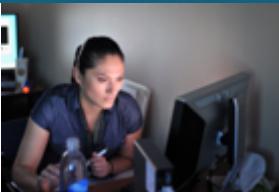
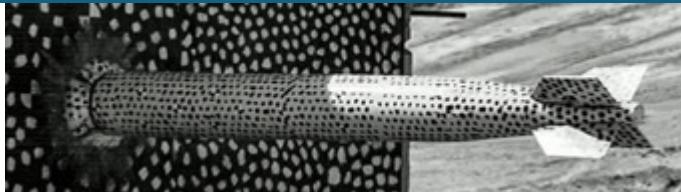


Sandia
National
Laboratories

Development of structure-property linkages for damage in crystalline microstructures using Bayesian inference and unsupervised learning

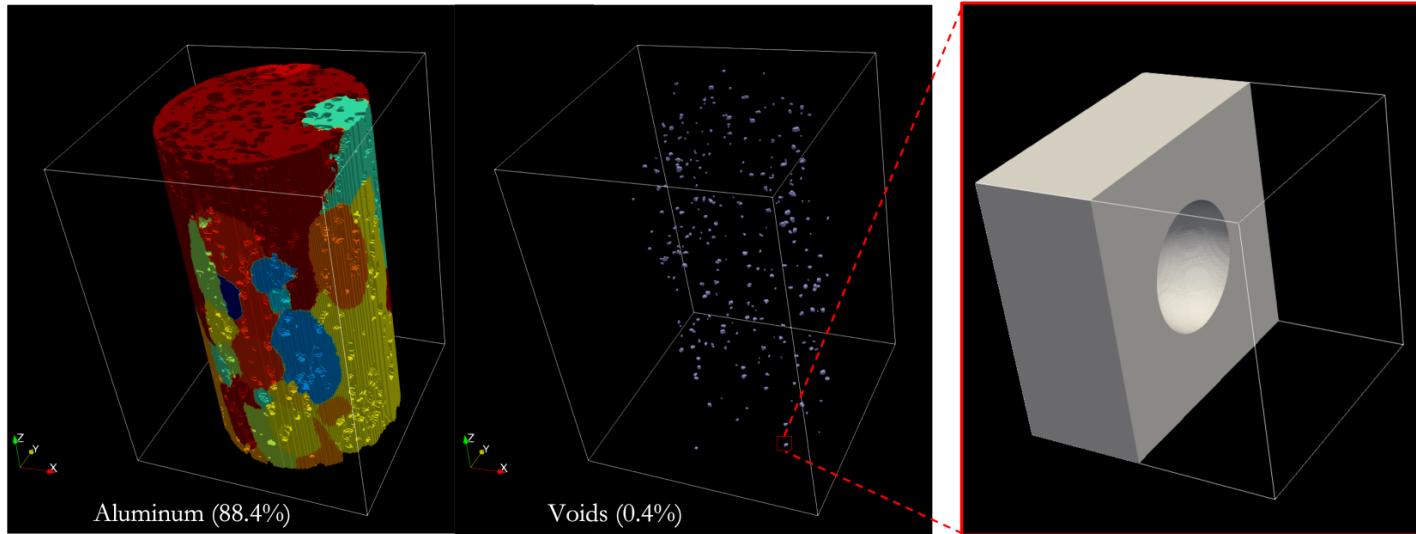
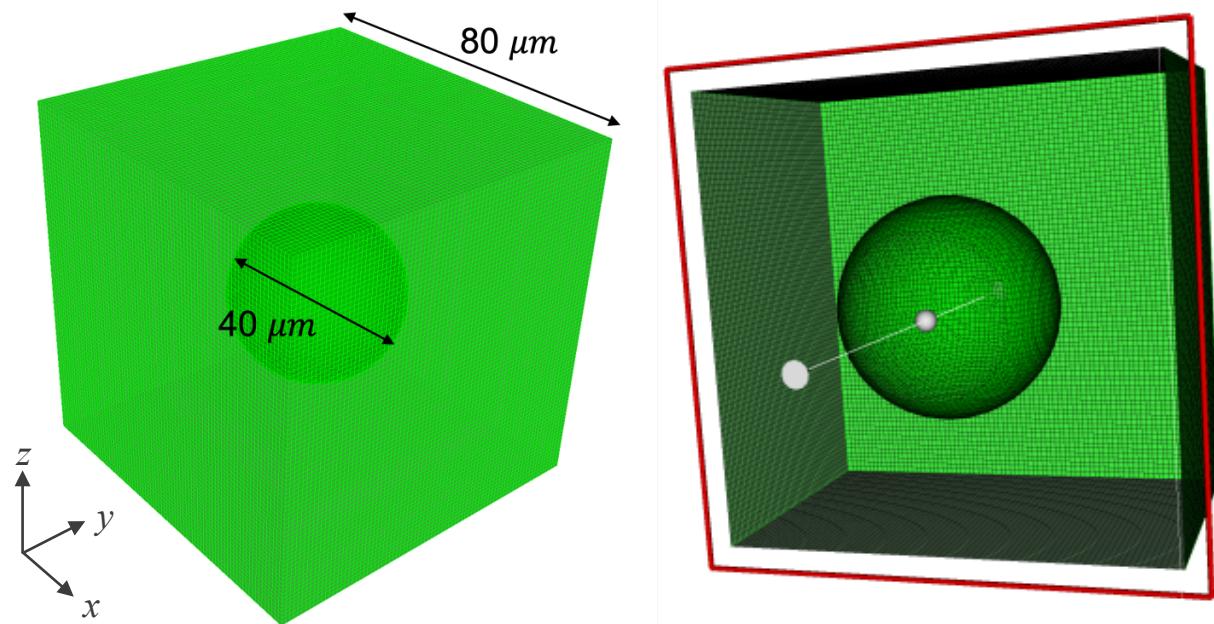


David Montes de Oca Zapiain¹, Anh Tran¹, Hojun Lim¹

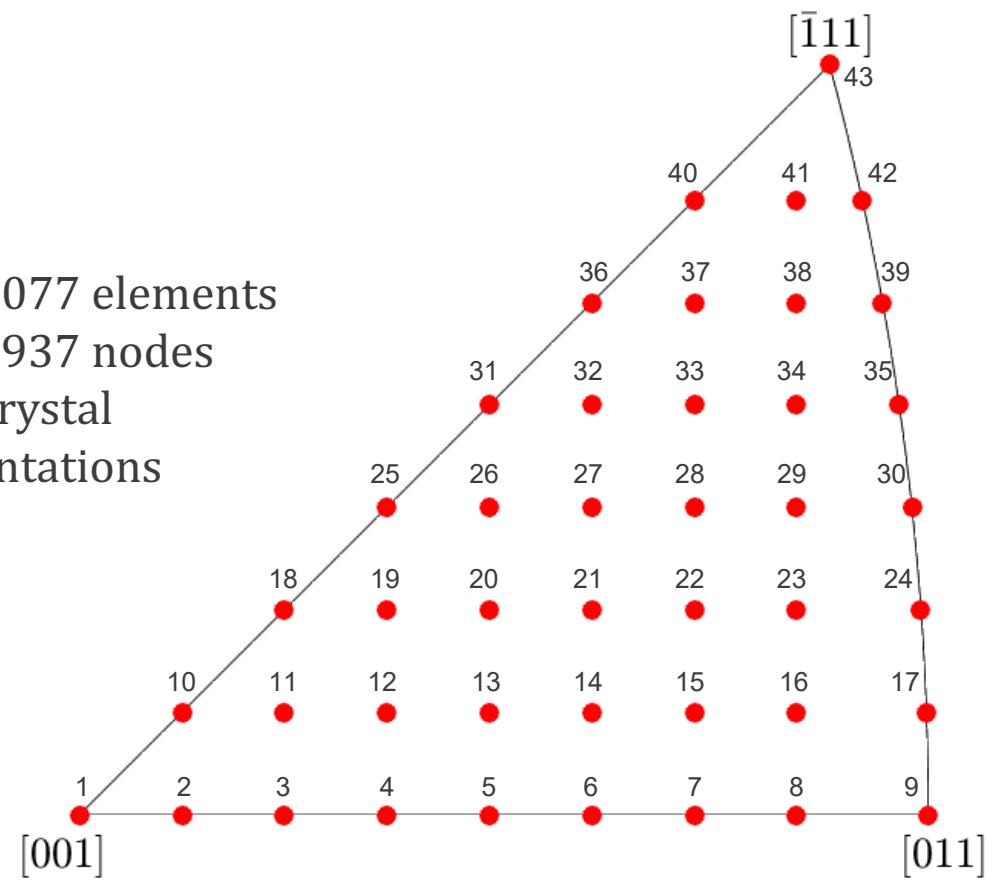
¹Sandia National Laboratories, Albuquerque, NM 87185, USA

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Quantifying the effects of voids and particles in polycrystalline deformation using CPFEM



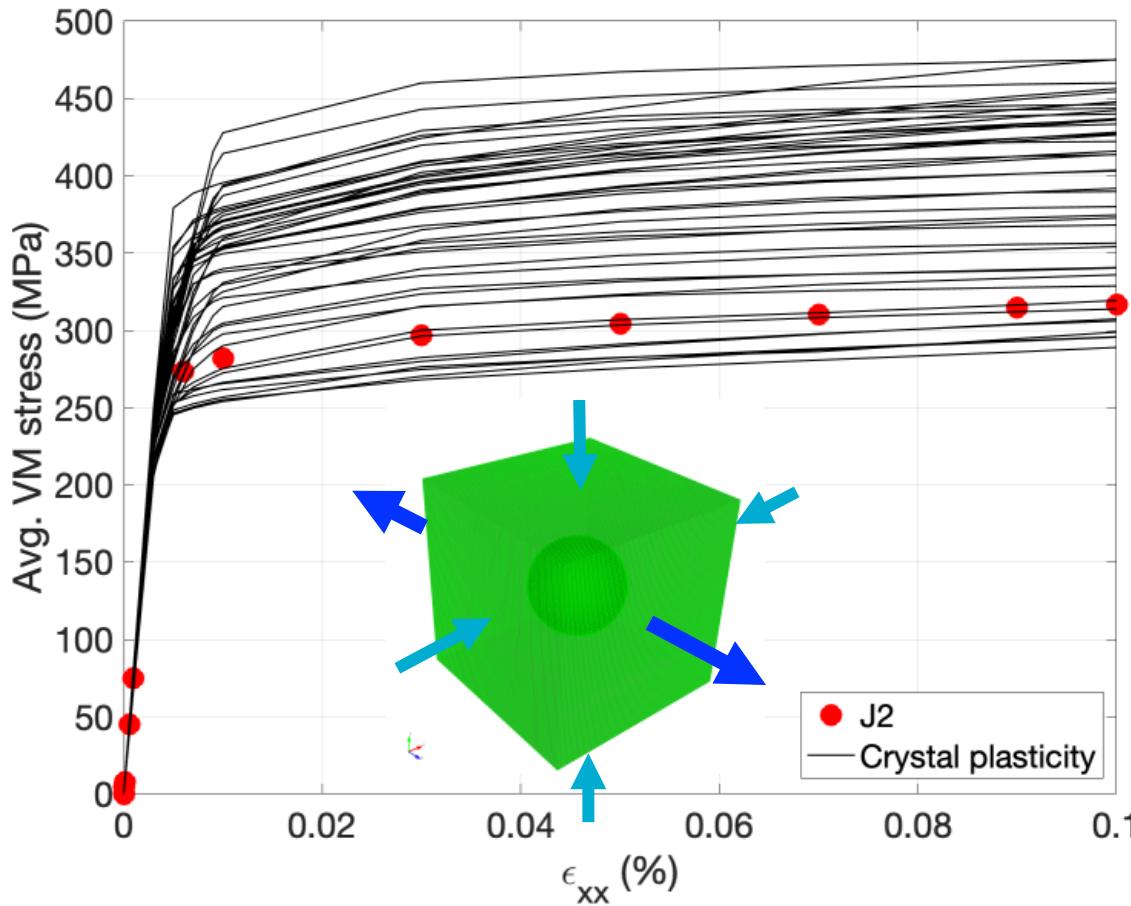
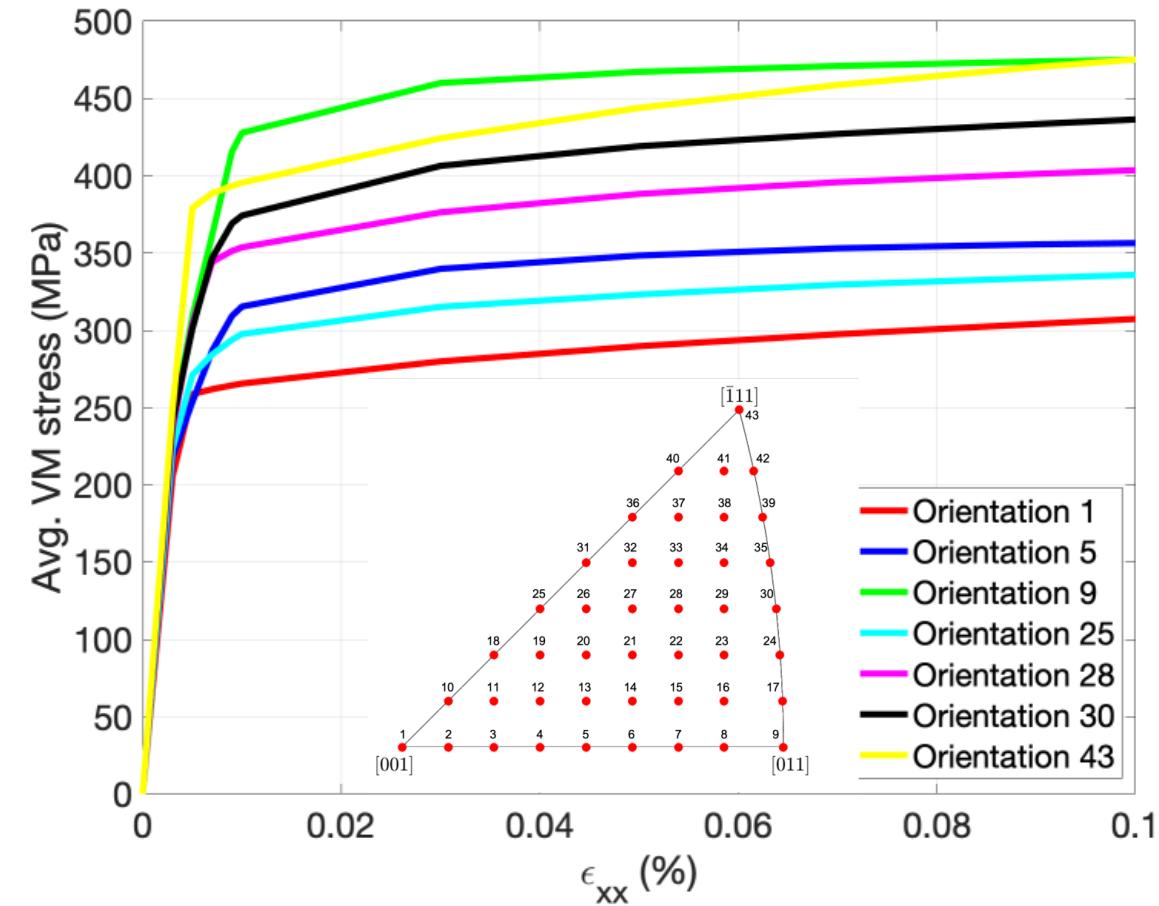
496,077 elements
518,937 nodes
43 crystal
orientations



