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. | physics systems and applications ripe for data-driven
approaches.
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physics systems and applications ripe for data-driven
approaches.

Segmentation convolutional neural network enabled reproducible and automated workflows
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physics systems and applications ripe for data-driven
approaches.

Segmentation convolutional neural network enabled reproducible and automated workflows
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Apart from being a shameless plug, this
effort enabled the results I'm presenting
today.

W.E. Lewis et al., J. Plasmas Phys. 88, 895880501 (2022).




., | can contribute to understanding performance and
reproducibility.
*Magnetized Liner Inertial Fusion (MagLIF) stagnation images show significant variance arising from

o variation in a large number of experimental input conditions
o different spherical crystal x-ray imager configurations

22839 22979 z3018 23303 22965 22966 23019 z3075  z3135

*Need meaningful metrics to build understanding

o sensitivities to realities of experiment

- (e.g. signal-to-noise, registration, imager configuration)
> physics basis i.e. interpretable and/or statistically insightful




, | can contribute to understanding performance and

reproducibility.

/-This talk:

> Combine ideas of data-augmentation and
experimental data to understand sensitivities
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, | can contribute to understanding performance and
reproducibility.
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‘Sandia’s Z Pulsed Power Facility

The Earth’s largest pulsed power
machine




‘Sandia’s Z Pulsed Power Facili
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Z Machine

Pulsed Power
Development
Area

Capabilities

» >20 MA peak current
> 4kJ,1TW laser
» kJ’s warm x-rays
» kJ’s fusion yield

» Mbar’s planar drive
» >2MJ’s soft x-rays.



, | fielded on Z relies on three stages to reach fusion relevant
conditions.

Z Machine R,

T

Be liner imploded by ~20 MA
provided by Z
\ R
6-8 mm

Gaseous
DD fuel
0.7 mg/

meree ~100ns 4

Apply Axial Magnetic Field Preheat Implosion
Stagnation

S.A. Slutz et. al., Phys. Plasmas 17, 056303 (2010).
M.R. Gomez et al. Phys. Rev. Lett. 113, 155003 (2014).
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s | load

without B, with B,

random helical

_/ Premagnetize fuel ' b Rovang et al., Rev. Sci. Instrum. 85, 124701 (2014).
« embed 7-20 T in ~ms timescale

* reduce radial thermal conduction
« compress + traps fusion products
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Preheat the fuel

« Z-Beamlet laser delivers
~2-3 kJ to the Z chamber.

« Laser heats fuel through
Inverse Bremsstrahlung
(~100-200 eV, 1-2 kJ)

e Laser preheat sets the

. adiabat of the implosion. ,f"J

M. R. Weis, et al., Phys. Plasmas 28, 012705 (2021).

A. J. Harvey-Thompson, et al., Phys. Plasmas 27, 113301 (2020).
A. J. Harvey-Thompson, et al., Phys. Plasmas 26, 032707 (2019).
A. J. Harvey-Thompson, et al., Phys. Plasmas 25, 112705 (2018).
M. Geissel, et al., Phys. Plasmas 25, 022706 (2018).

A. J. Harvey-Thompson, et al., Phys. Rev. E 94, 051201 (2016).
A. J. Harvey-Thompson, et al., Phys. Plasmas 22, 122708 (2015).




magnetic pressure driving the liner to implode compressing
the fuel

3 r
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Compress liner and fuel

* Lorentz force accelerated the
liner.
* Fuel is then quasi-adiabatically
compressed.
* Liner implosion leads to flux _
L compression, amplifying B-field/ R. McBride et al., Phys. Plasmas 23, 012705 (2016).

3D implosion movie courtesy of C. Jennings.



» |When thermal pressure exceeds magnetic pressure, the liner |
decelerates resulting in stagnation

Plasma parameter Shot 23289 ‘
Romax 70 km/s
Roum 50 um I
6-8 mm
Toum 2.7 keV i
Pbum 1.9 Gbar
BR 0.2-0.5 MG-cm
Thw 2ns ‘
Stagnation
Y (DT equivalent) 2 kJ
I
i

S.A. Slutz et. al., Phys. Plasmas 17, 056303 (2010).
M.R. Gomez et al. Phys. Rev. Lett. 113, 155003 (2014).



MagLlIF offers a rich physics platform with paths to high yield at a next
generation pulsed power (NGPP) facility.
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*Physics:
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D.E. Ruiz et. al., (Submitted) Phys. Plasmas.

*S. Atzeni and J. Meyer-ter Vehn, The Physics of Inertial Fusion, (Oxford University Press Inc., New York, 2009).
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we understand and characterize the physics of MagLIF on Z

today.

Experimental input conditions

ﬁreheat energy deposited ~0.7 — 1.4 kJ
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A.J. Harvey-Thompson et al. Phys. Plasmas 25, 112705 (2018).
D.A. Yager-Elorriaga et al. Nucl. Fusion 62, 042015 (2022).
W.E. Lewis et al. Phys. Plasmas (Submitted).
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+ | Data-driven methods paired with physics insight, theory, and

simulation are playing a key role in this effort.

Statistics, ML/DL,
expert knowledge
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W.E. Lewis et al., J. Plasmas Phys. 88, 895880501
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s | difficult.
Challenge Recorded Image Shifted Image Cleaned Image  Final Image

«Image metrics may vary between practitioners and studies

> Need a framework to asses how sensitive metrics are to previous

> Need statist;galllarqer scale st

factors

([:}]

() 16 MA-CR 32

udies to underg*~= mnlnrimnan da mheining

Scattering
Coefhicients

¥ v
! y qi
i s = [3]
ir Synthetic r .
g .Jll Image )
E ; 4 P
c IF — -“5 1 K
% 1| ) -\l' f;‘ -
: i b
t'_: |I. t‘ |
< il {0:} —»
f bz B
— v B &
i v - i
D Ba
05 0% -05 05 0 40 BO 120 180 -
Radial position (mmj) Radius [rm) Linear Regression

w0 (D0h » e B0 e h

M.R. Gomez et al., Phys. Rev. Lett. 125, 155002 (2020).
M.E. Glinsky et al., Phys. Plasmas 27, 112703 (2020).

P.F. Knapp et al., Phys. Plasmas 29, 052711 (2022).

D.J. Ampleford, D.A. Yager-Elorriaga et al. (In Preparation).
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«Image metrics may vary between practitioners and studies

> