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Background KU

* The choice of a particular waveform is a crucial decision that bears on the
performance of a radar system.

* In contrast to using a single, non-repeating waveform for a given application, one can
leverage nonrepeating waveforms to realize the benefits of high dimensionality [1].

* The class of spectrally-shaped random FM (RFM) waveforms are particularly well
suited for providing low range sidelobes while limiting transmitter distortion effects.

[1] S.D. Blunt, J.K. Jakabosky, C.A. Mohr, P.M. McCormick, et al, “Principles & applications of random FM radar
a waveform design,” IEEE Aerospace & Electronic Systems Magazine, vol. 35, no. 10, pp. 20-28, Oct. 2020.
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Background KU

* The choice of a particular waveform is a crucial decision that bears on the
performance of a radar system.

* In contrast to using a single, non-repeating waveform for a given application, one can
leverage nonrepeating waveforms to realize the benefits of high dimensionality [1].

* The class of spectrally-shaped random FM (RFM) waveforms are particularly well
suited for providing low range sidelobes while limiting transmitter distortion effects.

* Different methods of RFM have enabled physical realizations of:
— complementary waveforms
— intermodulation-based nonlinear radar
— cognitive sense-and-notch, and more.

[1] S.D. Blunt, J.K. Jakabosky, C.A. Mohr, P.M. McCormick, et al, “Principles & applications of random FM radar
a waveform design,” IEEE Aerospace & Electronic Systems Magazine, vol. 35, no. 10, pp. 20-28, Oct. 2020.
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Problem Motivation KU

* Most RFM approaches require optimization on per-waveform basis => may be
prohibitive computationally for some applications

* Anotable exception is Constant Envelope OFDM (CE-OFDM), which is effectively
yields an optimization-free form of spectrally-shaped RFM for random symbols [2-5].

* However, CE-OFDM for radar has previously only been realized in a pulsed context.
Some structural changes are necessary to achieve a (nonrepeating) FMCW form.

[2] S.C. Thompson, J.P. Stralka, "Constant envelope OFDM for power-efficient radar and data communications,” Intl. Waveform
Diversity & Design Conf., Kissimmee, FL, Feb. 2009.

[3] S. Liu, Z. Huang, W. Zhang, "A power-efficient radar waveform compatible with communication,” Intl. Conf. Communications
Circuits & Systems, Chengdu, China, Nov. 2013.

[4] Q. Zhang, et al., "Waveform design for a dual-function radar-communication system based on CE-OFDM-PM signal,” IET Radar
Sonar & Navigation, vol. 13, no. 4, pp. 566-572, Apr. 2019

[5] E.R. Biehl, C.A. Mohr, B. Ravenscroft, S.D. Blunt, “Assessment of constant envelope OFDM as a class of random FM radar
waveforms”, IEEE Radar Conf., Florence, Italy, Sept. 2020.
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OFDM Structure

* The well-known OFDM signal structure can be defined as:
N
u() = ) fuexp(j2nfyt)
n=1

for symbol interval T, where f3,, is the communications symbol associated with
subcarrier frequency f,

* While well-suited for communications, the significant amplitude modulation of
OFDM limits utility in a radar context

— Use of high-power amplifier on transmit to maximize “energy on target” produces severe

Ainbawti~aa T

[6] J. Jakabosky, L. Ryan, S.D. Blunt, “Transmitter-in-the-loop optimization of distorted OFDM radar

emissions,” IEEE Radar Conf., Ottawa, Canada, Apr./May 2013.
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CE-OFDM Structure KU

* CE-OFDM provides an FM implementation by exponentiating the real part via

s(t) exp(j2mh R{u(t)})

N
exp jZTThZ |8 | cos@2rf,t + ¢,,)
n=1

where /1 is the modulation index that scales FM spectral content, and |f,,| and ¢,, are
the magnitude and phase of the nth symbol.

* Being constant amplitude and continuous phase, this waveform can be generated
using a high-power transmitter.