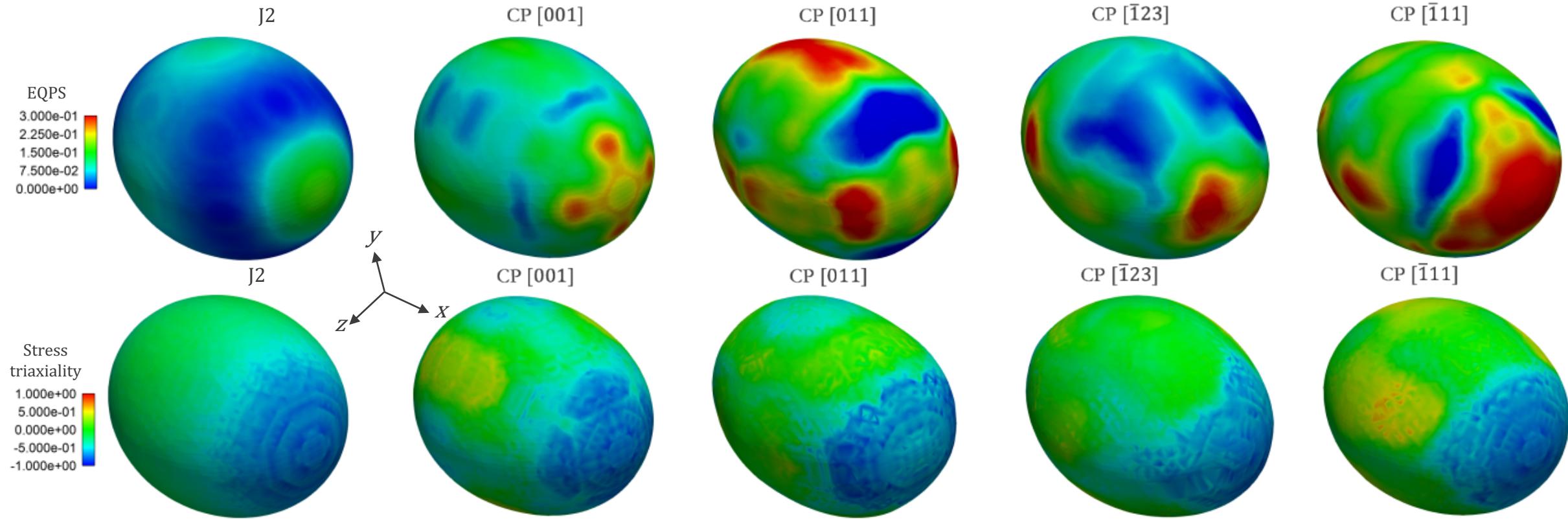
A spherical void in a single crystal cube – CP-FEM simulations

- Isochoric BC: $\boldsymbol{\varepsilon} = \begin{bmatrix} \varepsilon & 0 & 0 \\ 0 & -0.5\varepsilon & 0 \\ 0 & 0 & -0.5\varepsilon \end{bmatrix}$

- CP parameters for Al6061

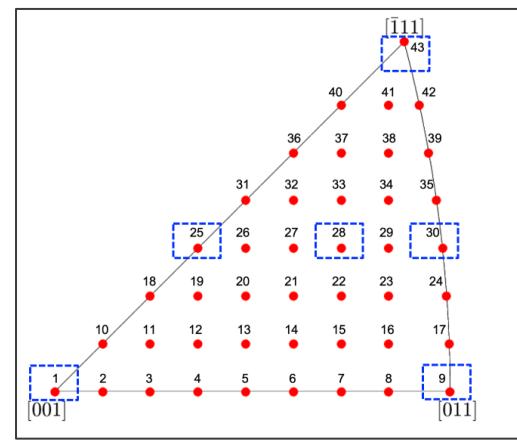


Relating Void Growth to Damage



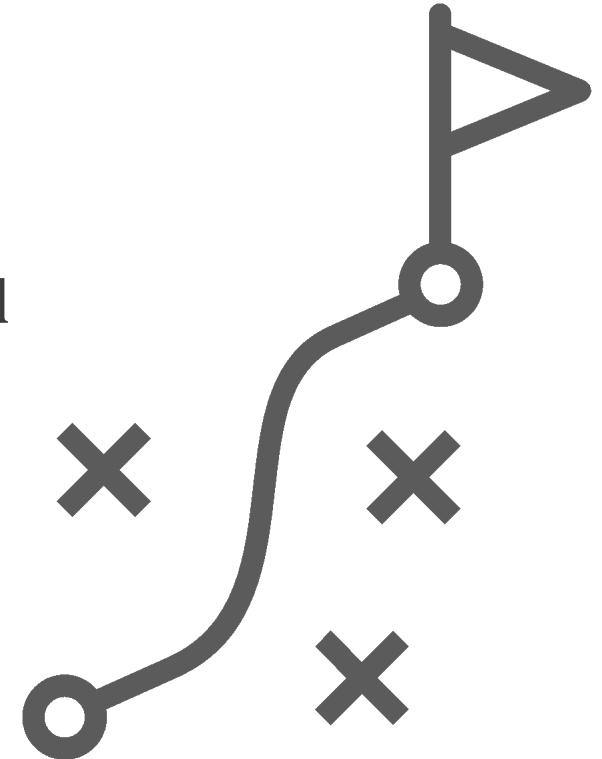
- Experimental analysis showed that void growth was the main failure mode under high stress triaxiality.
- Under low stress triaxiality, the crack developed in the way of combined shear and void growth modes.
- In negative stress triaxiality, the fracture was controlled by shear only.

- Fields of EQPS and stress triaxiality at 10% deformation.
- Fields show great dependence on orientation.

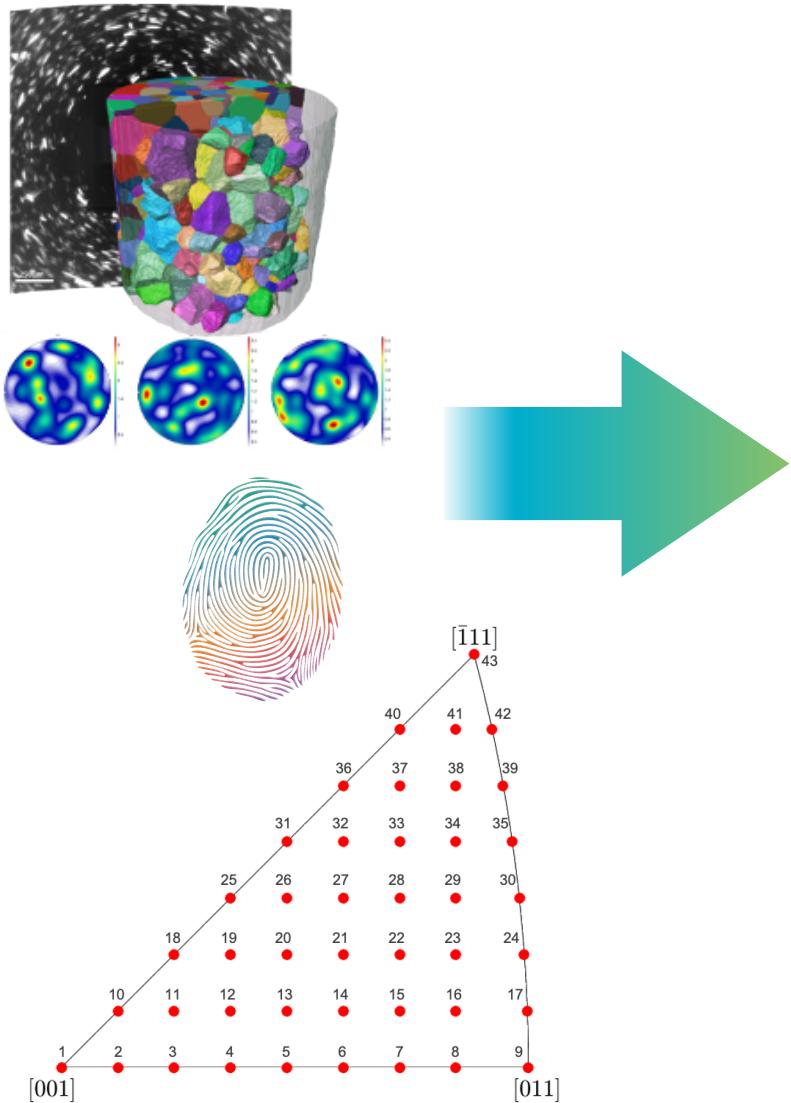
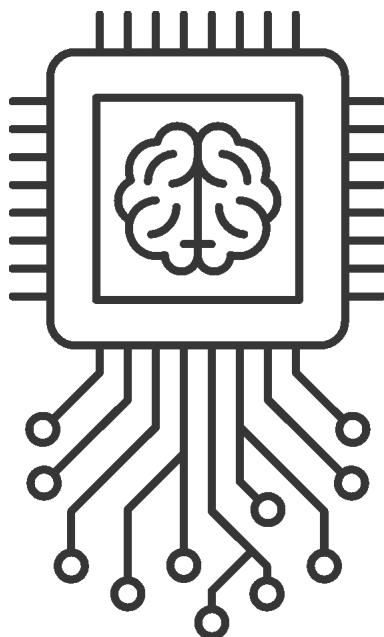
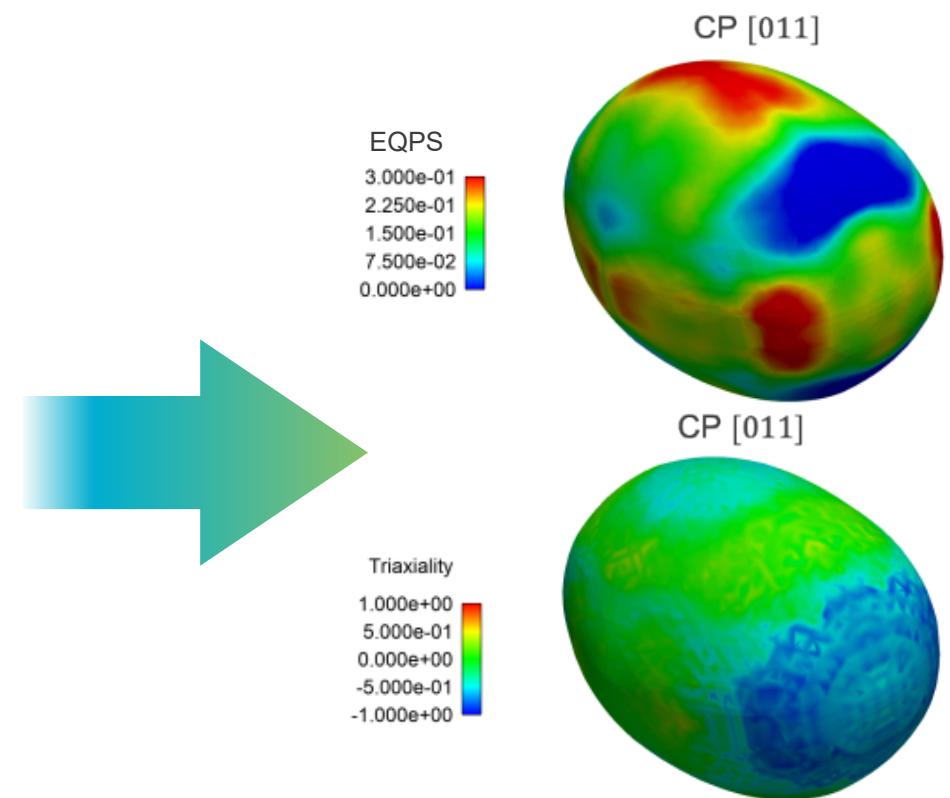


Full-field analysis is expensive and not scalable

- Full-field CPFE analysis enabled us to draw some general conclusions and validate the effect texture has.
- Nevertheless, these insights needed significant computational expense, given that each simulation required ~ 10 hours with ~ 300 CPUs.
- Therefore, there is a critical need for a more efficient linkage between the structure and the property.

