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) 8B§1E&fying the effects of voids and particles in polycrystalline deformation using m

Aluminum (88.4%) Voids (0.4%)

496,077 elements
518,937 nodes
43 crystal
orientations

[001] (011] I



. | A spherical void in a single crystal cube - CP-FEM
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Relating Void Growth to Damage
CP [001] CP [011] CP [123] CP [111]
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* Experimental analysis showed that void growth was the ¢ Fields of EQPS and stress

Stress
triaxiality
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main failure mode under high stress triaxiality. triaxiality at 10% deformation.
* Under low stress triaxiality, the crack developed in the * Fields show great dependence
way of combined shear and void growth modes. on orientation.

* In negative stress triaxiality, the fracture was controlled
by shear only.




s | Full-field analysis is expensive and not scalable

* Full-field CPFEM analysis enabled us to draw some general
conclusions and validate the effect texture has.

* Nevertheless, these insights needed significant computational
expense, given that each simulation required ~10 hours with

I
o
~300 CPUs. x x
x l
|

* Therefore, there is a critical need for a more efficient linkage
between the structure and the property.
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Leverage data-driven approaches to establish an accurate model
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7 | Establishing a fingerprint of the data (Input)

Colors denote the crystal lattice orientation

b, # W ® GSH representation of 43 different
:' orientations

\ o Fourier series representation
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g I Establishing a fingerprint of the data (Output)
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® Represent the values of each variable of
interest (EQPS and Triaxiality) with 129

® Reconstruct the values using the fitted
PC transformation.

Cumulative Explained Variance

PC components.
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I
Establishing Structure-Property Linkage with GPR m

Connect the GSH coefficients to the PC components for EQPS and Triaxiality using Gaussian Processes
Regression (GPR).

* 43 orientations (6 snapshots between 0 and 10% deformation). |
GPR is non-parametric model building approach, which employs kernel-based interpolation on a training
dataset to make predictions for new (test) inputs.

A Gaussian Process is a distribution over functions that follows a multivariate Gaussian fully specified by

a mean function and a covariance function.

Sampling points (i.e., training data) within the specified domain constrains the distribution from which

the functions are drawn.

Sampling more points eventually enables us to learn the underlying function. |
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|
10 | Structure-Property Linkage: GPR Details m

* Connect the GSH coefficients to the PC components for EQPS and Triaxiality using ‘
Gaussian Processes Regression (GPR). I
\ 17 |

~ ’
* 43 orientations (6 snapshots between 0 and 10% deformation). — -
-’ ~
* Normalize the output to [-1,1] in order to be able to better predict higher order KC,
Components. |

* We will fit an individual GP for each individual Qol (i.e., the PCA of EQPS and triaxiality)

* Asquared ex tial kernel with constant noise was used for each Oj.
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11 I Results: Interpolating in Time
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12 I Results: Interpolating in Time and Texture
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Expanding model to interpolate in texture space
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1.0

— Standard Deviation Value

0.8F

* Use existing model to predict the
value of PC scores for the
unlabeled set.

* Quantify uncertainty using
average standard deviation across
PC scores.

|
1+ | Identify most uncertain points using GPR-based model m
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Future Work: Incorporating Efficient Model Building to more complex
models

* A coupled crystal plasticity (CP) and phase-field fracture ~ * Incorporating a failure criteria into CP simulations.

(PFF) model, solved within FEM MOOSE framework
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* Void simulations predict ductile failure of the matrix.
[45°,45°,0°] * Single crystals with hard inclusions predict matrix

decohesion and particle cracking.
* Inboth cases, [011] and [111] are anticipated to be

the weakest crystallographic orientations compared to

| aVWaY B |
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* Fracture propagation also exhibit dependencies on
the orientations



7 1 Conclusions

e CPFEM is arobust tool that enables us to obtain
fundamental understanding of experimentally
observed behavior.

* Data-driven representations allow for the
identification of fingerprints that can be then used to
build accurate models.

* The capability to perform UQ on obtained results
allows one to identify areas in the input space worth
exploring.
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| Check boundary conditions for polycrystalline deformation @ lﬁ:ab '
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Mesh sensitivity
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.3 | GP fundamentals

Let D, = {xi, yi}i—; denote the set of observations and x denote an
arbitrary test points

pn(x) = po(x) + k(x)" (K + 1) (y — m) (1)
o2(x) = k(x,x) — k(x)" (K + o) " k(x) (2)

where k(x) is a vector of covariance terms between x and xi.,, K is the
covariance matrix.




aat

aboratories

GP fundamentals @

m assuming stationary kernel — k(x,x’) only depends on r = ||x — x|

m the covariance matrix: symmetric positive semidefinite matrix made
up of pairwise inner products
Ky = k(xi, %) = k(xj, %) = Kj (3)
m kernel choice: smoothness assumption, e.g. C™
Matérn kernels:
21 v
K j = k(xj, %) = 65— ) (V2vr)” K, (v2vr), (4)

K. is a modified Bessel fuction of the second kind and order v.
Common kernels:
m v =1/2 (very rough): kvatemi/2(x,x") = 05 exp (—r)
m v =3/2: kyatema/2(x, ") = 65 exp (—v/3r)(1 + V/3r),

m U= 5/2 kMatérn5/2(x7 X’) = 9(2) exp (—\/gr) (]_ + \/gr + %rz

2

m v — 0o (very smooth): ksgexp(X,X') = 65 exp (—7)

SN—
B 00

Log (marginal) likelihood function: I
n 1 1 _ |
log p(ylxn, 0) = —  Jlog(2m)  — log|K® + "Il — “(y —mg) " (K® + ") (y — my)
\ / \ -~ J \ -~ 7
data likelihood | as n?t “complexity” term “data-fit" term
smoother covariance matrix how well model fits data
(5) L
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25 | Results: Interpolating in Time Yz
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26

Results with 43 orientations.

f(@l,phi,phi2, t) = eqps, vm, triaxility

Training on ~600 and testing on ~500
f (phil, phi,phi2,t) = eqps, vm, triaxility in training (results next week)

f(GSH_2,GSH_3,GSH_4,t) = eqps, vm, triaxility (will start running now) plus to present

Generate 1000 new orientations (with their GSH)
Run them on the trained model and just identify the 95 percentile of most uncertain.




' Expanding model to interpolate in texture space

e Sample the Fundamental
Zone of Cubic Crystals with
1100 orientations.

* 650 within the FZ
e 450 at the Bounding
Surfaces




|
2s | Structure-Property Linkage: GPR Details m

* Connect the GSH coefficients to the PC components for EQPS and Triaxiality using ‘
Gaussian Processes Regression (GPR). I
\ 17 |

~ ’
* 1100 orientations (10 snapshots between 0 and 10% deformation). — —
-’ ~
* Normalize the output to [-1,1] in order to be able to better predict higher order KC,
Components. |

* We will fit an individual GP for each individual Qol (i.e., the PCA of EQPS and triaxiality)

* Asquared ex tial kernel with constant noise was used for each Oj.
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