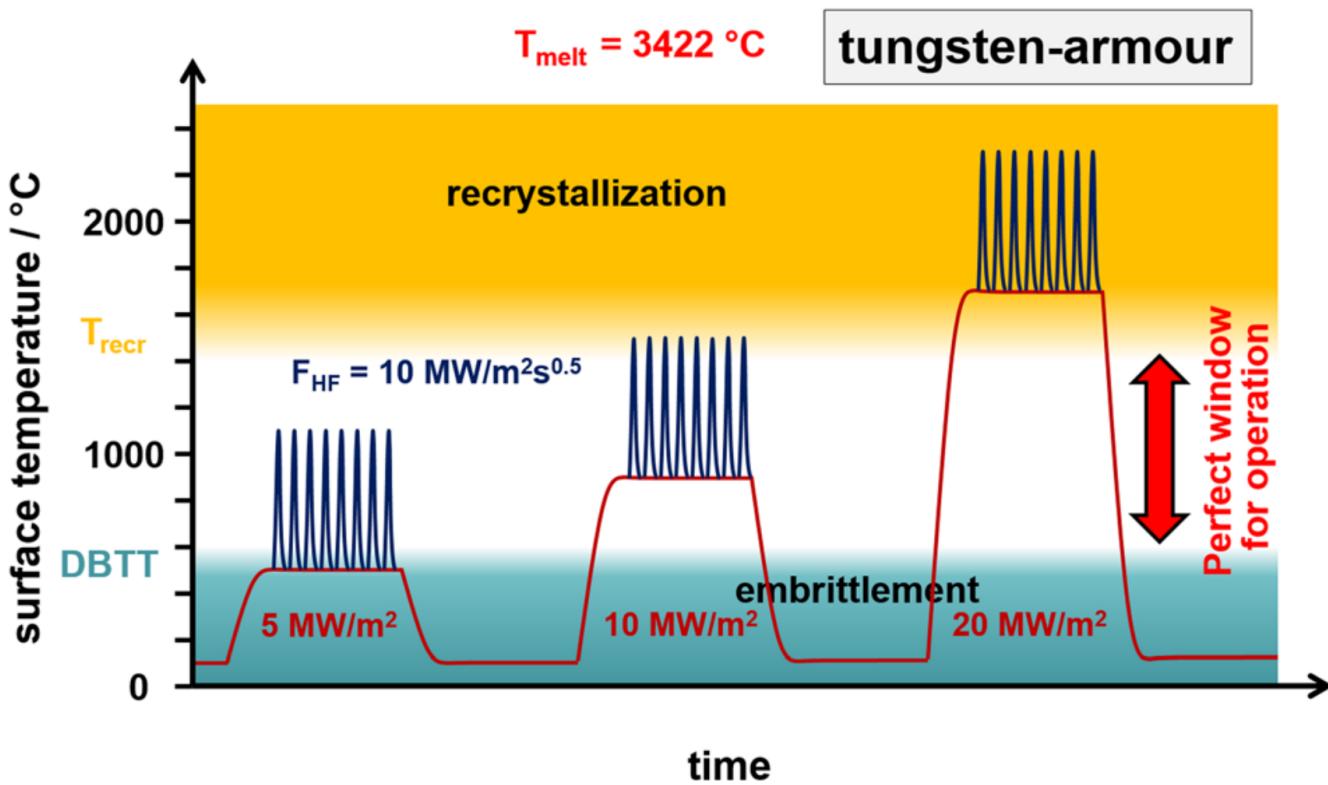


FIG. 3. Schematic presentation of the surface temperature of tungsten-armored divertor targets in ITER at three different power density levels (5, 10, and 20 MW m^{-2}). Thermal spikes caused by mitigated ELMs with an assumed intensity of $10 \text{ MW m}^{-2} \text{ s}^{0.5}$ are shown in dark blue.¹⁶ Reproduced with permission from Rieth *et al.*, *J. Nucl. Mater.* **519**, 334-368 (2019). Copyright 2019 Elsevier.

The Spectral Neighbor Analysis Potential (SNAP) can map quantum data to a classical interatomic potential.

Model Form

- Each neighbor position, (r, θ, ϕ) , is mapped to a point, (θ_0, ϕ, θ) , on the unit 3-sphere.
- The basis can be described with bispectrum components, B_k^i .
- Fitting the linear coefficients, β_k , produces the SNAP potential:

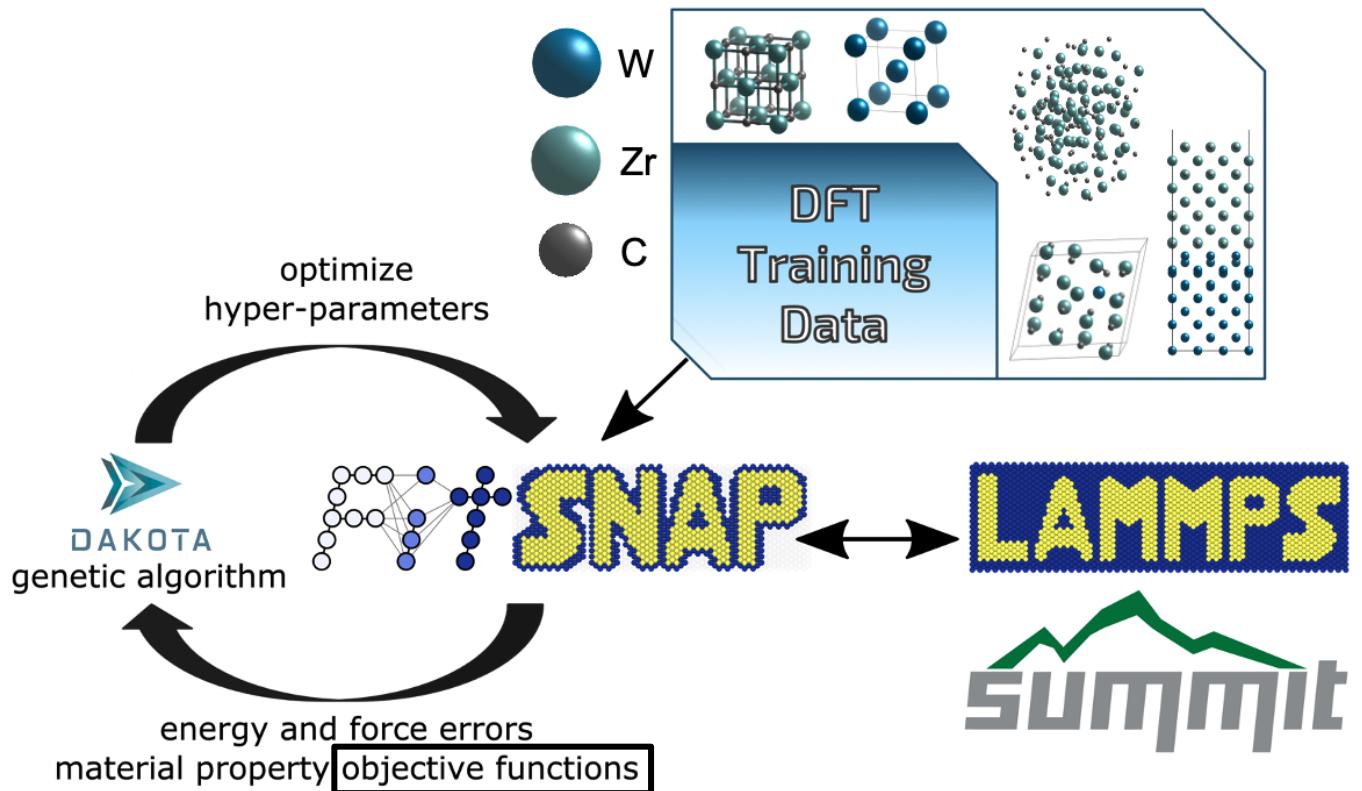
$$E_{SNAP}^i = \beta_0 + \sum_{k=1}^K \beta_k (B_k^i - B_k^i 0)$$

Linear Regression

$$\min(||\epsilon \cdot (D\beta - T)||^2)$$

group weight descriptor prediction DFT training

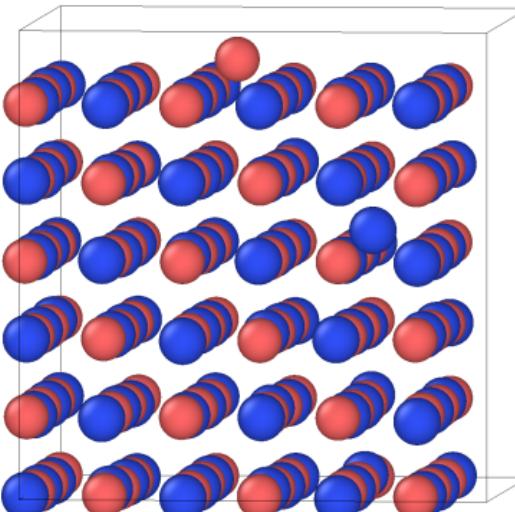
Work flow



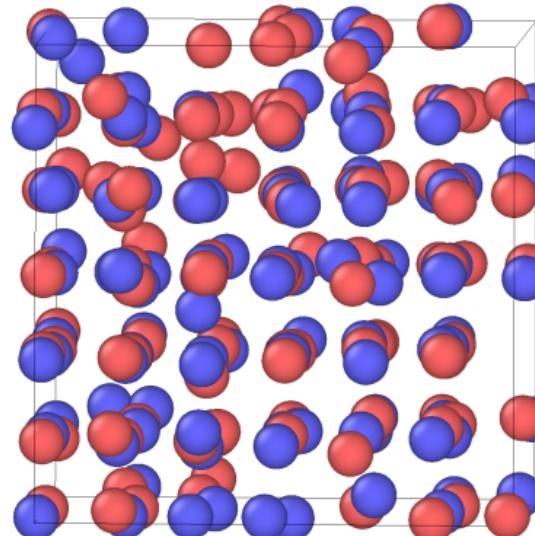
Code available: <https://github.com/FitSNAP/FitSNAP>
 →(Now with docs! <https://fitsnap.github.io/>)