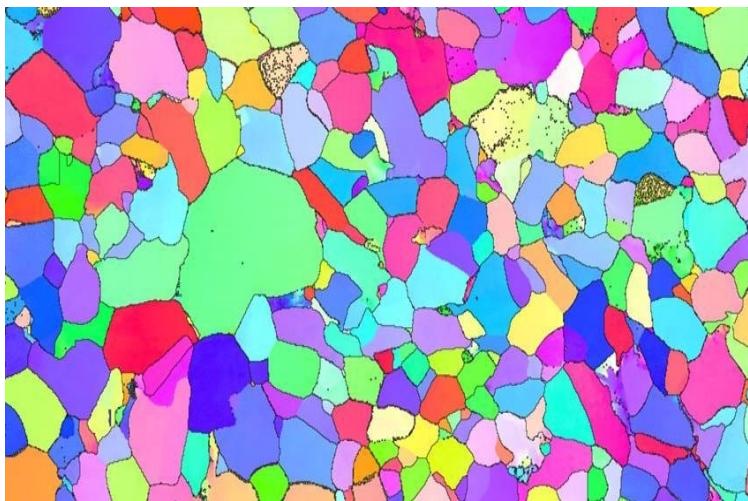
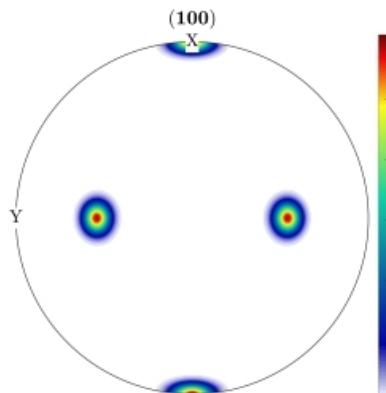


Leverage data-driven approaches to establish an accurate model



Establishing a fingerprint of the data (Input)

Colors denote the crystal lattice orientation



$f_s(g)$ is the probability distribution of the orientation of the crystal lattice

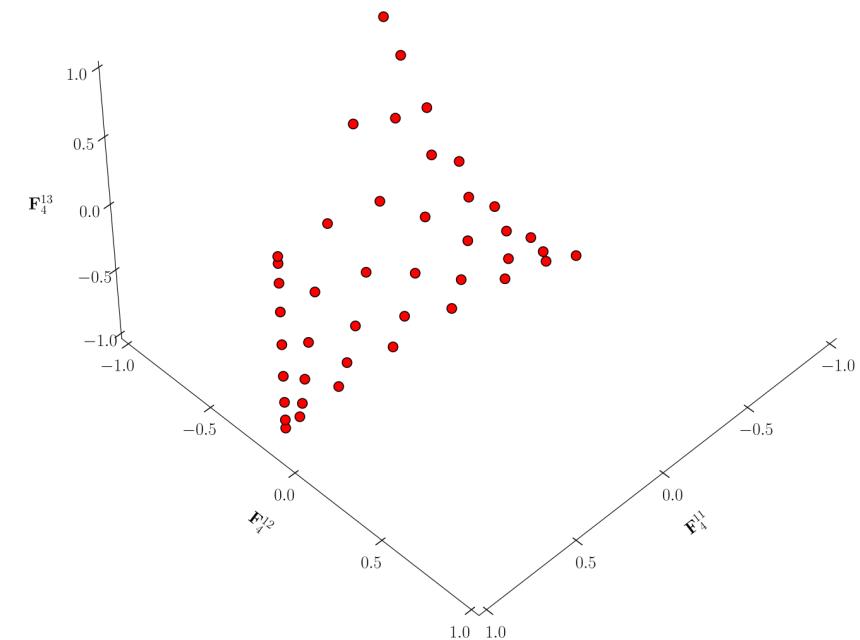
Fourier series representation

$$T_l^{mn}(g) = T_l^{mn}(\varphi_1, \Phi, \varphi_2) = e^{im\varphi_1} P_l^{mn}(\Phi) e^{im\varphi_2}$$

$$f_s(g) = \sum_{\mu, n, l} F_{ls}^{\mu n} T_l^{\mu n}(g),$$

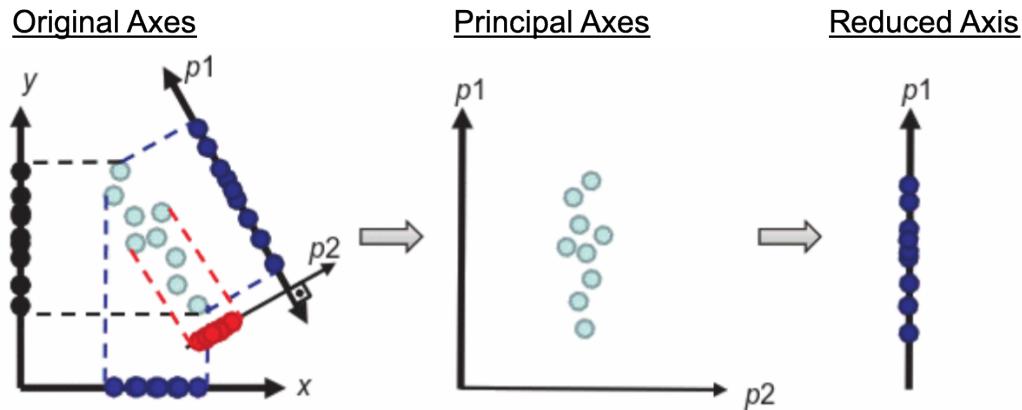
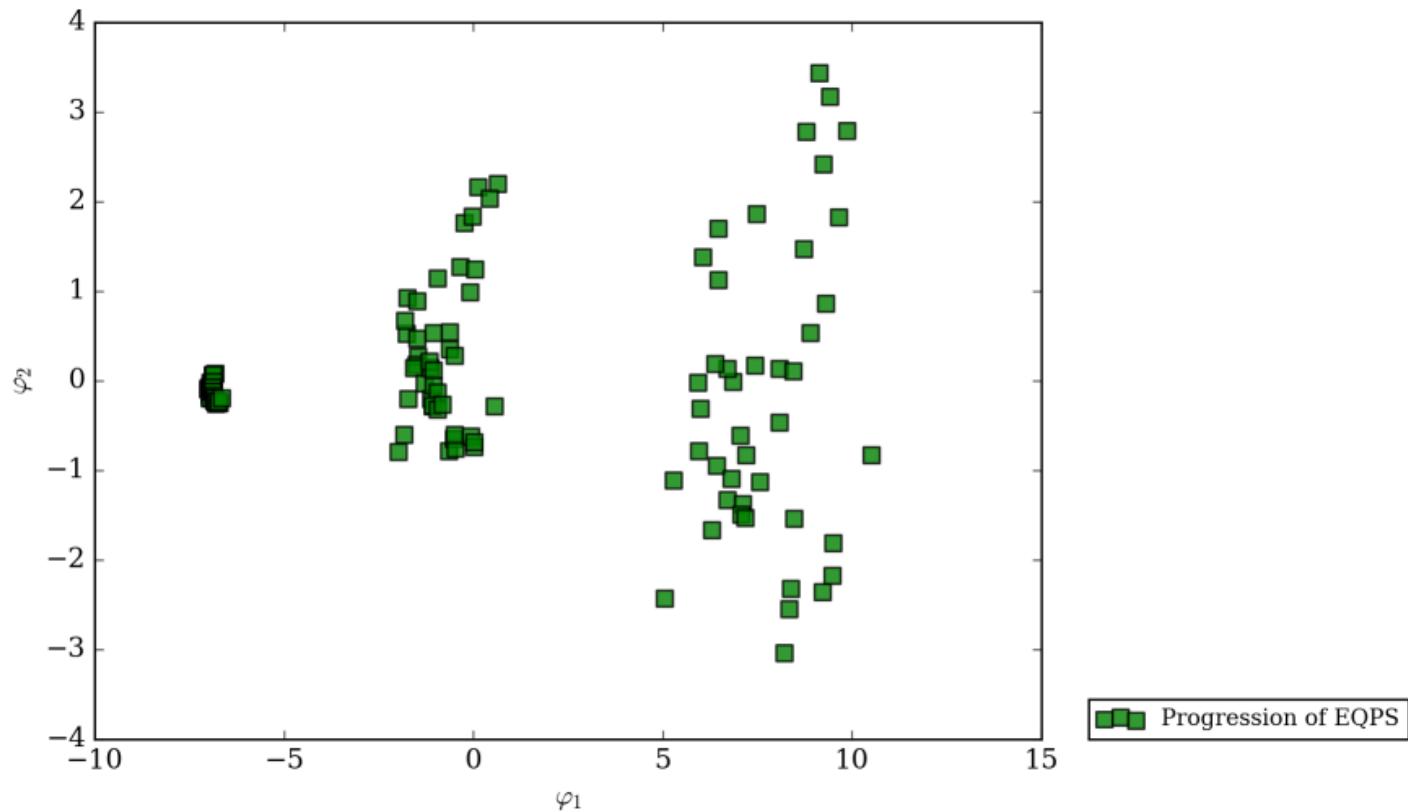
$$F_{ls}^{\mu n} = (2l + 1) \int_{FZ} f_s(g) T_l^{\mu n*}(g) dg$$

- GSH representation of 43 different orientations

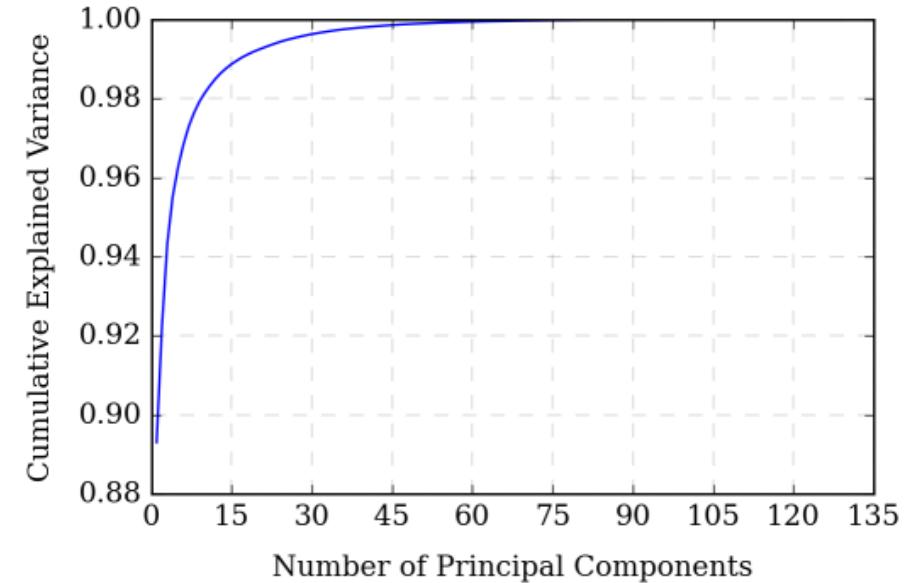


- Orthogonal Basis functions.
- Customized to account for symmetry.

Establishing a fingerprint of the data (Output)

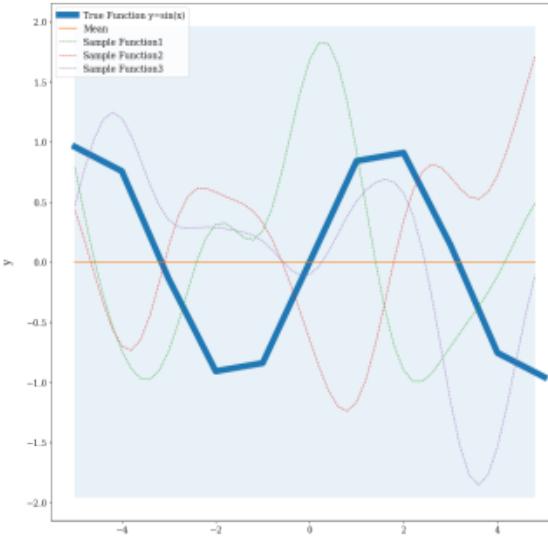
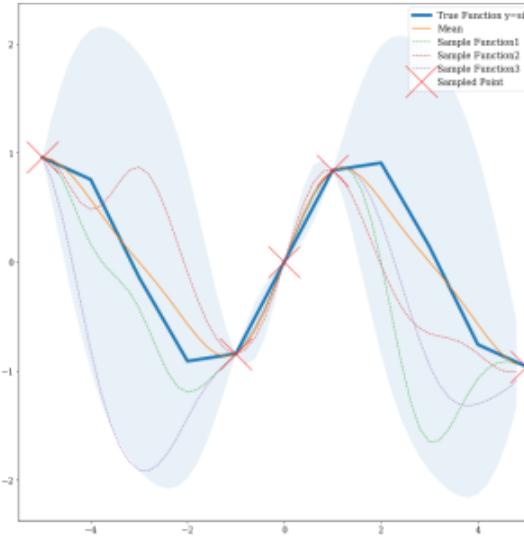
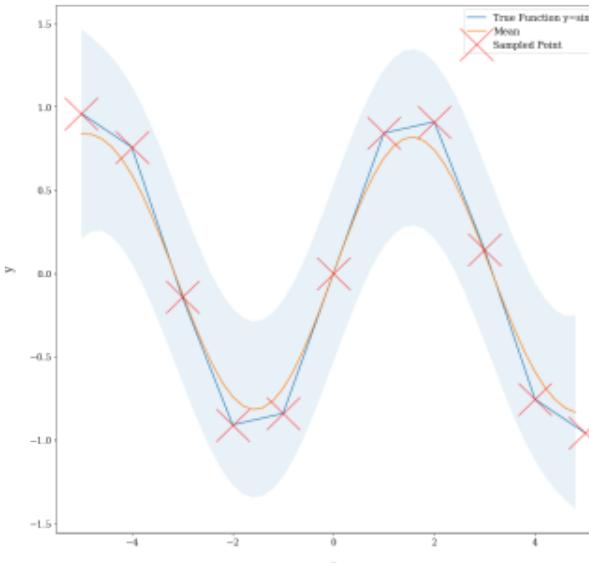


- Represent the values of each variable of interest (EQPS and Triaxiality) with 129 PC components.
- Reconstruct the values using the fitted PC transformation.



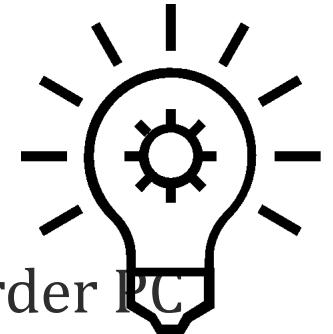
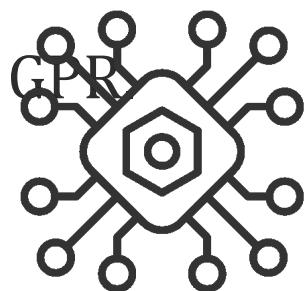
Establishing Structure-Property Linkage with GPR

- Connect the GSH coefficients to the PC components for EQPS and Triaxiality using Gaussian Processes Regression (GPR).
 - 43 orientations (6 snapshots between 0 and 10% deformation).
- GPR is non-parametric model building approach, which employs kernel-based interpolation on a training dataset to make predictions for new (test) inputs.
- A Gaussian Process is a distribution over functions that follows a multivariate Gaussian fully specified by a mean function and a covariance function.
- Sampling points (i.e., training data) within the specified domain constrains the distribution from which the functions are drawn.
- Sampling more points eventually enables us to learn the underlying function.