— In short, CE-OFDM can readily produce physically viable pulsed radar waveforms when
symbol interval = pulse width
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Implications of Periodicity KU

 Since subcarrier frequencies in CE-OFDM (and OFDM) are separated by 1/T, both are
defined on intervals of T.

— Would repeat on multiples of T if the symbols are unchanged.

* The obvious approach to realize a nonrepeating signal in the CE-OFDM context is to
change the symbols for each T interval.

* However, doing so introduces phase discontinuities at each symbol transition (every
T interval), causing spectral spreading and distortion.
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Implications of Periodicity w

 Since subcarrier frequencies in CE-OFDM (and OFDM) are separated by 1/T, both are
defined on intervals of T.

— Would repeat on multiples of T if the symbols are unchanged.

* The obvious approach to realize a nonrepeating signal in the CE-OFDM context is to
change the symbols for each T interval.

* However, doing so introduces phase discontinuities at each symbol transition (every
T interval), causing spectral spreading and distortion.

* Thus, our goal is to remove periodicity from the CE-OFDM structure.
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Addressing Periodicity KU

1
* Consider the subcarrier frequencies of CE-OFDM: f, = f,, -1 + T

* C(learly, they are integer multiples of 1/T.

 Itis well-known that the period of the sum of periodic functions is equal to the least
common multiple (LCM) of the individual periods.

* In general, if a(t) and b(t) are periodic functions, then:
— a(t) = a(t+kT,)
— b(t) = b(t+1T))

where k, [ are integers

Thus, c(t) = a(t) +b(t) = c(t + mT ) is likewise periodic for T, =kT,=1T,
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Addressing Periodicity KU

Consequently, f,=1/T,and f, = 1/T,, with fcy = 1/Ticm

Each of these frequencies will have a ratio that is rational, such as:

fo Kk o
— — (Note: this is still CE-OFDM)

fo 1
This relationship ensures the LCM exists and that the period of the sum is likewise
periodic with a finite period.
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Addressing Periodicity KU

* Consequently, f,=1/T, and f,=1/T, with fcy =1/Tcum

* Each of these frequencies will have a ratio that is rational, such as:

fo Kk o
— — (Note: this is still CE-OFDM)

fo 1
* This relationship ensures the LCM exists and that the period of the sum is likewise
periodic with a finite period.

« HOWEVER, if the ratio between each pair of subcarriers is made to be irrational,
then T} -\, = e (i.e. no periodicity)
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Non-Integer Constant-Envelope (NICE) OFDM KU

* Now let subcarriers be selected as f, = f-1 + (1 + ay,)/T
« Here a,, is a unique, irrational, real number with |a,| < 1

* The resulting ratio between subcarriers pairs is also irrational as

fo _foatQita)yr 1 a,

_|_
fﬂ—l f.lt—l fﬂ—lT fﬂ—lT
* The ensuing NICE-OFDM signal never repeats.

* Moreover, the waveform can be fully characterized by the (N-1) subcarrier spacings!
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NICE-OFDM Construction K[ |

* Like CE-OFDM, we can express NICE-OFDM using the Jacobi-Anger expansion [2-5]

s(1) = ﬁ i d, . exp(j2zmf,t) rect(t _]]:CE /ZJ

n=1 m=—o0 CE
for coefficients

d, = J", (27|,

n’

)exp(jmd, )

* HereJ (*) is the mth Bessel function of the first kind. The Fourier transform of each
weighted sum becomes a weighted sum of sinc(®) functions in frequency.

* The N-fold product then becomes a repeated convolution in frequency, so the overall
result tends toward a Gaussian spectral density via the central limit theorem for
sufficient N and h.
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NICE-OFDM Practical Construction KU

* The smallest subcarrier frequency should be enforced to be greater than the segment
processing period.

— Otherwise, a drift in apparent center frequency arises that can exacerbate clutter modulation effects.

* The factor h should be sufficiently modest so that the exponentiated combination of
subcarriers does not produce an instantaneous frequency that is too large.

— Could introduce distortion based on discretized implementation in hardware

* Finally, while theoretically nonrepeating (based on LCM), relatively high sidelobes
could occur.