What is an objection function? Example using Radial Distribution Function

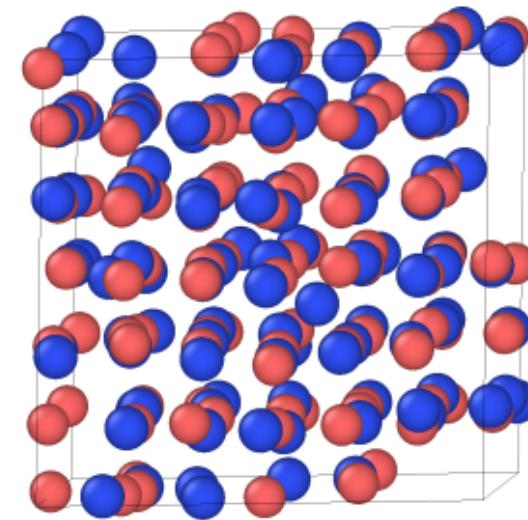
- NPT run @ 2000K
- 3x3x3 supercell with 1U and 1N interstitial
- RDF calculated with 50 bins and 4 Å cutoff
- Objective function takes the absolute value of the difference between SNAP and DFT for each bin
- Throws arbitrary error if atoms cluster



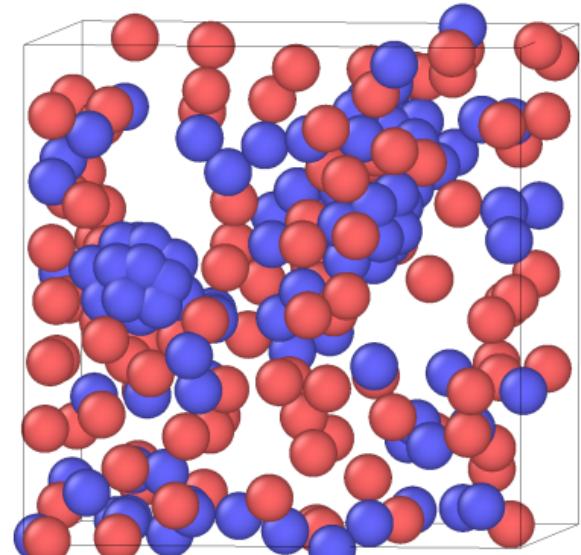
Starting structure



Obj. f. value 5.33

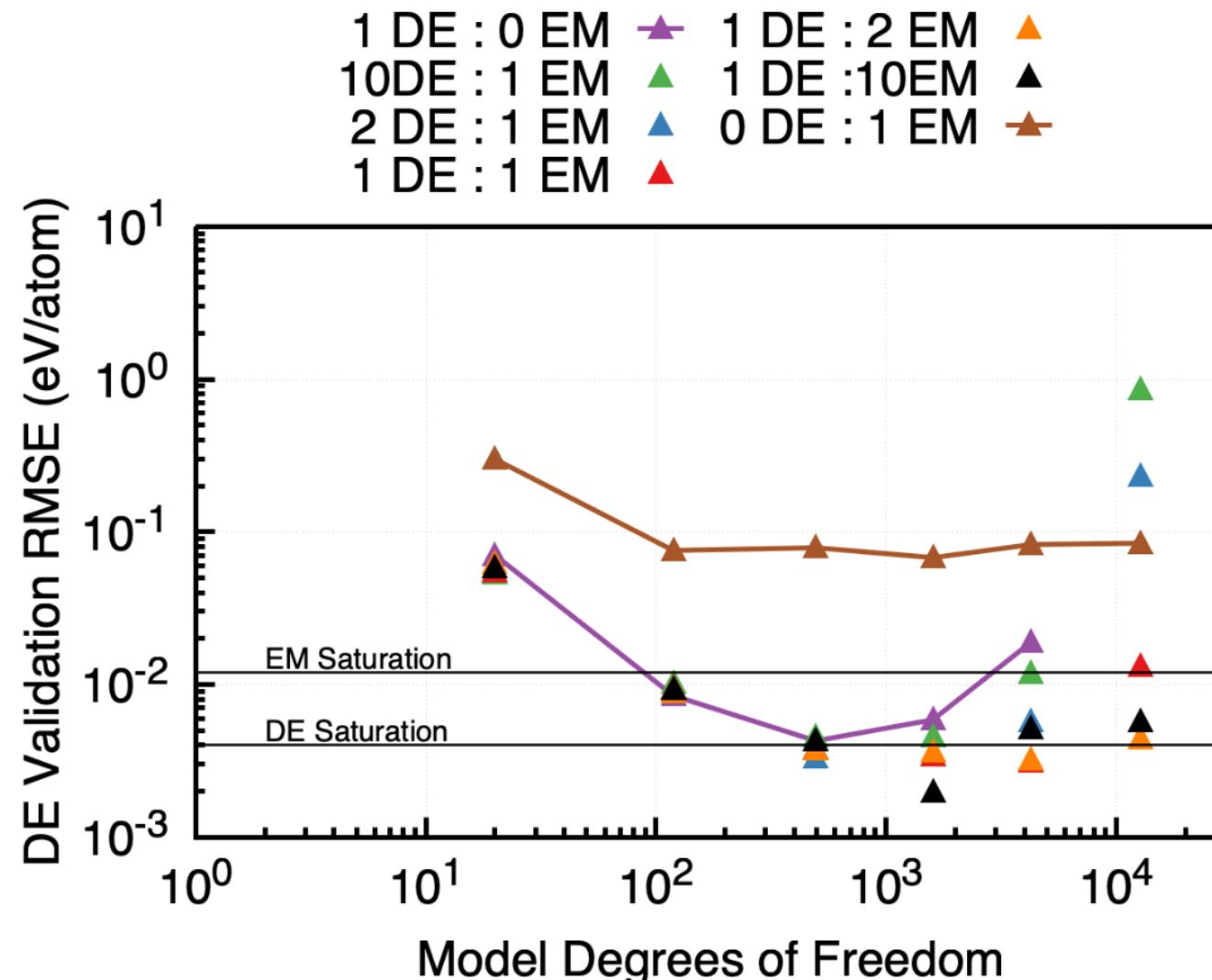


AIMD after 817 fs



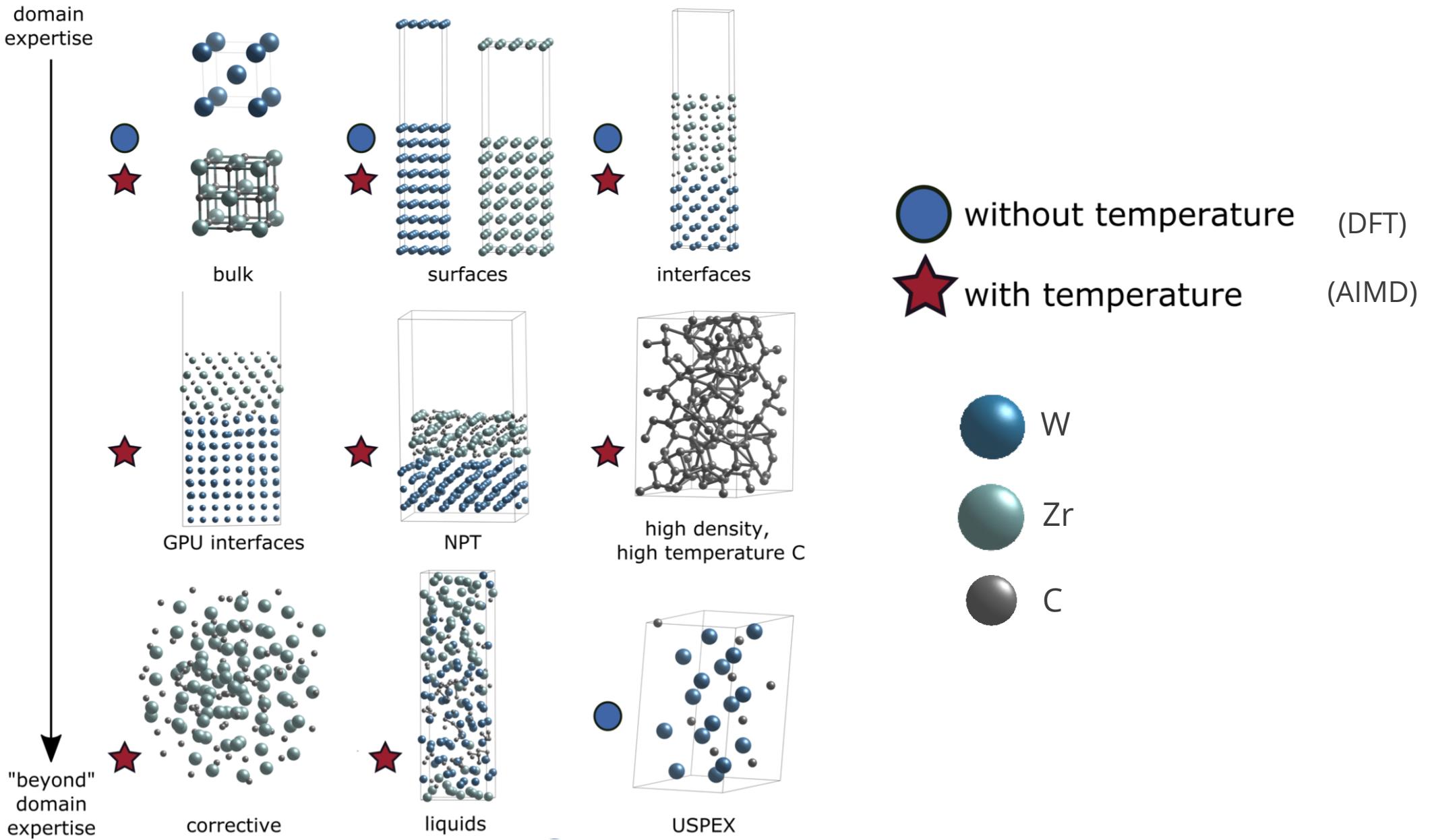
Penalty value 2113

How to make a transferable potential – “domain expertise” (DE) vs. “entropy maximized” (EM)