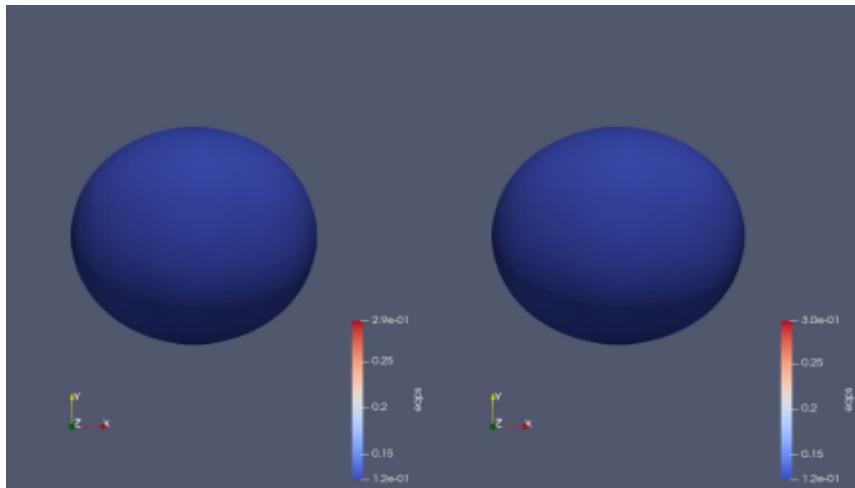
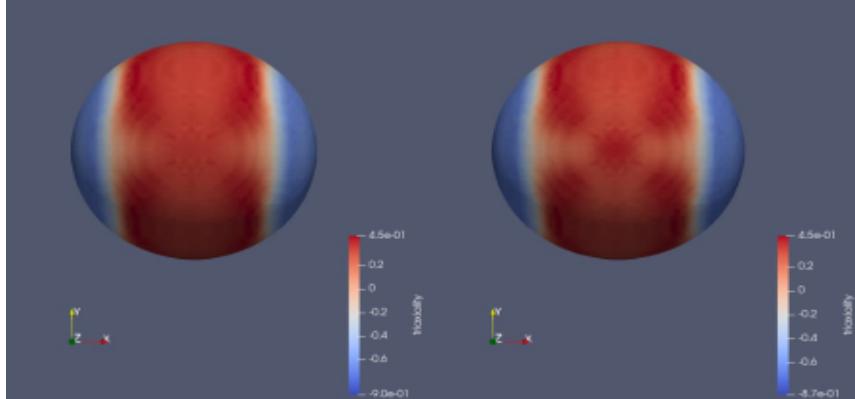
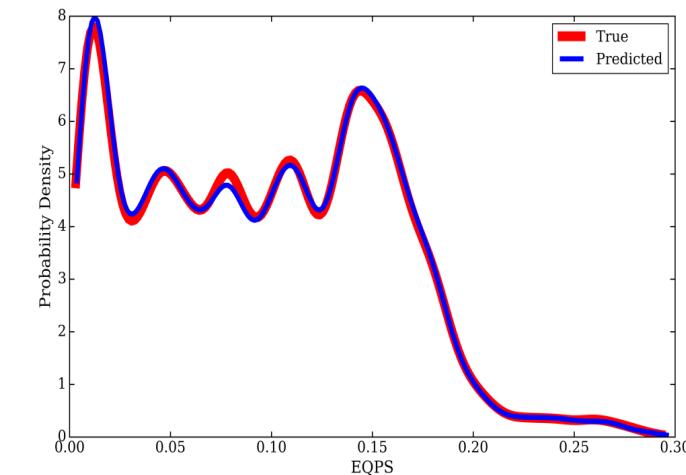
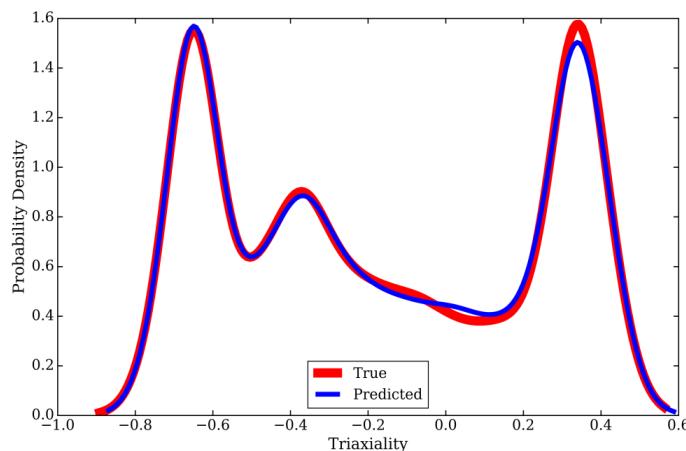
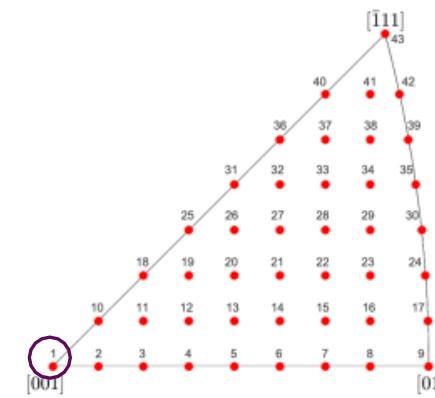
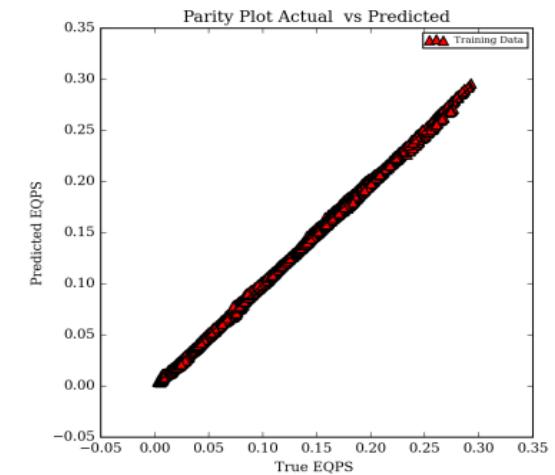
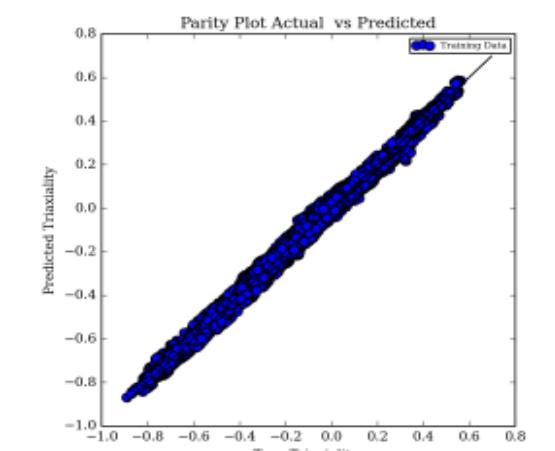
Structure-Property Linkage: GPR Details

- Connect the GSH coefficients to the PC components for EQPS and Triaxiality using Gaussian Processes Regression (GPR).
 - 43 orientations (6 snapshots between 0 and 10% deformation).
 - Normalize the output to [-1,1] in order to be able to better predict higher order PC Components.
 - We will fit an individual GP for each individual QoI (i.e., the PCA of EQPS and triaxiality)
 - A squared exponential kernel with constant noise was used for each GPR.

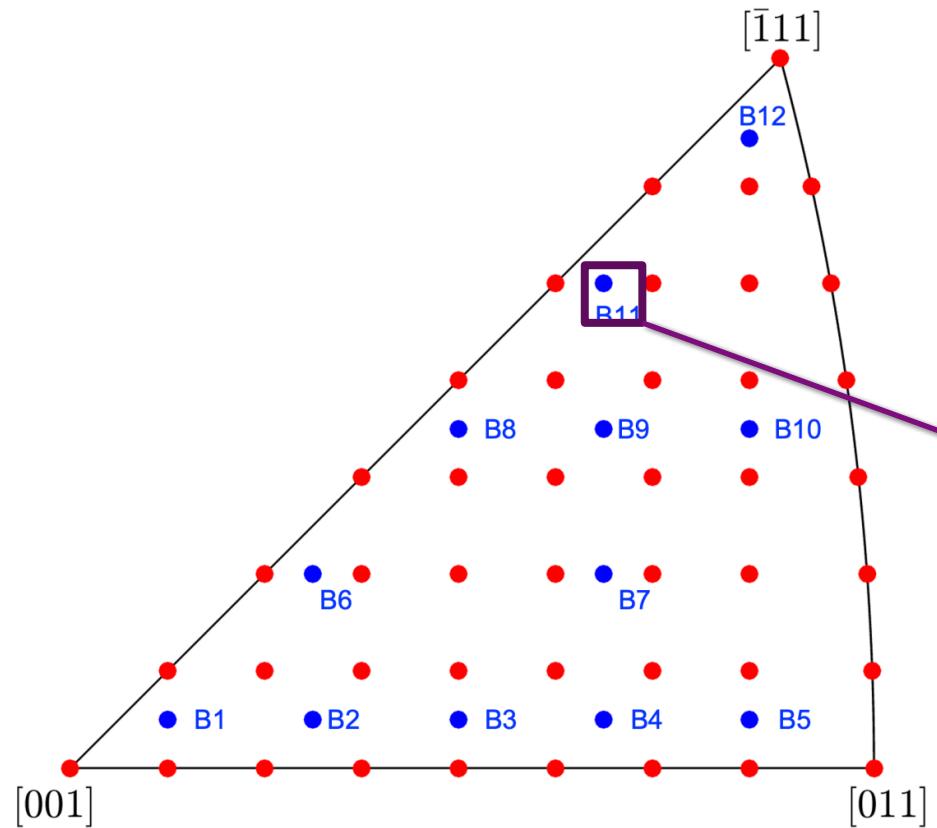
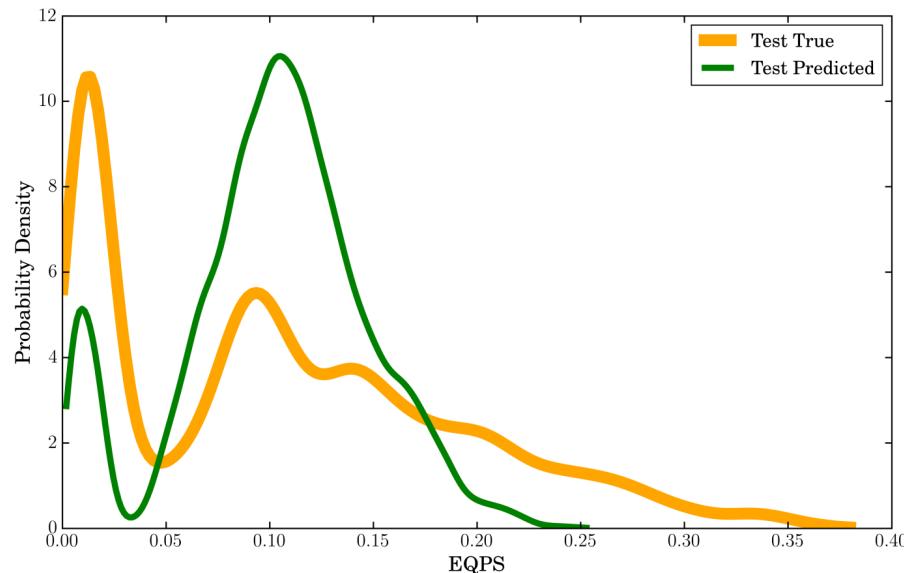
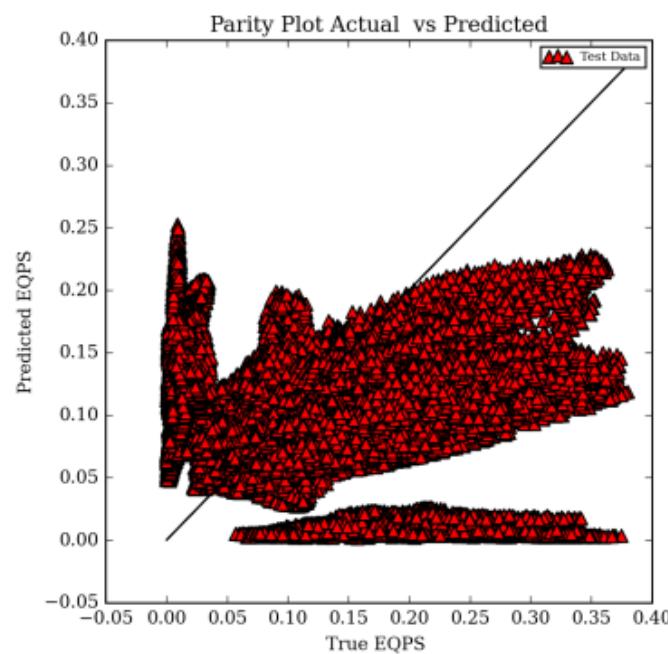


