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PACI:
Performance Assessment for
Climate Intervention

Tailoring Performance Assessment to Climate Intervention
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The assessment space of impacts across the Earth system is large. Our approach is to
identify assessment targets based on current ESM outputs and leverage existing
metrics for climate change risk assessments and analyses of SAl simulations.

Features

- The Performance Assessment (PA) methodology Heavy Precipitation

(Meacham et al., 2011) can be applied to Climate
Intervention to address four primary questions:

* Q1: What processes and events that might affect
the Earth system could occur in the atmosphere
through 21007
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to assess using IPCC Climate Risk Matrix

Natural Interruption - Interference from large volcanic eruption (e.g., Mount Pinatubo eruption).

Assessing Regional Responses to SAl

We demonstrate an example assessment, defining the performance goal as well as those for Performance Goal(s)
evaluating the scenario against the performance goal, using the Geoengineering Large CDF for years: 202001-202912 Temperature u+ 1o
Ensemble (GLENS) (Tilmes et al., 2018) model archive and building on the Ferraro et al. (2014) Eq.1: PG =p+1o koot
methodology. Ferraro et al. (2014) developed a probabilistic method for assessing whether the Eq.2: Egyy = Ton — Tog S R SR 087 Max Temperature p—1lo
risk of SAl increases or decreases relative to the risk of climate change. We expand on this by fa 3 E _ 7 7 Monthly Mean u+1o
assessing model output metrics beyond mean temperature and mean precipitation, calculating A3 Fcontrol = control T TPG . Precipitation Rate 14— 050
the risk at monthly timescales rather than annual, developing a range of performance goals Eq. 4: Risk Ratio = Psar > 0 . | | '
that include both upper and lower thresholds, and including uncertainty in assessing the risk Pcontrot > 0 0g ] RISl Ratio =065 Maximum Precipitation utlo
across multiple ensemble members. Rate u—0.50
The performance goal (PG; i.e., threshold, regulation) is defined as p plus 1o (eq. 1). We use the interannual monthly mean 0.21 Meteorological Drought u+0.5
from 2010-2019, pre-SAl deployment to calculate p and o. Next, the exceedance (E) is calculated by subtracting the PG from | W (SPI, 24 months, gamma) _05
both the control (RCP8.5) and SAl scenarios (eq. 2 and 3). From the CDF of exceedance values for the period of assessment 00 /= , | | | sl
(2020-2030 or 2020-2099), find p at zero for SAl and the control (eq. 4). e 0 Soil Moisture (10 cm) u—0.50

. . | Solar Flux at the Surface u—0.50

Risk Ratio [ens no =1, 2, 3, 21] | Surface Runoff P
Maximum Monthly Surface Meteorological Drought (SPI, 24 months,
Temperature gamma distribution) Soil Moisture (10 cm)

For each metric, the reference period used to define
the performance goal is 2015, and u and o are
calculated from the years 2010-20109.
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< » Risk Ratio > 1.0 means that the control
I scenario performs better against the
5 performance goal

> » Risk Ratio < 1.0 means that the SAI

o scenario performs better against the
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0.0

performance goal

Key Take Aways

y » The Risk Ratios assessed here do not
clearly identify either the control or SAI
scenario as performing better for one

- 2.5

region or another.

« There are clear trade offs, in particular

between the performance goals which

» are either precipitation or
temperature-based.
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