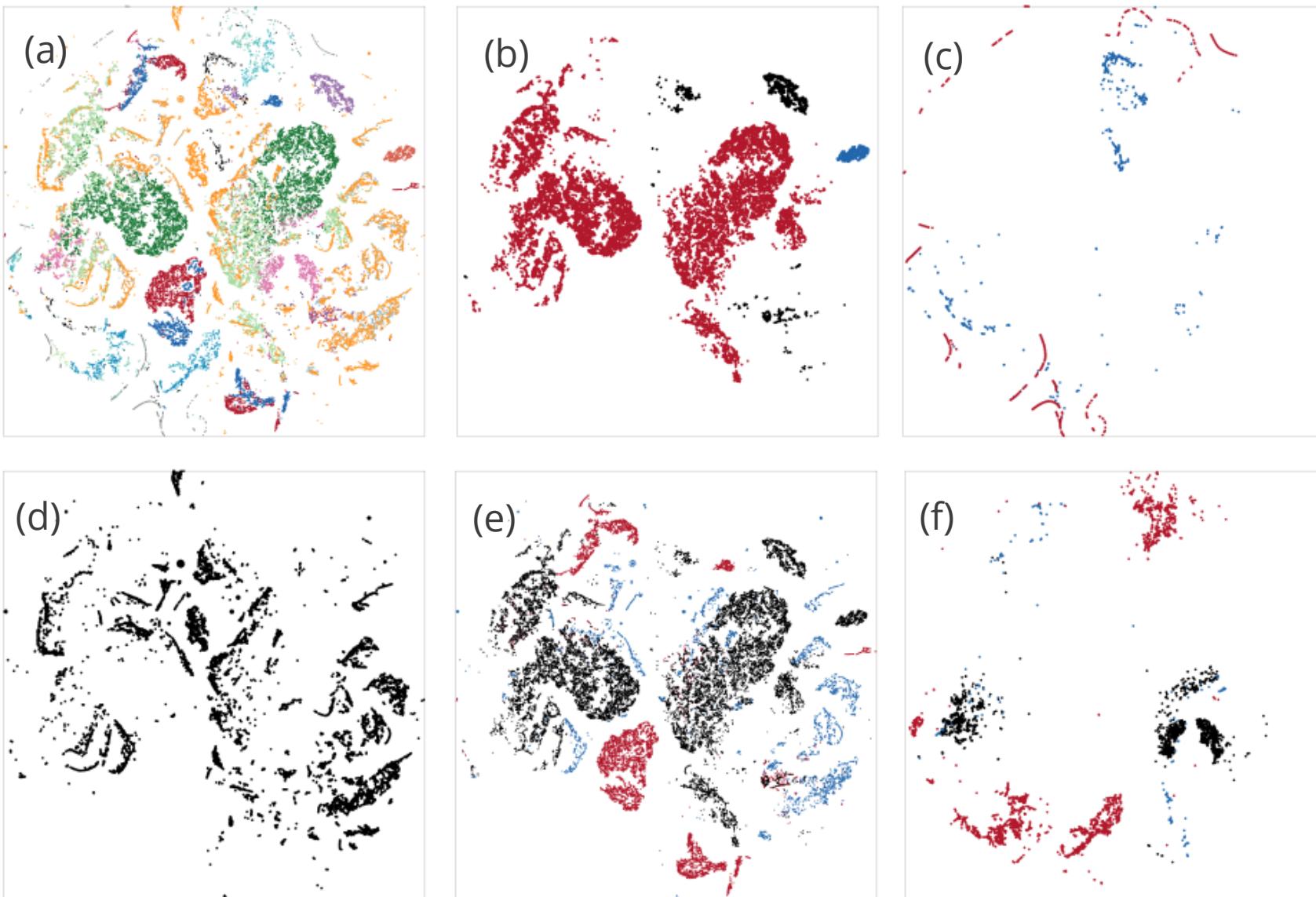


What is in the training set? (~9,000 structures)

8



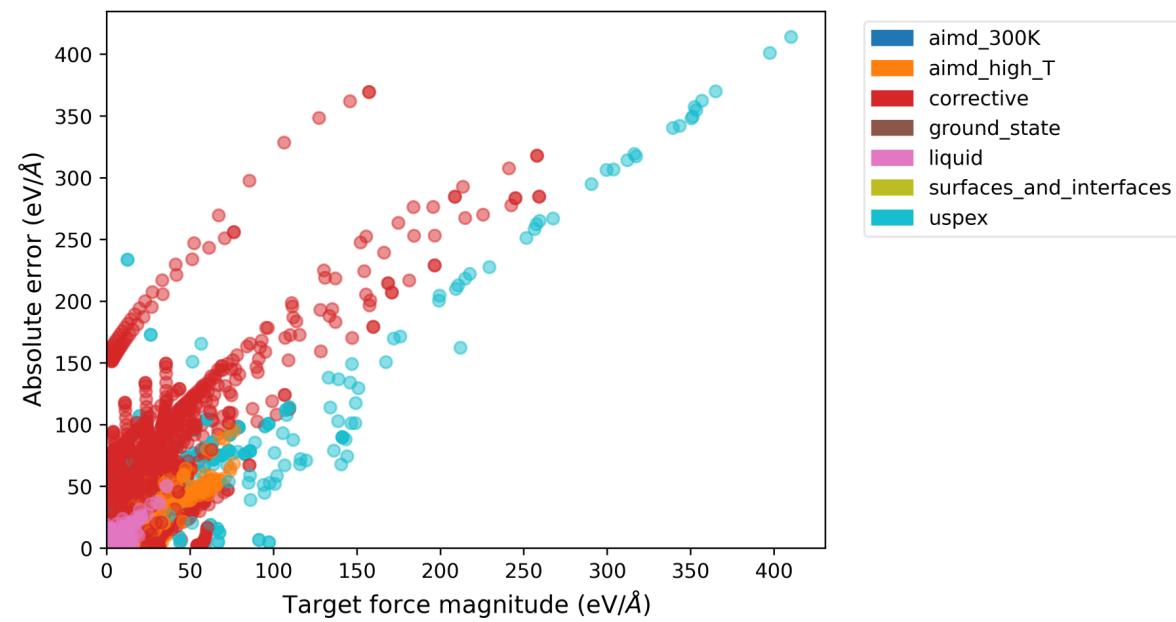
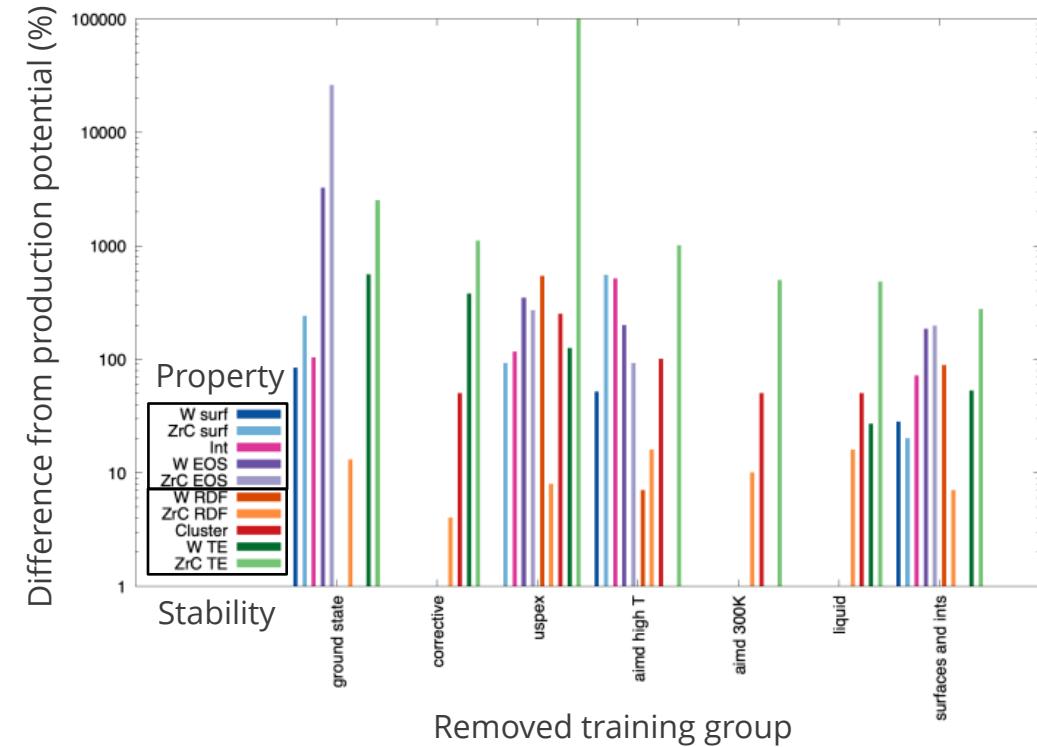
How does this configuration data look to SNAP?



t-SNE visualization of SNAP descriptors in 2D

- (a) All data
*labels omitted
- (b) By constituents
 - W
 - ZrC
 - C
- (c) Ground states
 - EOS
 - unit cells, defects, etc.
- (d) AIMD - 300K
- (e) AIMD - 1000 - 5000K
 - W/ZrC/C
 - >200 atoms
 - interfaces
- (f) Beyond domain expertise
 - liquid
 - USPEX
 - corrective

Do low force and energy errors prove a potential is good?