Results: Interpolating in Time

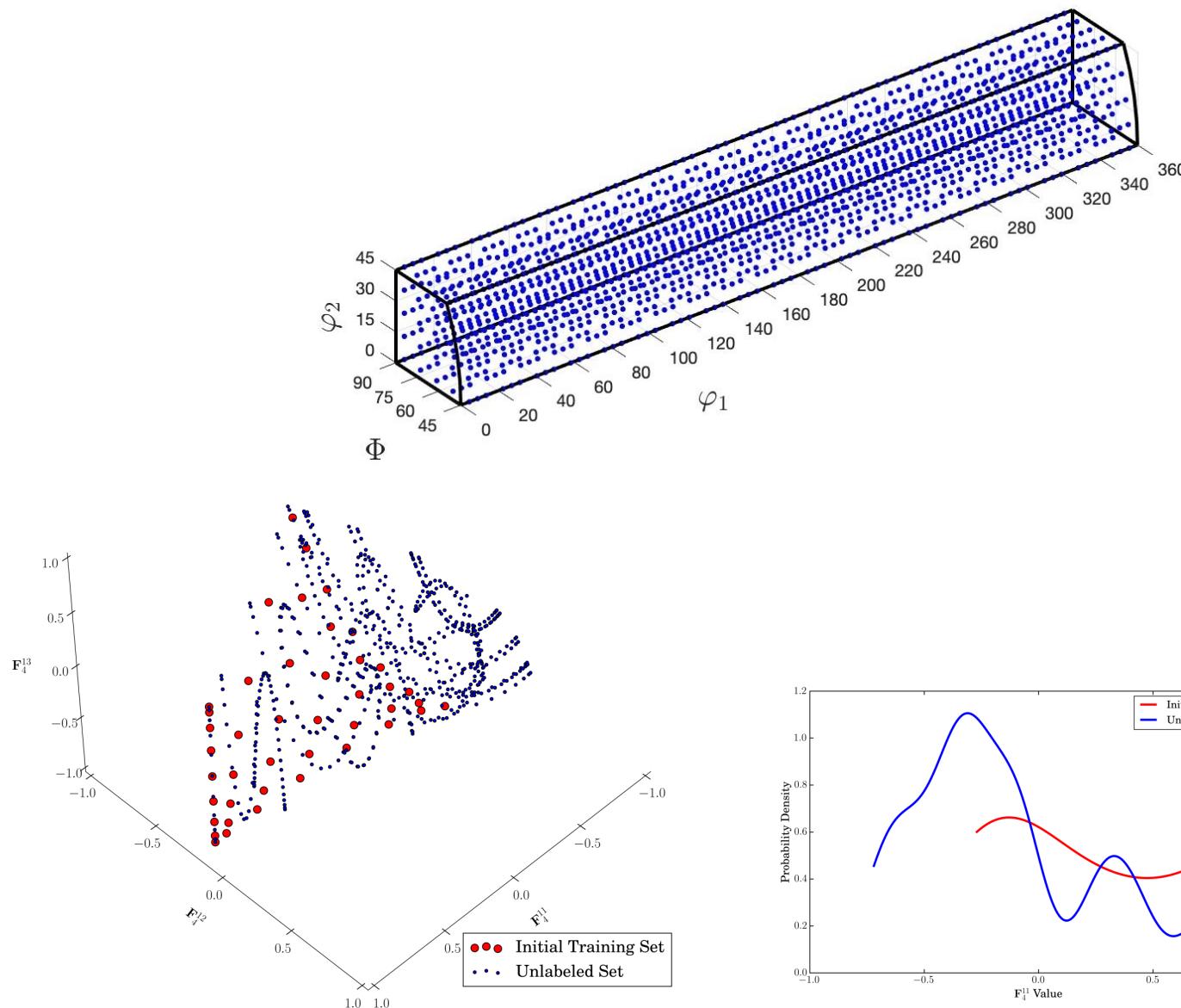
- Orientation 1:
 - Evolution EQPS (top) and triaxiality (bottom).
 - Comparing true (left) vs. predicted (right).



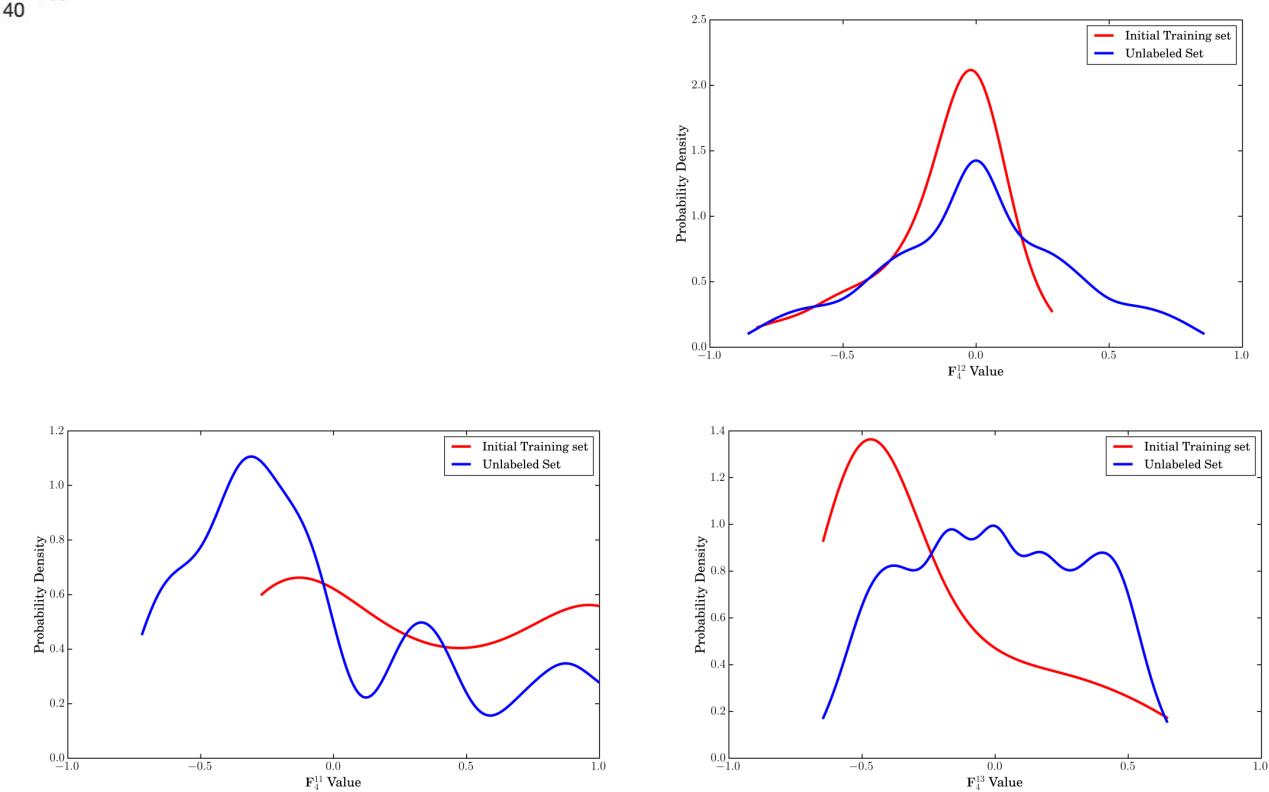
Results: Interpolating in Time and Texture



Expanding model to interpolate in texture space

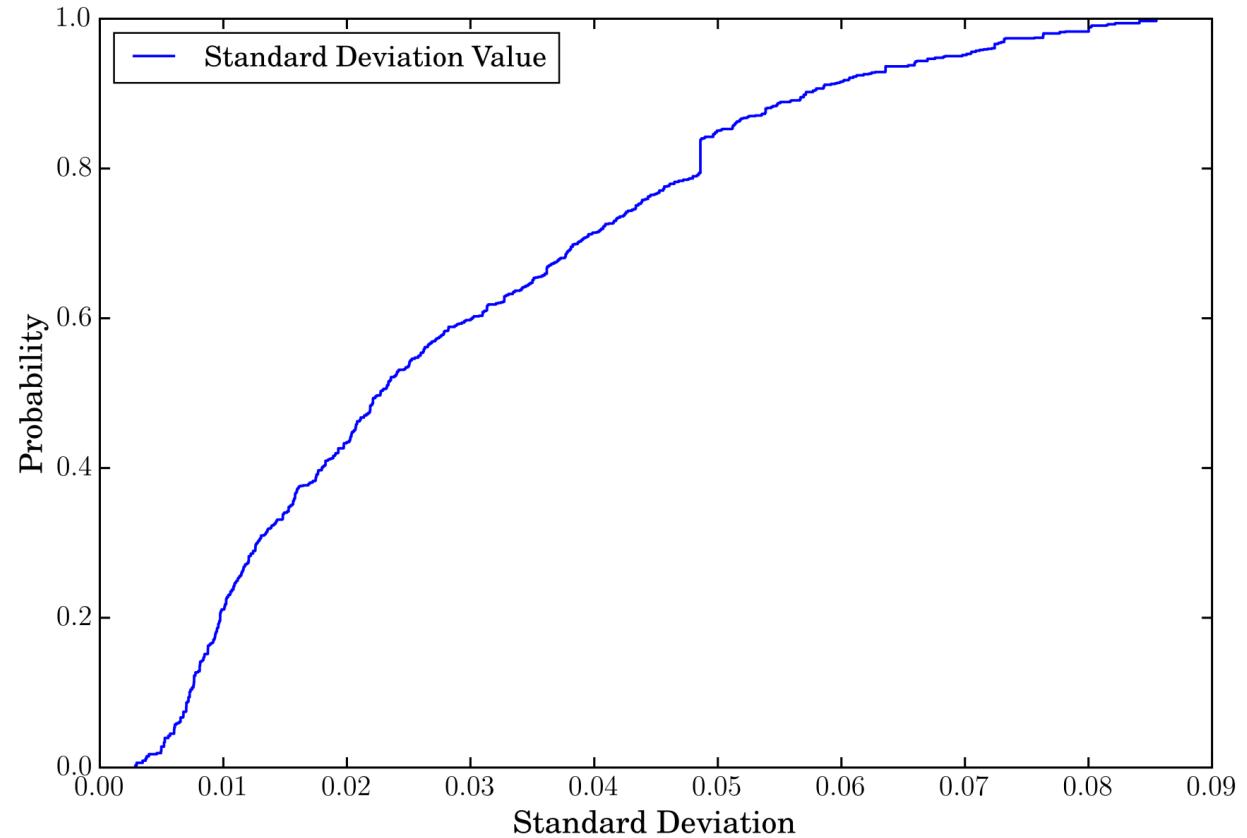


- Sample the Fundamental Zone of Cubic Crystals with 2770 orientations.

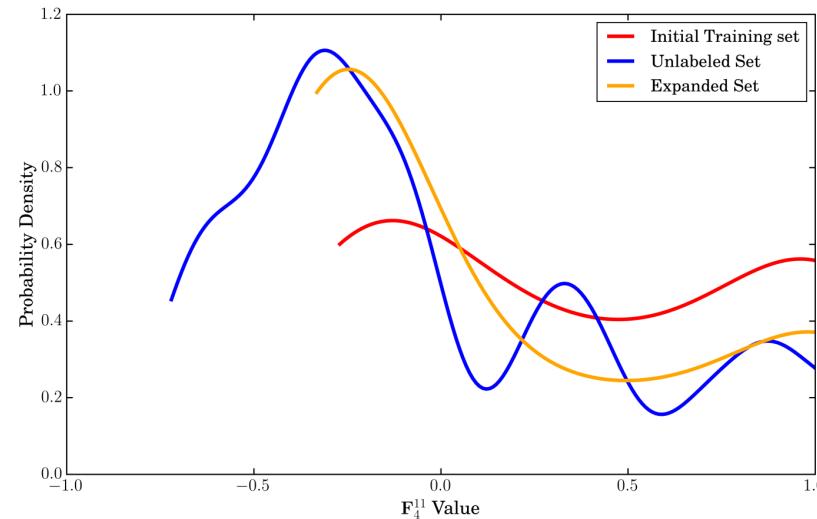
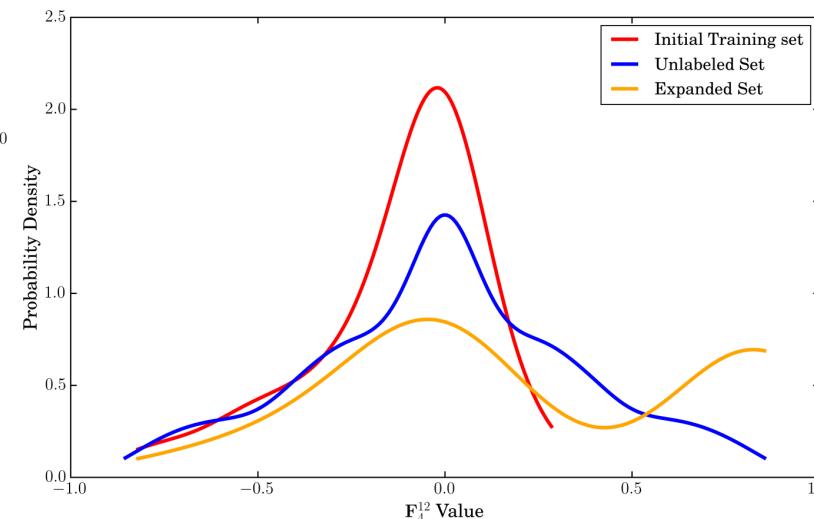
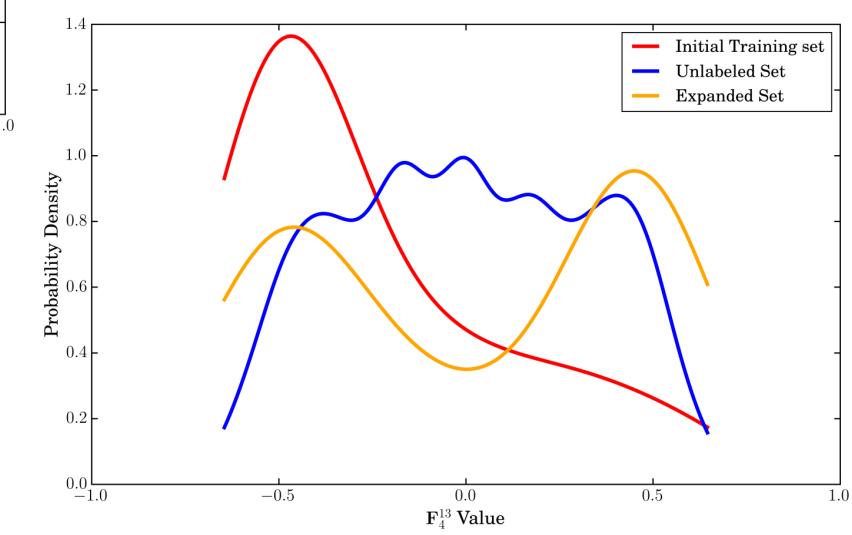
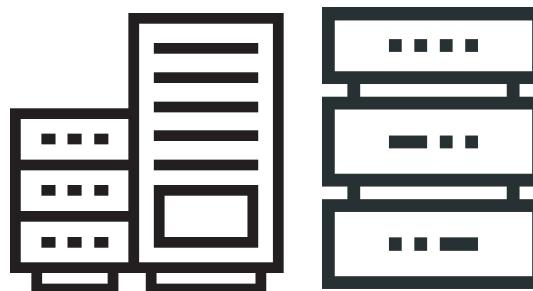
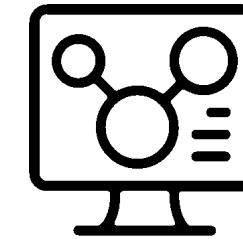


Identify most uncertain points using GPR-based model

- Use existing model to predict the value of PC scores for the unlabeled set.
- Quantify uncertainty using average standard deviation across PC scores.
- Select top 1% uncertain (26 points).