— But with sufficient N the severity and likelihood decrease exponentially
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Hardware Loopback Capture KU

* Two 100 ms wavetorms (one CE-OFDM, one NICE-OFDM) were generated for
50 MHz bandwidth, oversampled by 4 (so f, =200 MHz). Each waveform was

constructed from N =200 subcarriers using symbols randomly drawn from a
16-QAM constellation.

* CE-OFDM subcarrier spacing was set to 10 kHz, resulting in a repetition
period of T~z = 100 us, consequently repeating 1,000 times over the 100ms.

* The 199 values of a, for NICE-OFDM were drawn from a uniform distribution
on + 1 kHz. The subcarriers were set to values between a minimum and
maximum of 10 kHz and 2 MHz respectively.
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Hardware Loopback Results KU

Autocorrelation of each waveform

100ms “fixed symbols” CE-OFDM (zoomed-in view) 100ms NICE-OFDM waveform (zoomed-out view)
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Hardware Loopback Results KU

Autocorrelation of each waveform

100ms “fixed symbols” CE-OFDM (zoomed-in view)
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Hardware Loopback Results

Autocorrelation of each waveform

100ms “fixed symbols” CE-OFDM (zoomed-in view)
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Hardware Loopback Results KU

Autocorrelation of each waveform

100ms “variable symbols” CE-OFDM (zoomed-out view) 100ms NICE-OFDM waveform (zoomed-out view)
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Hardware Loopback Results

* Now consider segment-wise
combining akin to slow-time
processing

* RMS average of autocorrelation and
pairwise cross-correlation for 1000
segments of T, =100 us each

 Peak autocorrelation sidelobe: -39 dB
* Cross-correlation peak: —42 dB 80

2SL

RMS per-segment performance for 100ms NICE-OFDM
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Open Air Capture KU

Free-space measurements taken from rooftop of Moving vehicles traverse the intersection of 234 and
Nichols Hall at the University of Kansas lowa streets. Trees and buildings also in view.
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Two cases collected back-to-back (consistent set of movers for comparison):
* 100 ms (10% segments) of NICE-OFDM
* 100 ms (104 segments) of “variable symbols” CE-OFDM
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Open Air Test Results KU

* Open-air measurements performed at 3.45 GHz with 50 MHz bandwidth for 100ms

— Note: simultaneous transmit/receive

* CW signals separated into 10* segments of 10us each to perform pulse compression

* Doppler processing performed using every 100" segment in “quasi-pulsed” manner
(emulates PRF of 1kHz and 100 pulses), with resulting 100 complex range/Doppler
responses then combined via averaging.

* To address direct path leakage, a version of CLEAN accounting for range straddling
was applied. Simple projection-based clutter cancellation was performed (since
platform is stationary).
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ir Range-Doppler Responses
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Assessing Iransmitter Distortion KU

* Consider the I/Q samples of each loopback-

captured waveform | — [ m——

. . . 0.2 ~ A |——cE-OFDM [
— Would ideally conform to the unit phase circle i . —  NICE.OFDM
* “variable symbols” CE-OFDM exhibits abrupt Mg
phase changes that traverse thru the middle 2005
(i.e. more severe distortion) S oF
=005
 NICE-OFDM deviation from ideal is more modest, ;4L
and could be reduced further via higher AWG a5k
“over-sampling” for spectral roll-off |
— Here only 4x the 3-dB bandwidth due to hardware limit el I A Y Y R

02 015 01 005 0 005 01 015 0.2
Real
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Conclusions KL J

* Nonrepeating nature of NICE-OFDM can provide a computationally-light,
compact representation of a random FMCW signal.

* Still maintains desirable spectral characteristics and low range sidelobes.

* (Given sufficient transmit/receive isolation) Compared to pulsed operation
this nonrepeating CW structure provides:

— Lower peak transmit power (for same “energy on target”) to lessen induced interference
when spectrum sharing

— Higher dimensionality for better separability from received interference
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