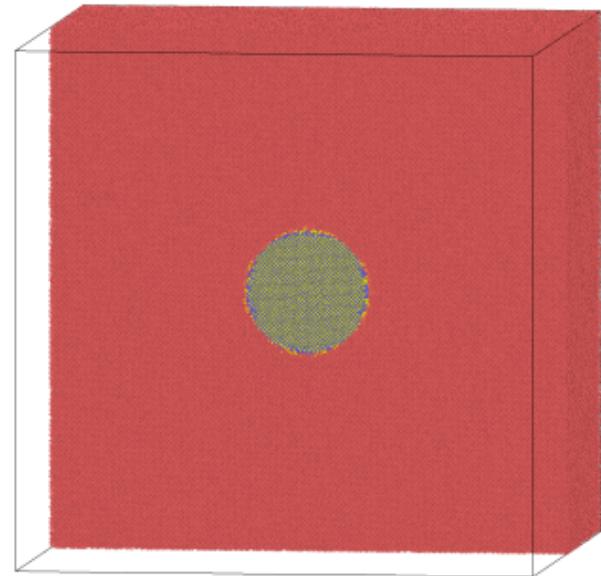


	Production Potential	Drop ground state	Drop corrective	Drop USPEX	Drop AIMD High T	Drop AIMD 300K	Drop Liquid	Drop surfaces and ints
Energy error (eV/atom)	0.43	0.34	0.43	0.25	0.41	0.55	0.44	0.44
Force error (eV/Å)	1.02	0.78	0.95	0.62	1.53	1.22	0.95	1.04

→ No, low force and energy errors may be promising, but provide no information on the accuracy of material properties or dynamics.

The W-ZrC SNAP agrees well with DFT and can now run 10s of nm/10 million atom structures.

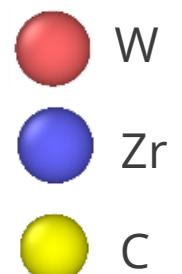
- The W-ZrC SNAP potential yields material properties in good agreement with DFT values for lattice parameter, a (Å), bulk modulus, B (GPa), and surface energies, E_{surf} (eV/Å).
- Using the W-ZrC SNAP potential we can run millions of atom simulations at divertor temperature ranges ($\sim 373 - 2573$ K⁸).



**Spherical ZrC in
crystalline W at 1700 K
(~10 million atoms, 56
nm per side)**

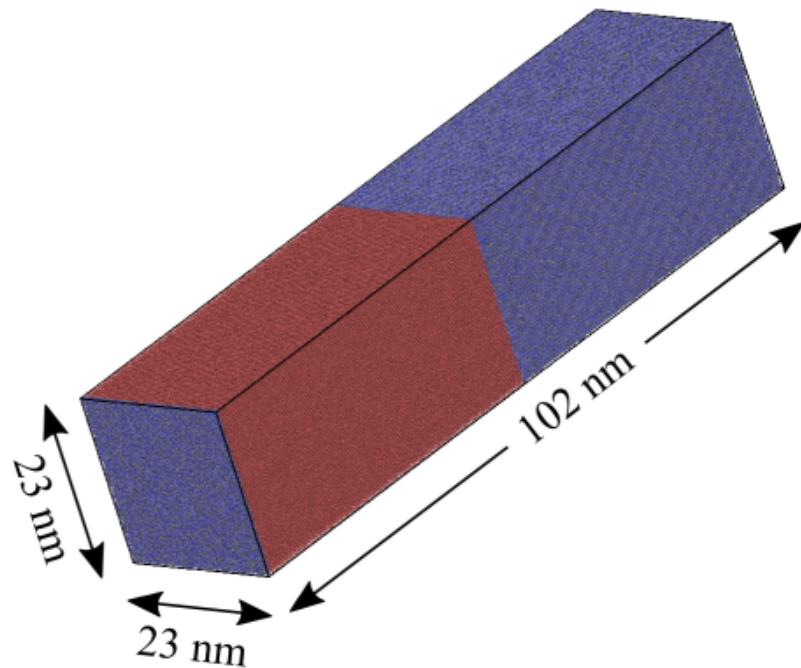
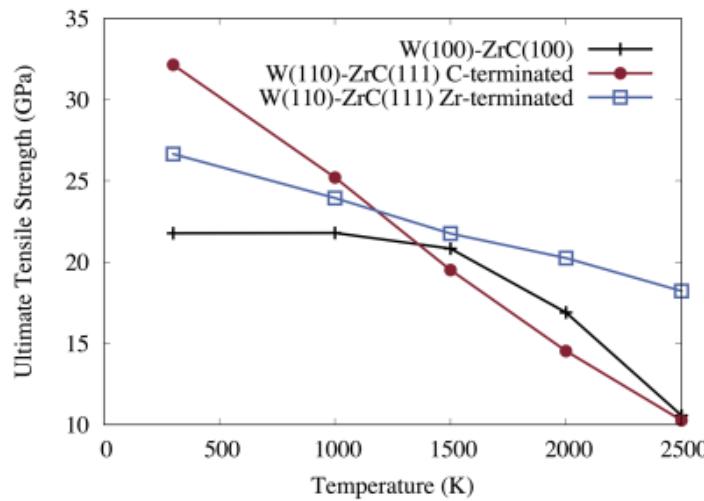
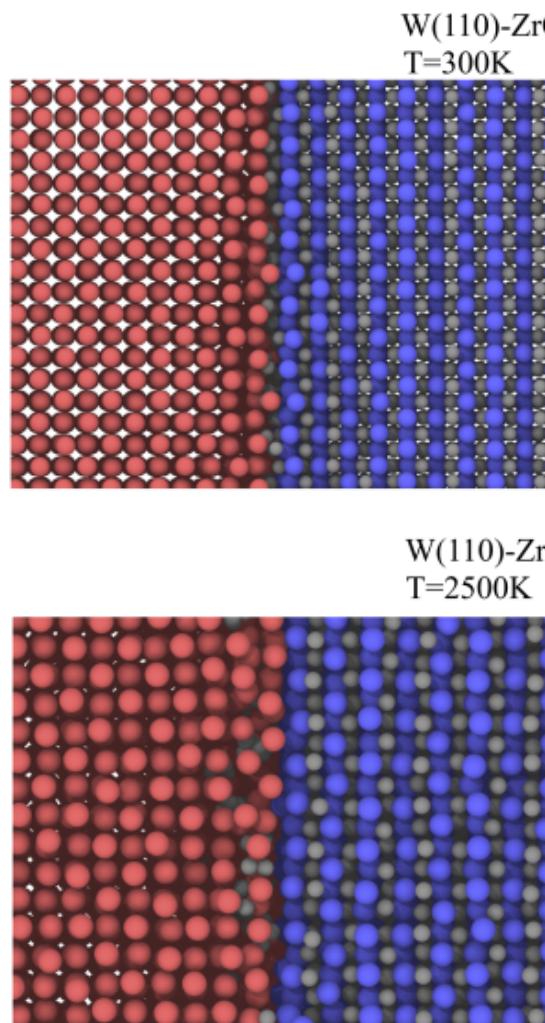
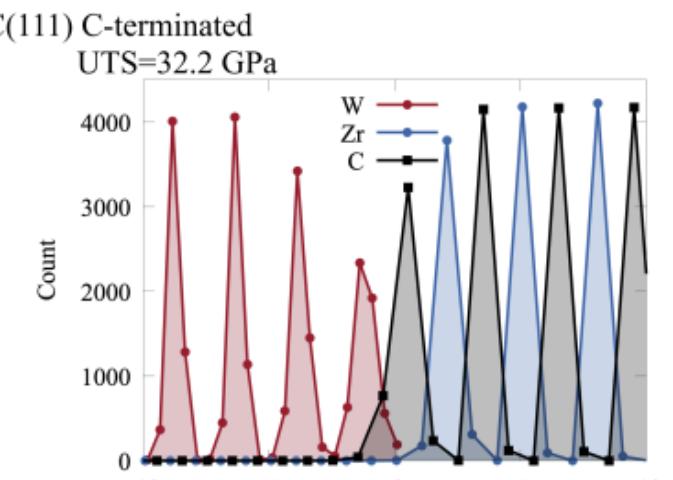
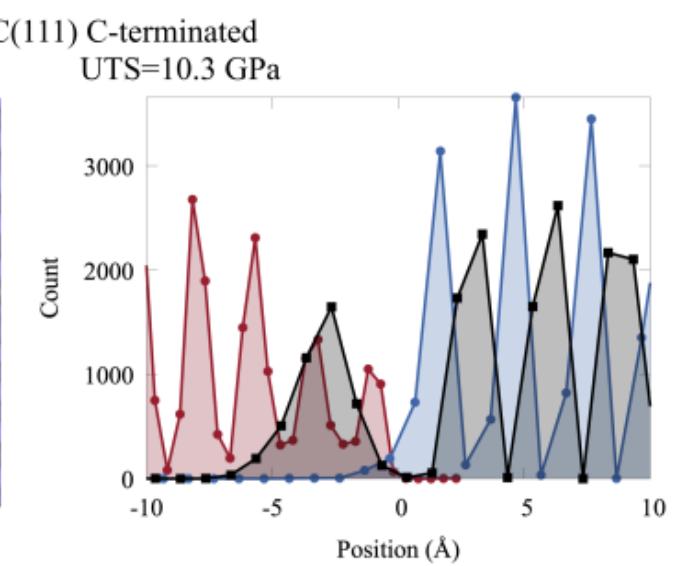
Material properties predicted by DFT vs. SNAP

	B_W	B_{ZrC}	E_{surf} W (100)	E_{surf} W (110)	E_{surf} ZrC (100)	E_{surf} ZrC (110)	a_W^{2600K}	a_{ZrC}^{2600K}
DFT/expt.	301.4	216.0	4.13	3.18	1.63	3.31	1.31	1.85
SNAP	303.3	209.0	3.38	3.22	1.40	2.75	1.05	1.50