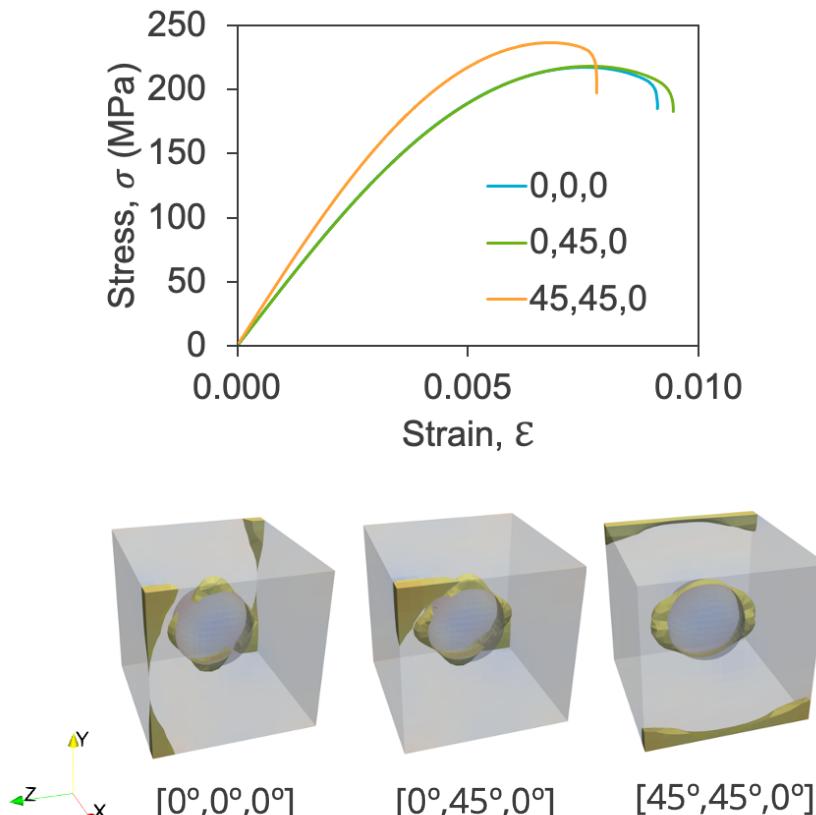


Incorporating Most Uncertain Points (In progress)



Future Work: Incorporating Efficient Model Building to more complex models

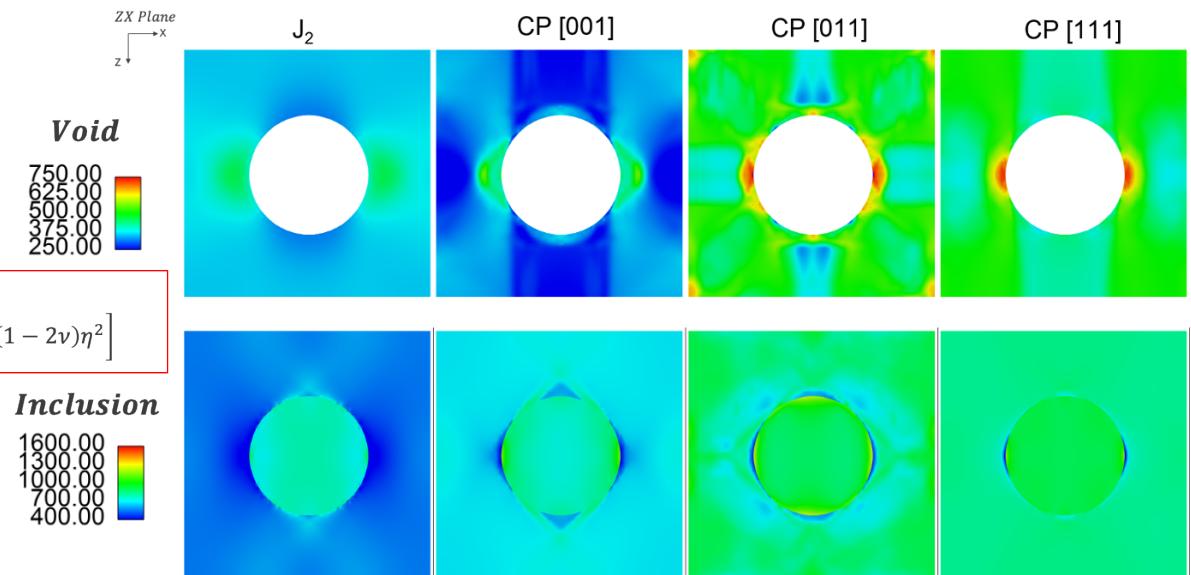
- A coupled crystal plasticity (CP) and phase-field fracture (PFF) model, solved within FEM MOOSE framework
- Incorporating a failure criteria into CP simulations.



- Fracture propagation also exhibit dependencies on the orientations

Failure criteria:

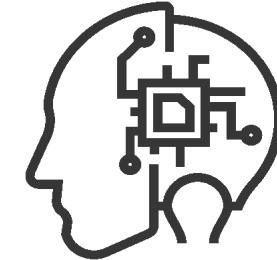
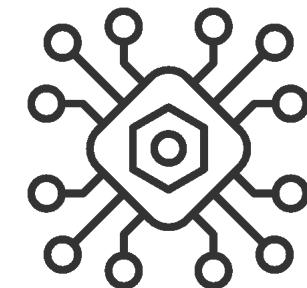
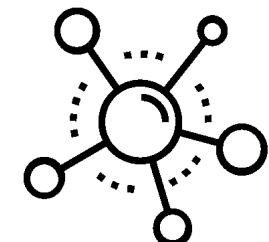
$$\sigma^* = \sigma_{mises} \left[\frac{2}{3} (1 + \nu) + 3(1 - 2\nu) \eta^2 \right]$$



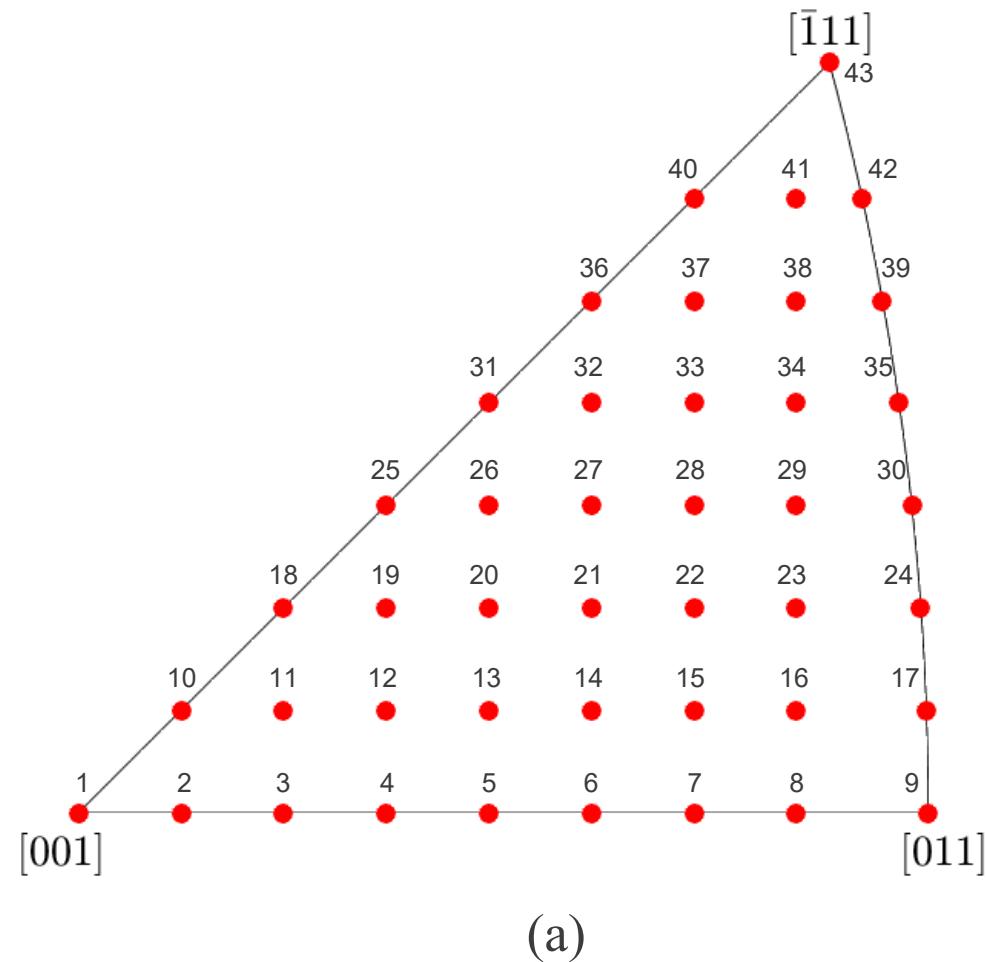
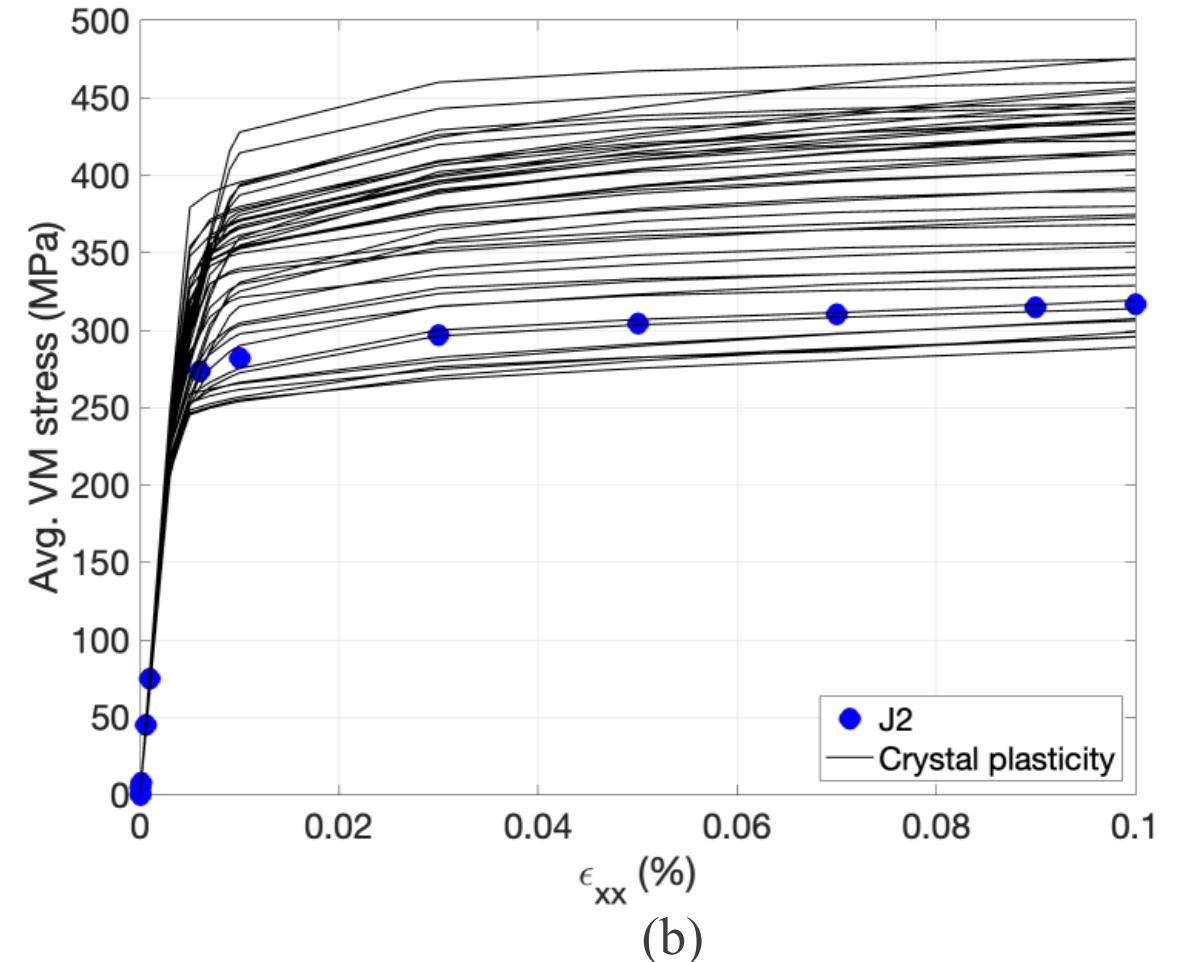
- Void simulations predict ductile failure of the matrix.
- Single crystals with hard inclusions predict matrix decohesion and particle cracking.
 - In both cases, [011] and [111] are anticipated to be the weakest crystallographic orientations compared to [001]