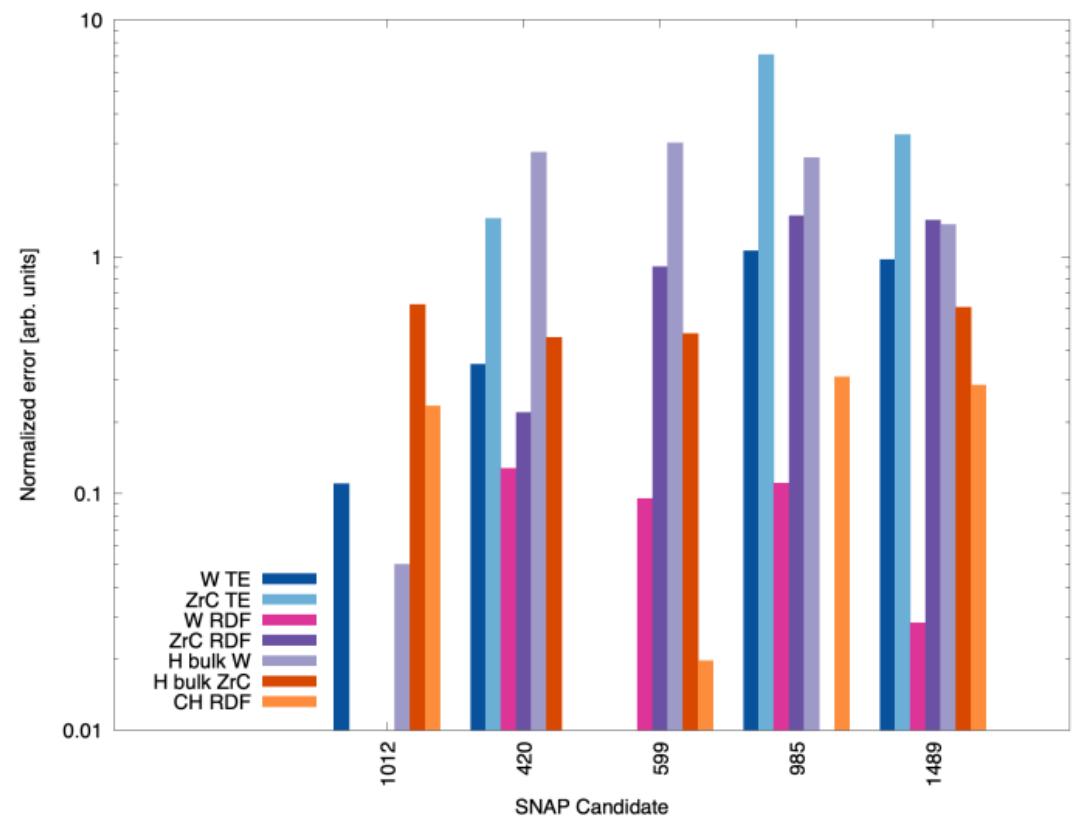


Example of W-ZrC Performance: bicrystals for tensile testing

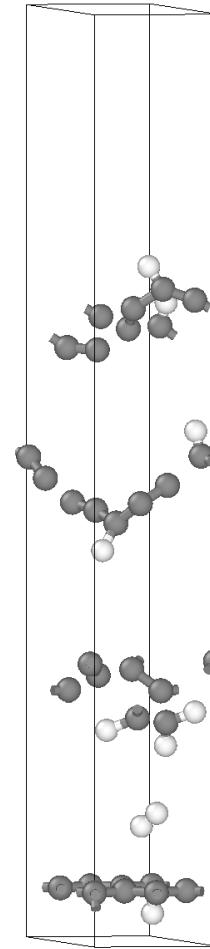
12



SNAP candidates often exhibit trade-offs.

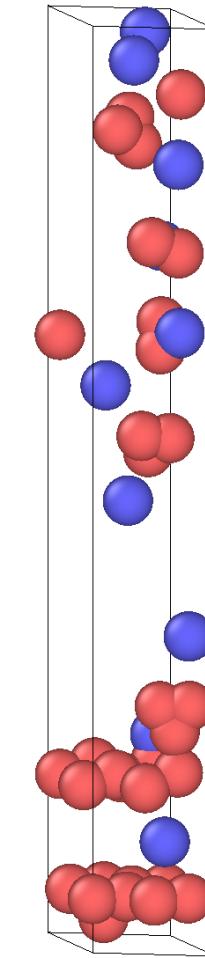


	SNAP (1012)	DFT
H tetrahedral - W	-0.89	0.88
H octahedral - W	-0.71	1.26
H tetrahedral - ZrC	4.53	11.33
H substitutional C - ZrC	1.61	-1.44

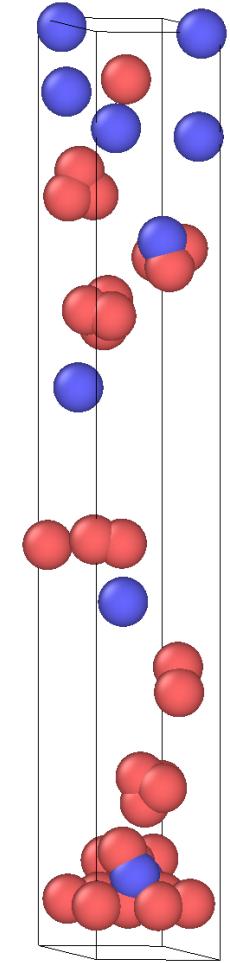


AIMD

CH RDF



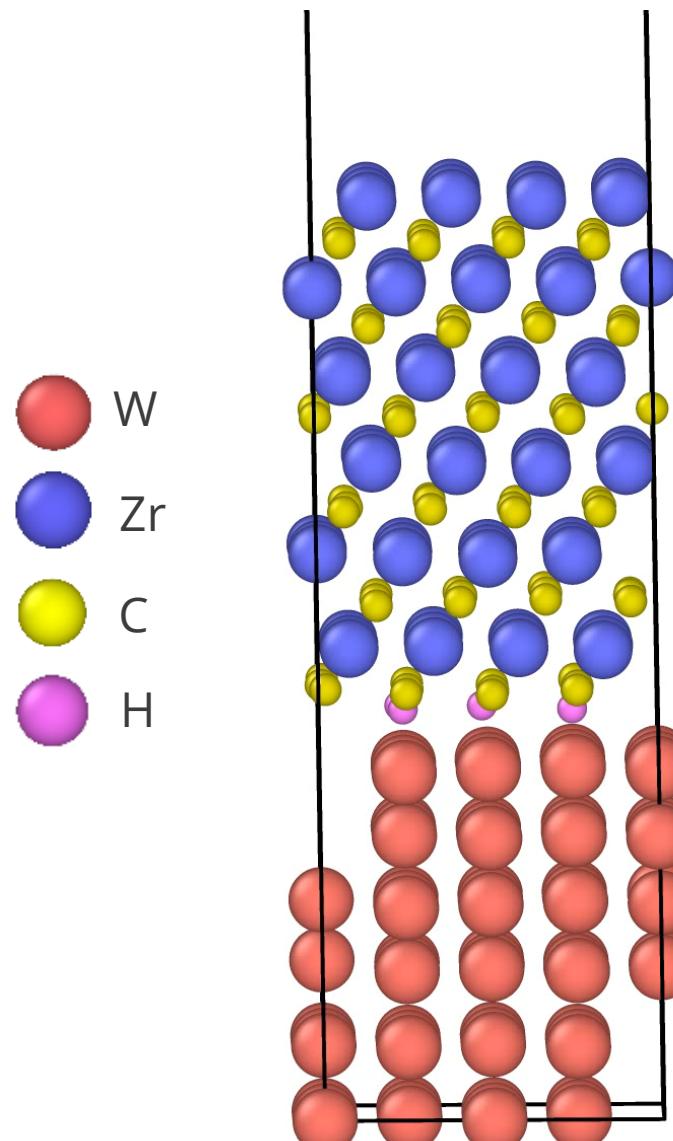
Candidate 420



Candidate 985

W-ZrC-H (SNAP candidate 1012) is stable at 1000 K.

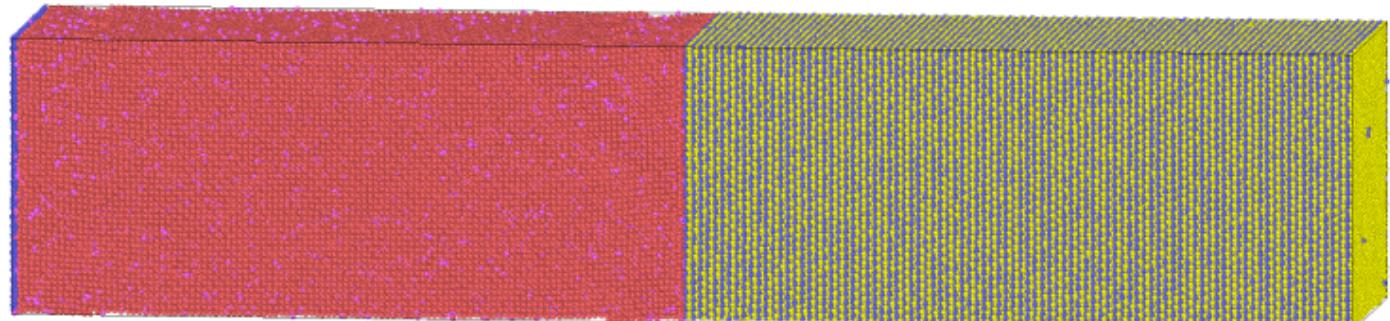
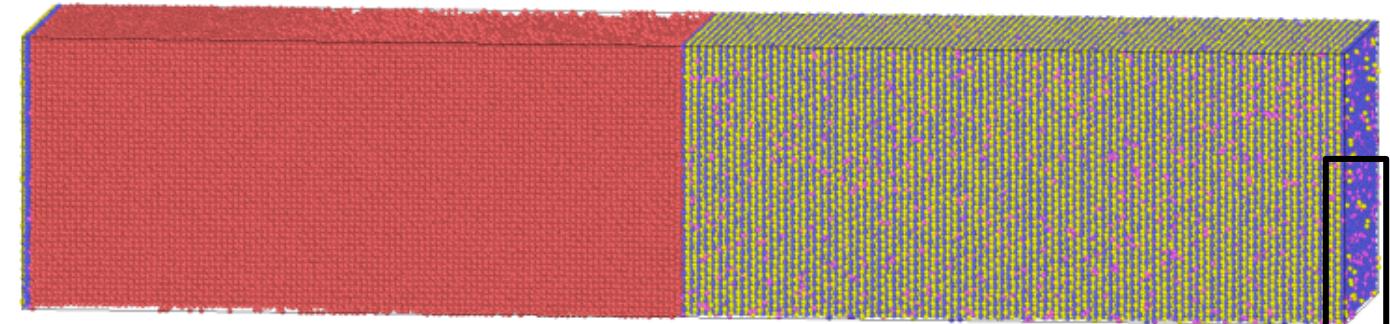
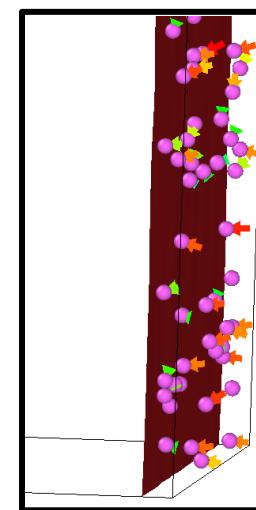
14



436 fs in AIMD

400 ps
in MD

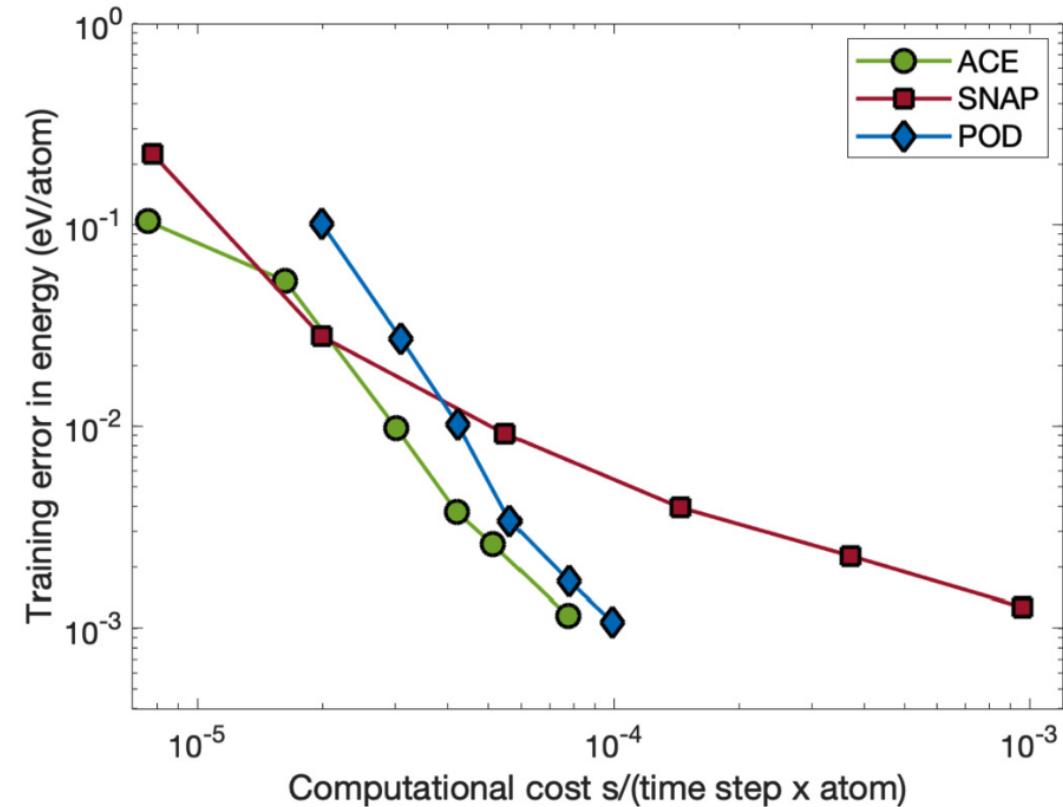
200 ps
in MD



→ Check NEB in DFT compared to SNAP.

Remaining Machine-Learned Potential Questions/Next Steps

- Can we combine objective function optimization with other MLP forms (ACE, Neural Networks, POD, etc.)? Will these yield lower force, energy, and objective function errors?
- Can we use active learning alongside objective functions?
- What is the best way to capture rare events? Can we train on NEB calculations?



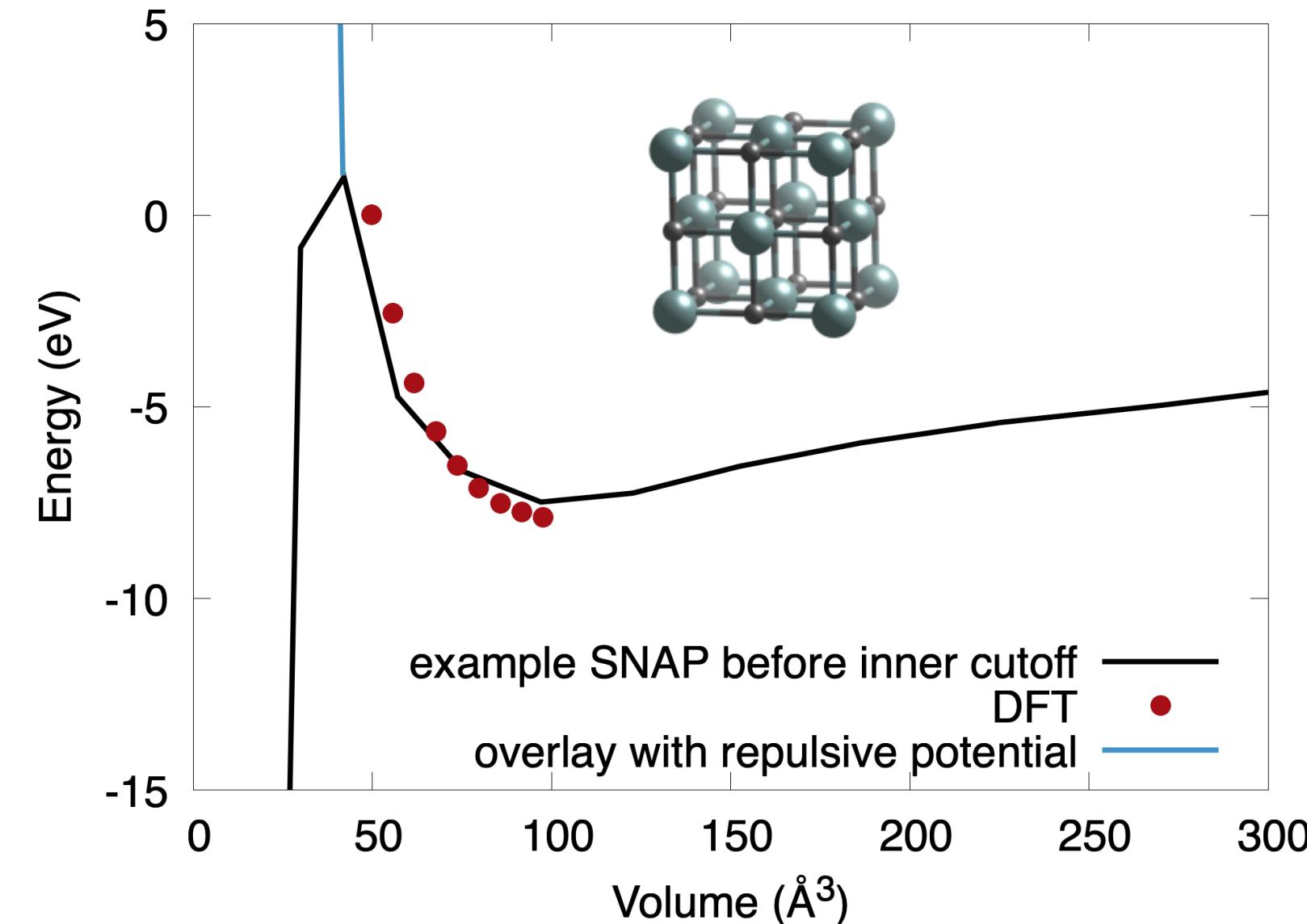
Nguyen and Rohskopf / J. Comput. Phys. **480** (2023)

Summary

- We developed a W-ZrC SNAP potential that agrees well with DFT and can run millions of atom MD simulations at high temperature.
- Robust training sets include “domain expertise” and “beyond domain expertise” structures.
 - → cover large regions of descriptor space with USPEX and large AIMD simulations
- Low force and energy errors alone do not ensure good potentials.
- W-C bonds correlate to high tensile strength, though at high temperature much of the C in terminating layers diffuses into W.
- Preliminary W-ZrC-H potentials exhibit objective function tradeoffs but can run stable dynamics at 1000 K.