Conclusions

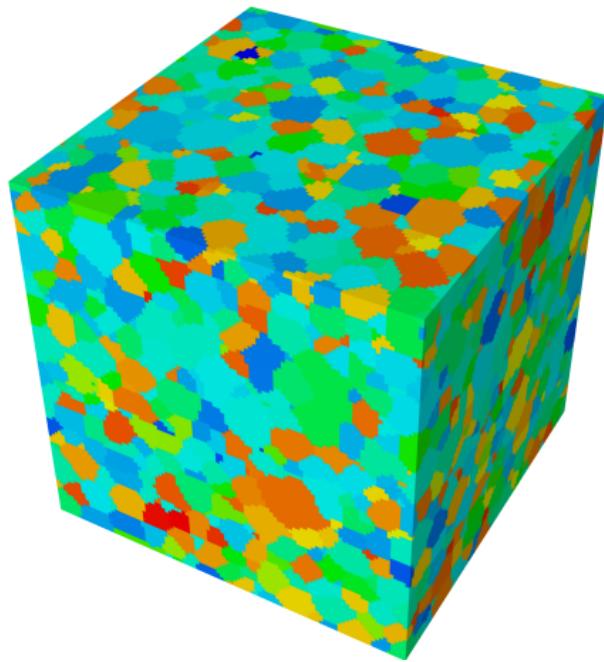
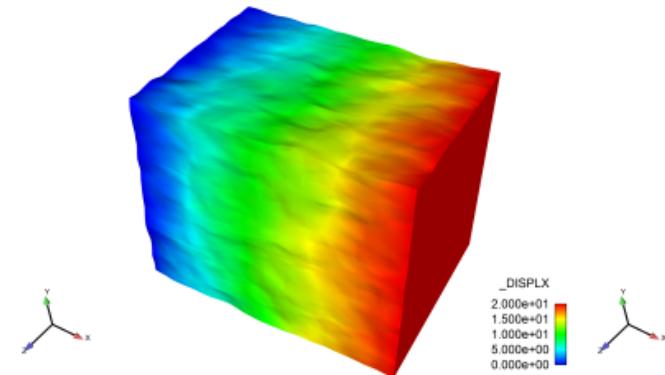
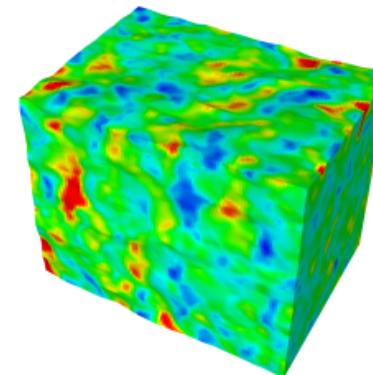
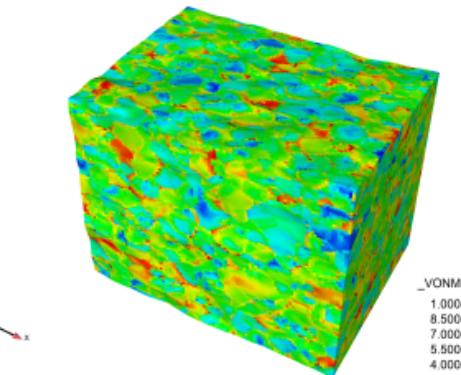
- CPFEM is a robust tool that enables us to obtain fundamental understanding of experimentally observed behavior.
- Data-driven representations allow for the identification of fingerprints that can be then used to build accurate models.
- The capability to perform UQ on obtained results allows one to identify areas in the input space worth exploring.



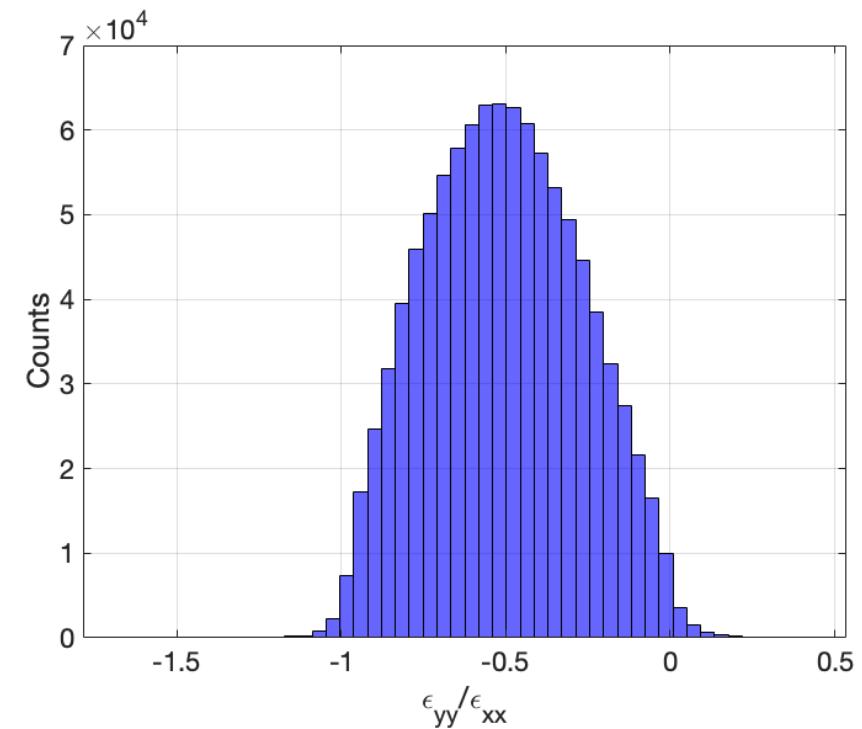
Appendix



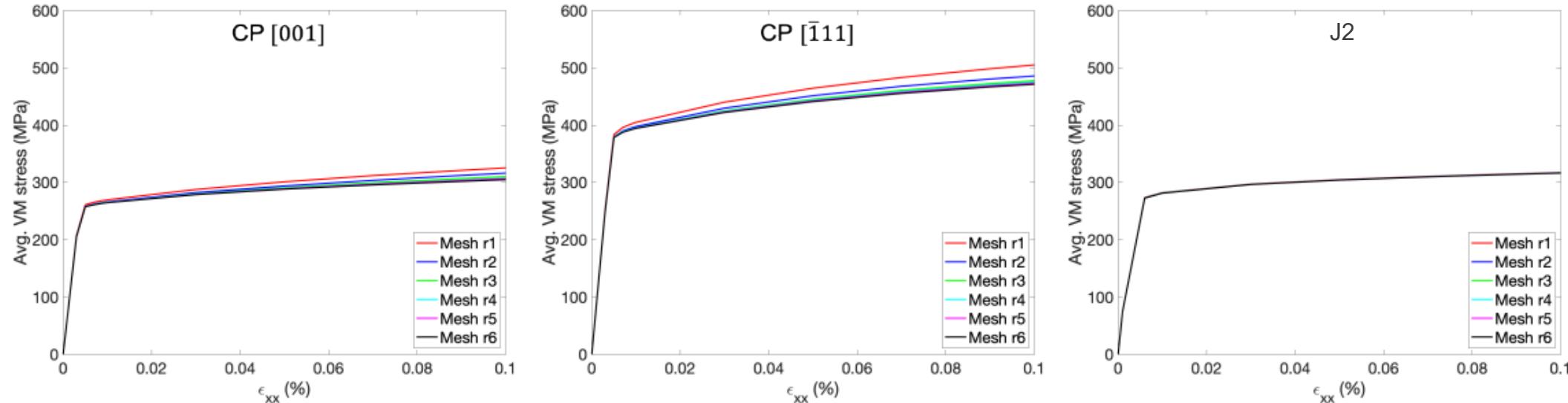
Check boundary conditions for polycrystalline deformation



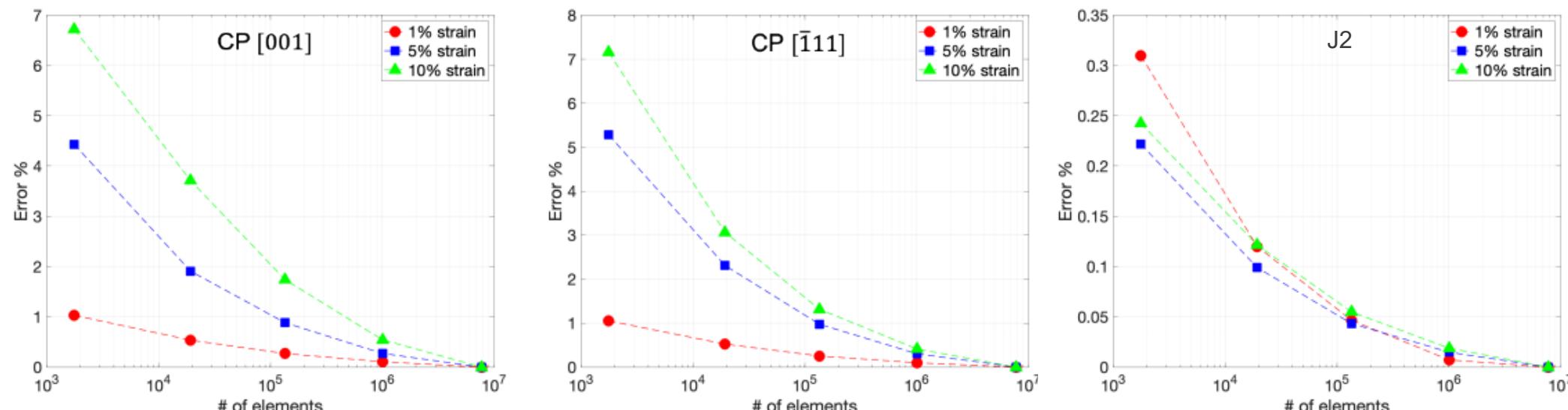
$$\varepsilon_{avg.} = \begin{bmatrix} 0.0953 & -0.0002 & -0.0002 \\ -0.0002 & -0.0486 & 0.0011 \\ -0.0002 & 0.0011 & -0.0447 \end{bmatrix}$$



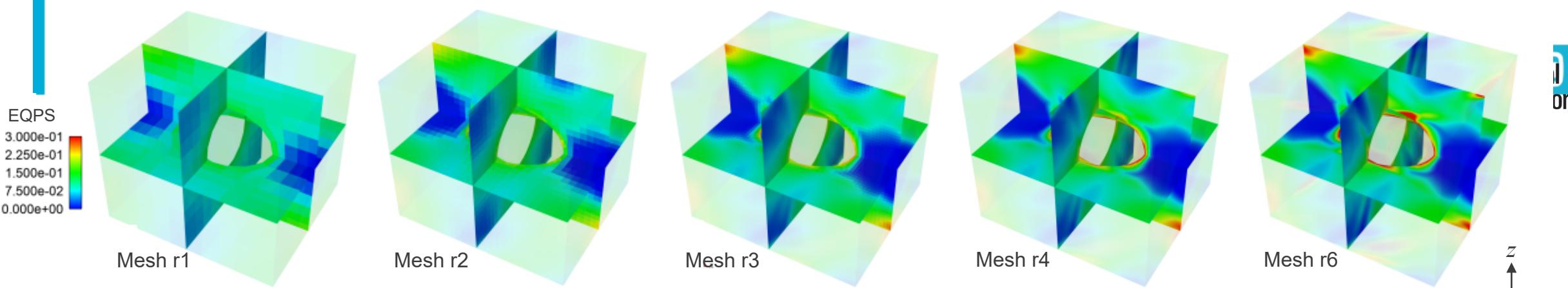
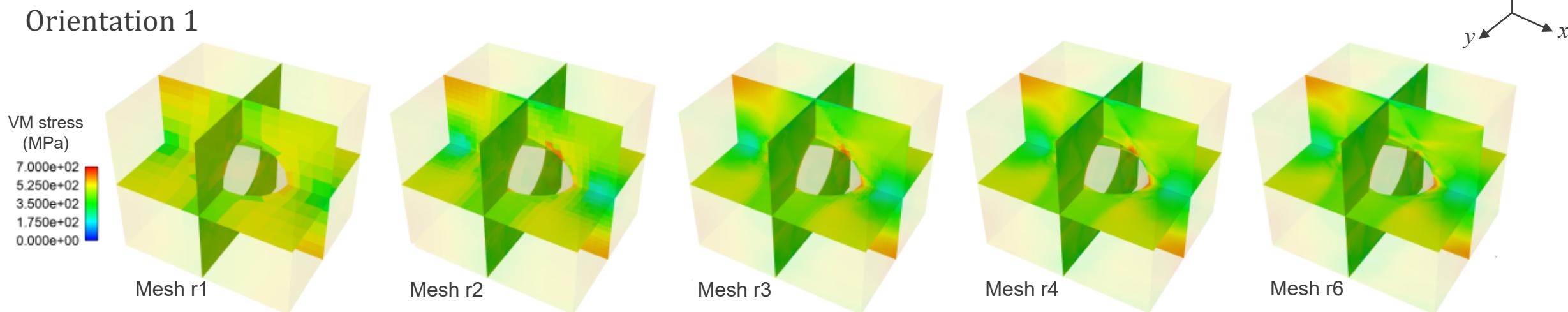
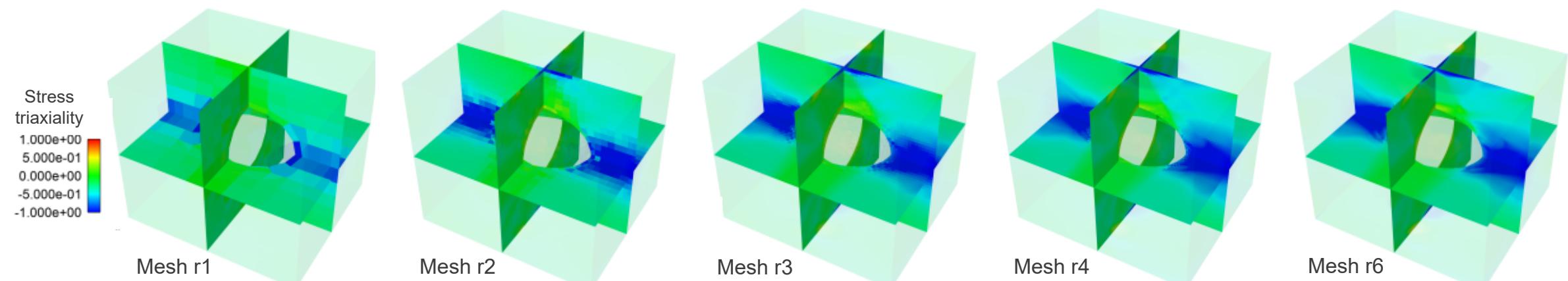
Mesh sensitivity



(a)



(b)



GP fundamentals

Let $\mathcal{D}_n = \{\mathbf{x}_i, y_i\}_{i=1}^n$ denote the set of observations and \mathbf{x} denote an arbitrary test points

$$\mu_n(\mathbf{x}) = \mu_0(\mathbf{x}) + \mathbf{k}(\mathbf{x})^T (\mathbf{K} + \sigma^2 \mathbf{I})^{-1} (\mathbf{y} - \mathbf{m}) \quad (1)$$

$$\sigma_n^2(\mathbf{x}) = \mathbf{k}(\mathbf{x}, \mathbf{x}) - \mathbf{k}(\mathbf{x})^T (\mathbf{K} + \sigma^2 \mathbf{I})^{-1} \mathbf{k}(\mathbf{x}) \quad (2)$$

where $\mathbf{k}(\mathbf{x})$ is a vector of covariance terms between \mathbf{x} and $\mathbf{x}_{1:n}$, \mathbf{K} is the *covariance matrix*.