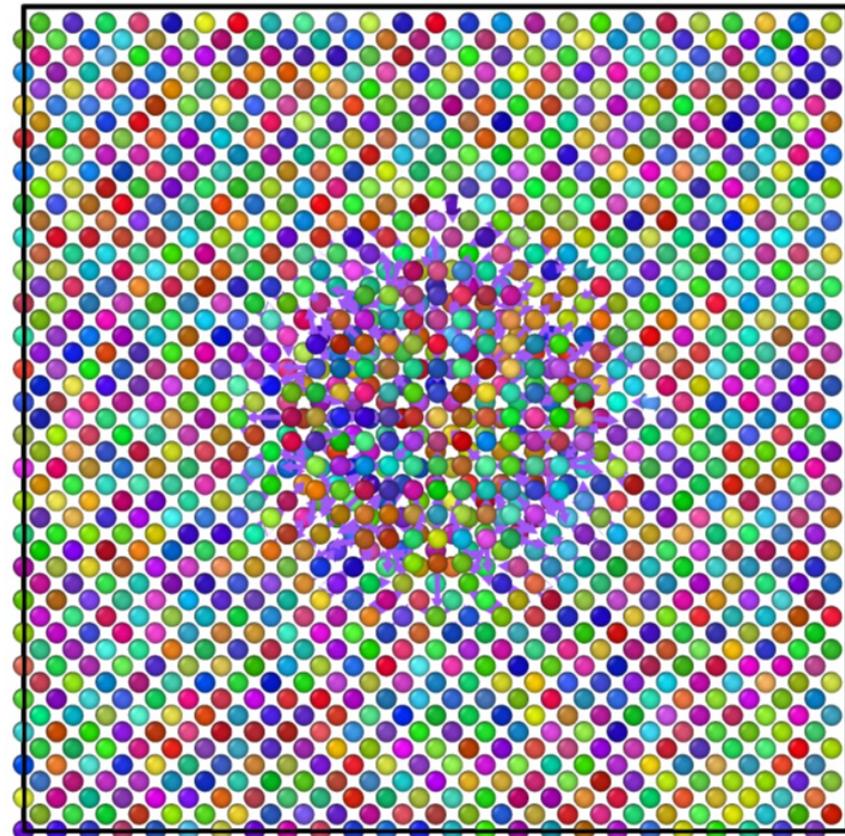
Additional slides

Inner cutoff is now live in FitSNAP and LAMMPS.



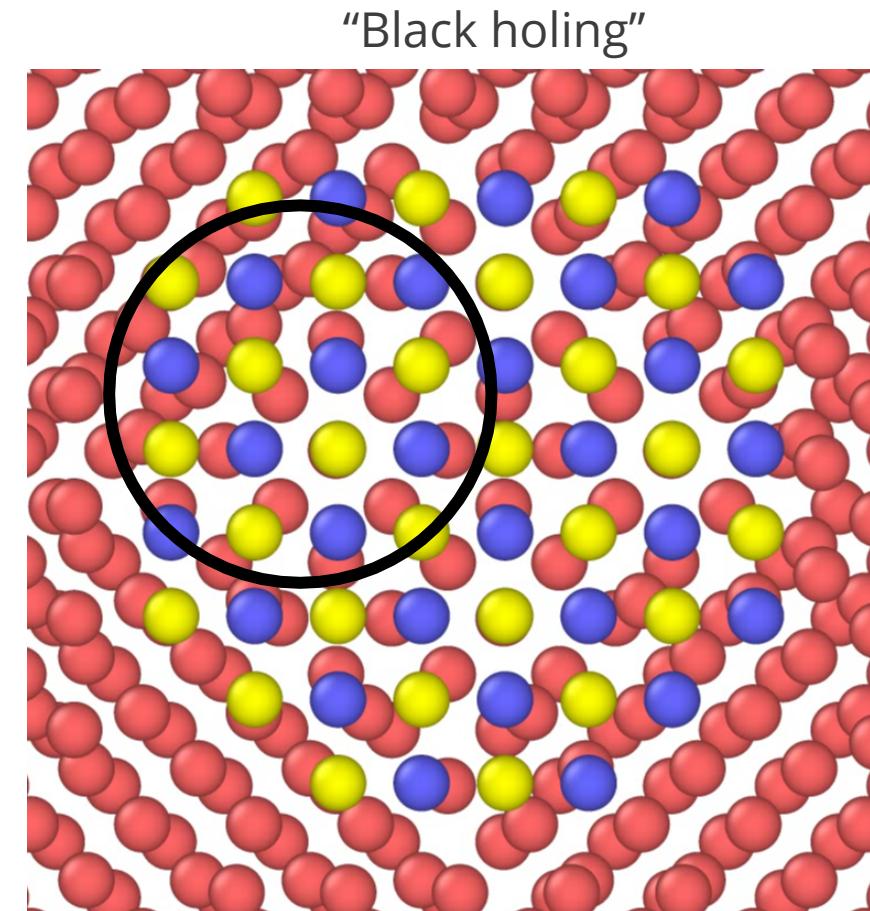
Candidate potentials need to be checked in NVT/NPT simulations for stability.

Cluster analysis
 $<2.2 \text{ \AA}$



$$\min(||\epsilon \cdot (D\beta - T)||^2)$$

- Increase group weight for forces on surface training data



- Add training with low interatomic distances
- Tune zbl overlay
 - Increase repulsive diameter
 - Decrease radial cutoff

Why do we separate DFT training into different groups?

Training groups in the W-ZrC potential:

- (“traditional”) DFT
- Surfaces and Interfaces
- AIMD – 300K
- AIMD 1000 - 5000K
- MACtive
- Liquid
- USPEX

“Traditional” DFT

- Unit cells – small supercells (3-64 atoms)
- High cutoff energy (~500 eV)
- Really high k-points (~8x8x8)

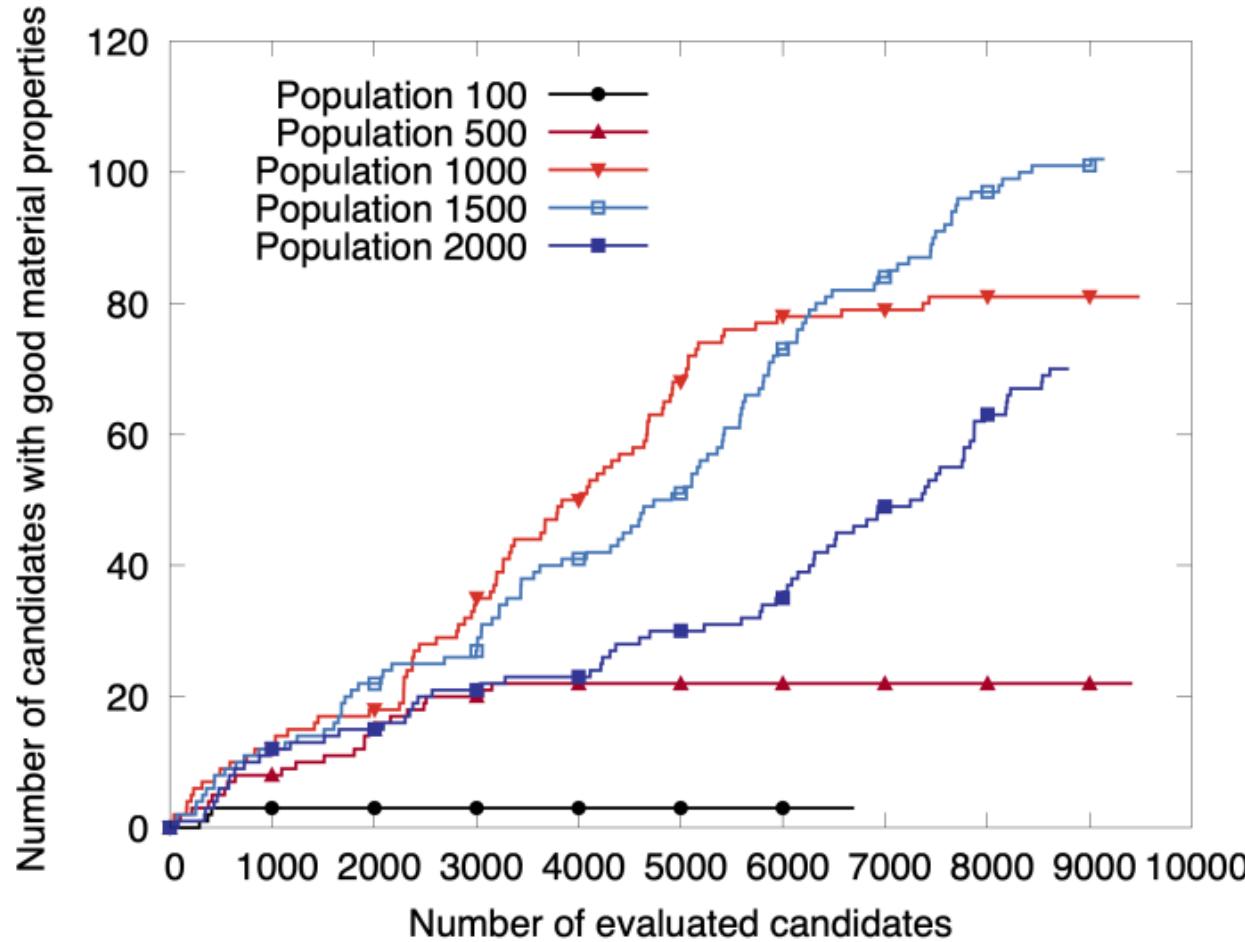
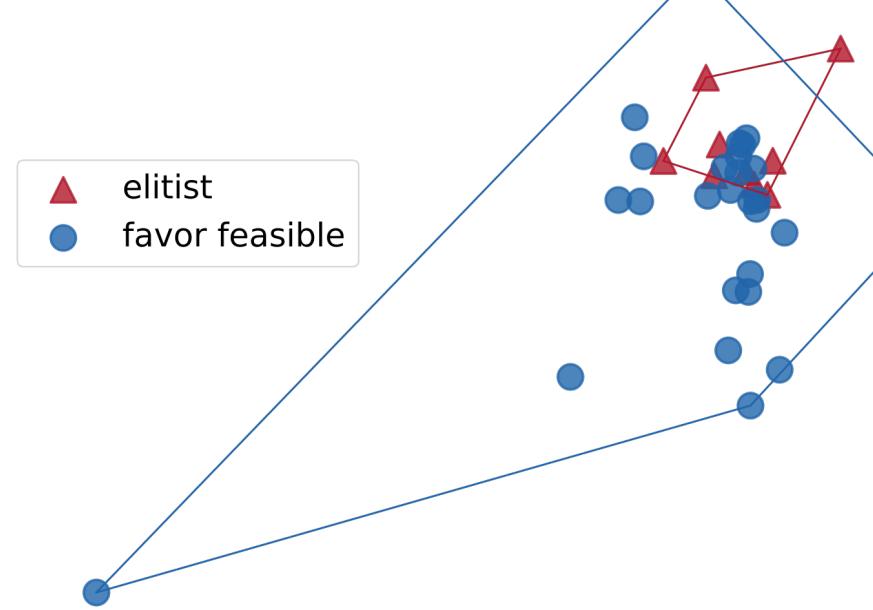
Ab initio Molecular Dynamics (AIMD)

- Supercells (100-700 atoms)
- Really high cutoff energy (~500 - 750 eV)
- Sampled at gamma point (1x1x1)

Group weights of final potential:

<u>dft E</u>	<u>dft F</u>	<u>uspex E</u>	<u>uspex F</u>	<u>surf E</u>	<u>surf F</u>	<u>aimd1 E</u>	<u>aimd1 F</u>	<u>aimd2 E</u>	<u>aimd2 F</u>	<u>mactive E</u>	<u>mactive F</u>	<u>liquid E</u>	<u>liquid F</u>
7.32	3.94	6.41	3.94	3.36	6.52	3.5	3.74	4.1	7.94	3.3	3.62	3.68	5.36

Highlights of Dakota optimization



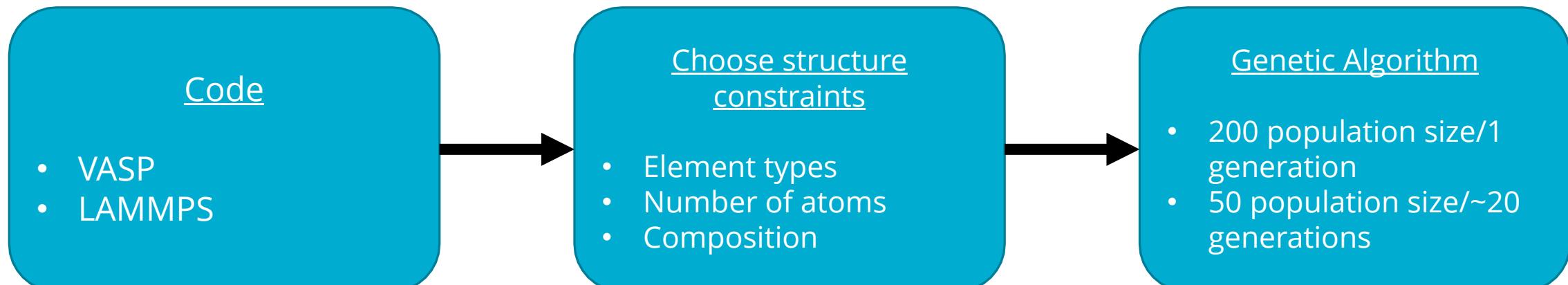
t-SNE of quality candidates produced by two replacement types

USPEX – genetic algorithm structure predictor

"USPEX allows to predict crystal structure with arbitrary P-T conditions by knowing only chemical composition of the material."

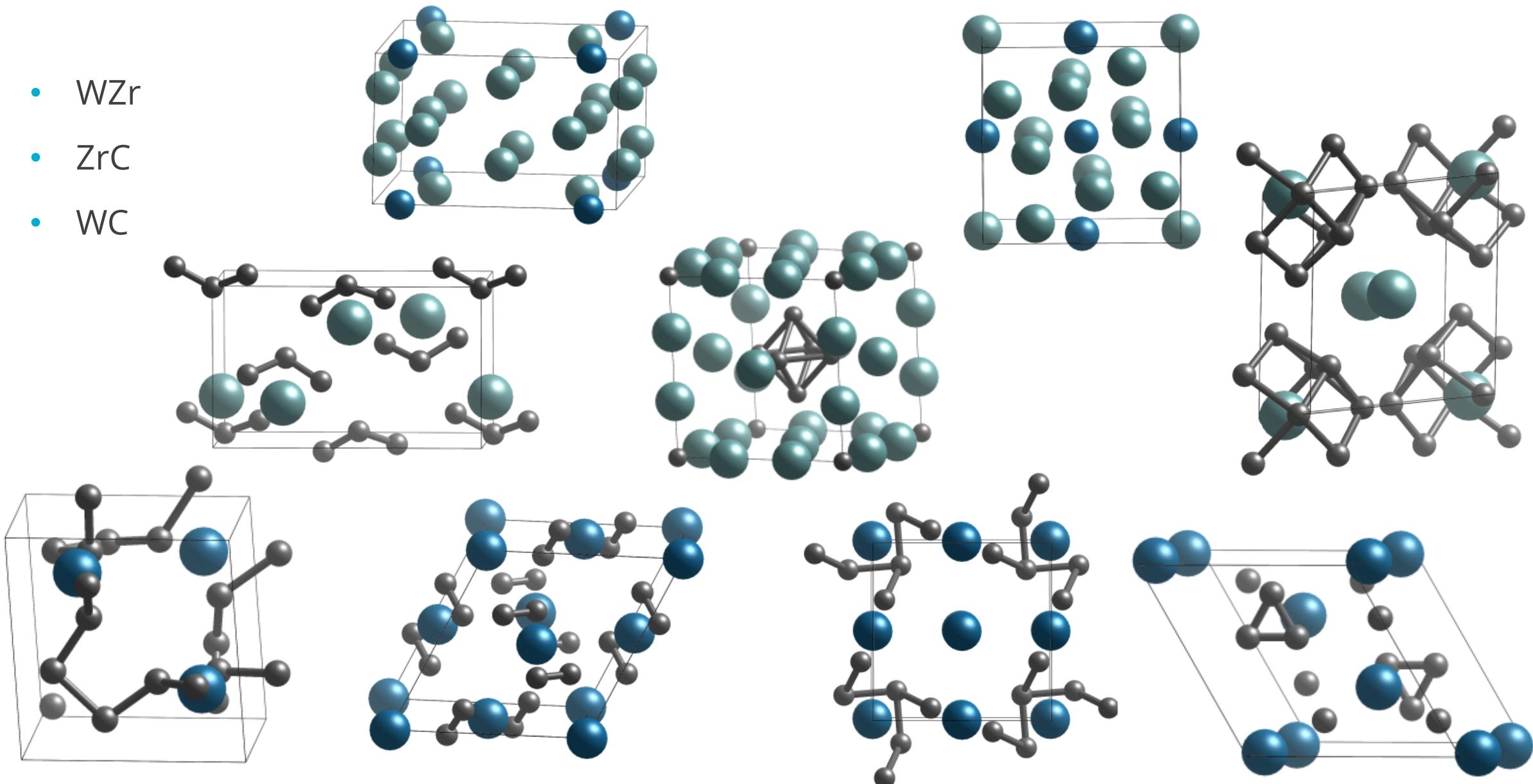
- USPEX generates trial structures which are then relaxed and evaluated by an external code interfaced with USPEX
- Based on the ranking of the relaxed structures, USPEX generates new structures, which are again relaxed and ranked

1. Create training data (bypass intended use; generate 1 giant first generation)
2. Test SNAP candidates/produce active training (follows intended use)



USPEX (method 1) - composition sweeps for training (about 200 structures each)

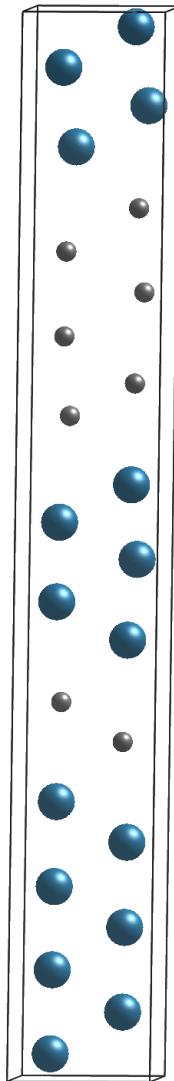
- WZr
- ZrC
- WC



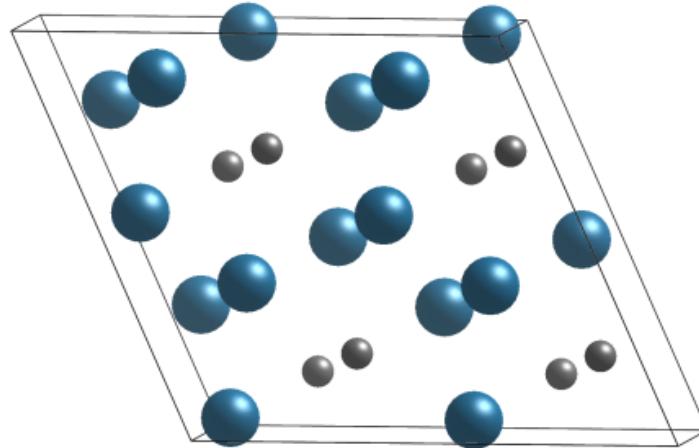
USPEX (method 2)- Testing SNAP candidates on W₂C

Most stable structure

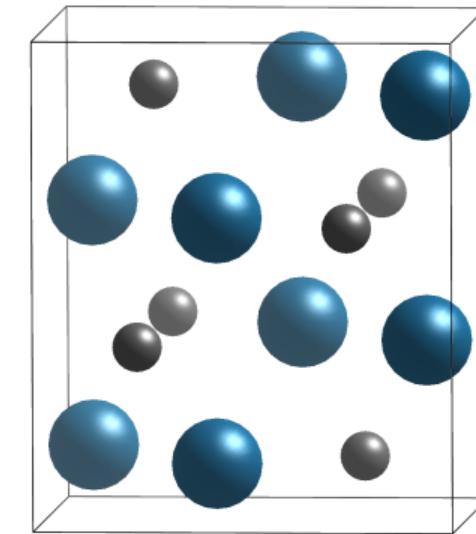
SNAP - **without** USPEX training



SNAP - **with** USPEX
training



Materials Project



“Active” USPEX (method 2) – Using a SNAP candidate to produce training

25