GP fundamentals

- assuming **stationary** kernel $\rightarrow k(\mathbf{x}, \mathbf{x}')$ only depends on $r = \|\mathbf{x} - \mathbf{x}'\|$
- the covariance matrix: symmetric positive semidefinite matrix made up of **pairwise** inner products

$$\mathbf{K}_{ij} = k(\mathbf{x}_i, \mathbf{x}_j) = k(\mathbf{x}_j, \mathbf{x}_i) = \mathbf{K}_{ji} \quad (3)$$

- kernel choice: smoothness assumption, e.g. \mathcal{C}^∞

Matérn kernels:

$$\mathbf{K}_{i,j} = k(\mathbf{x}_i, \mathbf{x}_j) = \theta_0^2 \frac{2^{1-\nu}}{\Gamma(\nu)} (\sqrt{2\nu}r)^\nu K_\nu(\sqrt{2\nu}r), \quad (4)$$

K_ν is a modified Bessel function of the second kind and order ν .

Common kernels:

- $\nu = 1/2$ (very rough): $k_{\text{Matérn}1/2}(\mathbf{x}, \mathbf{x}') = \theta_0^2 \exp(-r)$
- $\nu = 3/2$: $k_{\text{Matérn}3/2}(\mathbf{x}, \mathbf{x}') = \theta_0^2 \exp(-\sqrt{3}r)(1 + \sqrt{3}r)$,
- $\nu = 5/2$: $k_{\text{Matérn}5/2}(\mathbf{x}, \mathbf{x}') = \theta_0^2 \exp(-\sqrt{5}r) \left(1 + \sqrt{5}r + \frac{5}{3}r^2\right)$,
- $\nu \rightarrow \infty$ (very smooth): $k_{\text{sq-exp}}(\mathbf{x}, \mathbf{x}') = \theta_0^2 \exp\left(-\frac{r^2}{2}\right)$

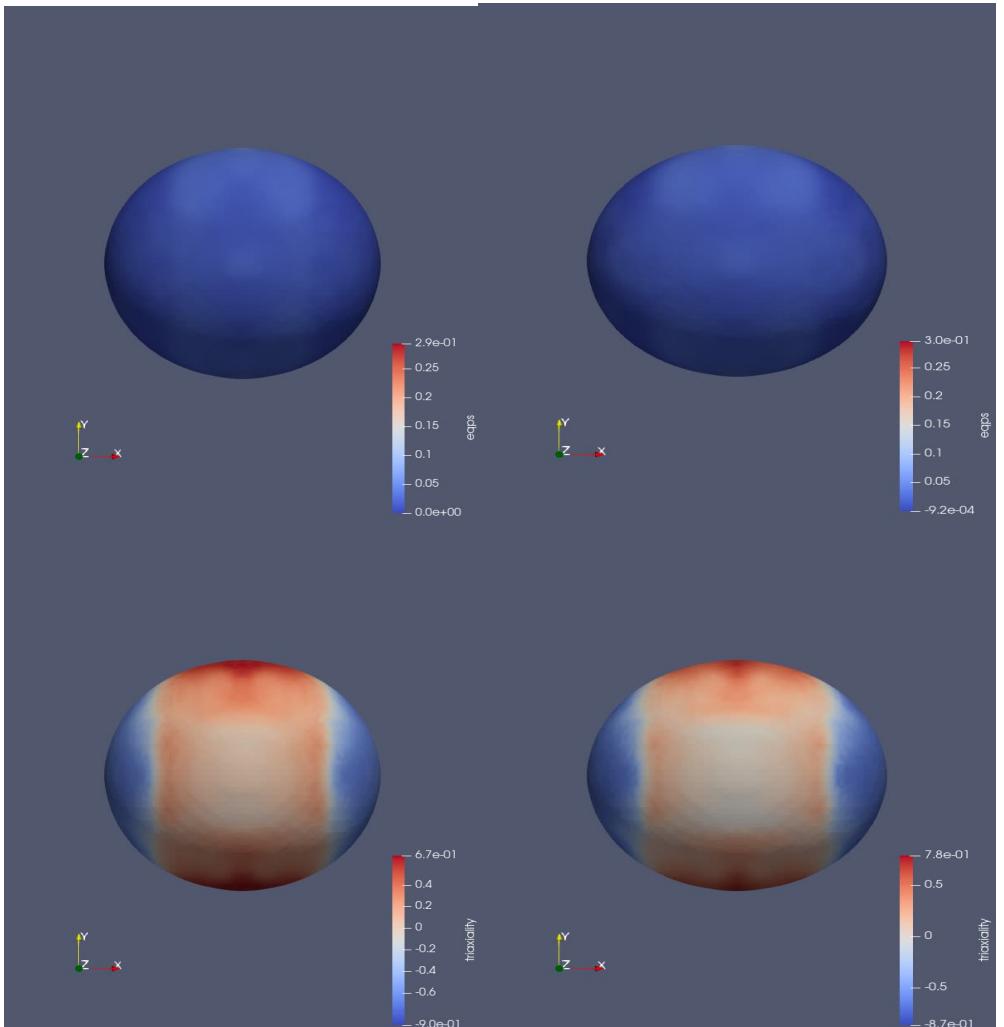
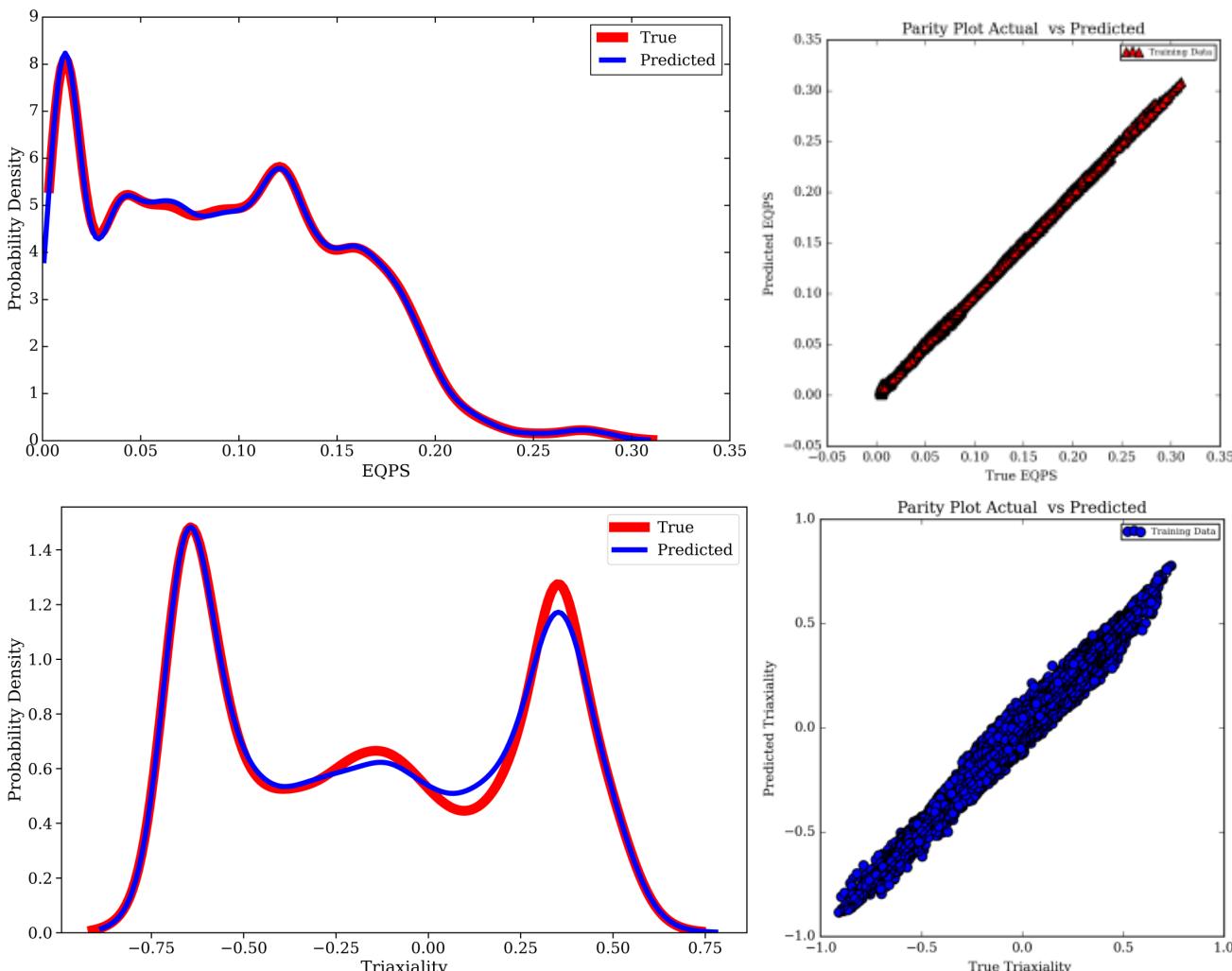
Log (marginal) likelihood function:

$$\log p(\mathbf{y}|\mathbf{x}_{1:n}, \theta) = - \underbrace{\frac{n}{2} \log (2\pi)}_{\text{data likelihood } \downarrow \text{ as } n \uparrow} - \underbrace{\frac{1}{2} \log |\mathbf{K}^\theta + \sigma^2 \mathbf{I}|}_{\substack{\text{"complexity" term} \\ \text{smoother covariance matrix}}} - \underbrace{\frac{1}{2} (\mathbf{y} - \mathbf{m}_\theta)^T (\mathbf{K}^\theta + \sigma^2 \mathbf{I})^{-1} (\mathbf{y} - \mathbf{m}_\theta)}_{\substack{\text{"data-fit" term} \\ \text{how well model fits data}}}$$

(5)

Results: Interpolating in Time

- Orientation 9:
 - Evolution EQPS (top) and triaxiality (bottom).
 - Comparing true (left) vs. predicted (right).



Results with 43 orientations.

$$f(\varphi_1, \phi_1, \phi_2, t) = \text{eqps, } \text{vm, } \text{triaxility}$$

Training on ~600 and testing on ~500

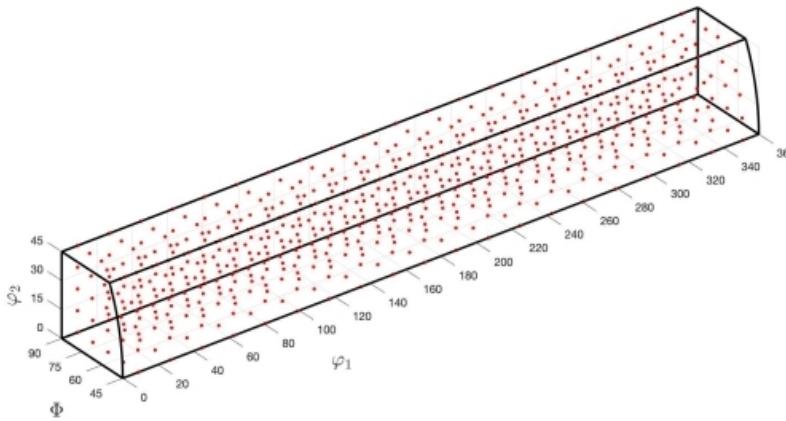
$$f(\phi_1, \phi_1, \phi_2, t) = \text{eqps, } \text{vm, } \text{triaxility} \text{ in training (results next week)}$$

$$f(GSH_2, GSH_3, GSH_4, t) = \text{eqps, } \text{vm, } \text{triaxility} \text{ (will start running now) plus to present}$$

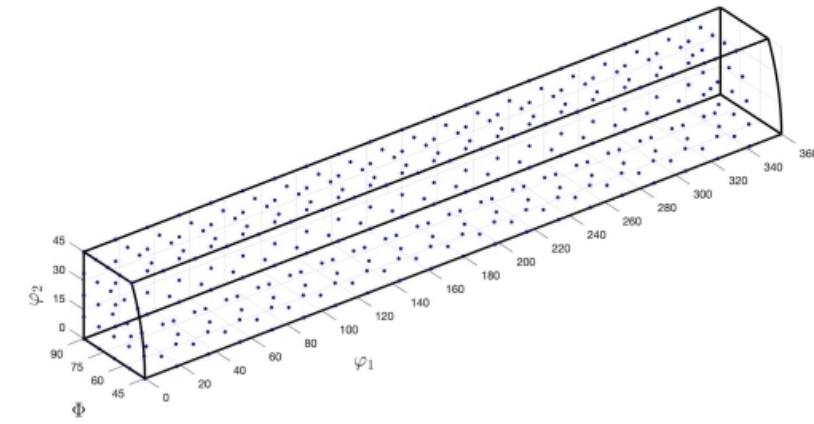
Generate 1000 new orientations (with their GSH)

Run them on the trained model and just identify the 95th percentile of most uncertain.

Expanding model to interpolate in texture space



- Sample the Fundamental Zone of Cubic Crystals with 1100 orientations.
 - 650 within the FZ
 - 450 at the Bounding Surfaces



Structure-Property Linkage: GPR Details

- Connect the GSH coefficients to the PC components for EQPS and Triaxiality using Gaussian Processes Regression (GPR).
 - 1100 orientations (10 snapshots between 0 and 10% deformation).
 - Normalize the output to [-1,1] in order to be able to better predict higher order PC Components.
 - We will fit an individual GP for each individual QoI (i.e., the PCA of EQPS and triaxiality)
 - A squared exponential kernel with constant noise was used for each GPR.

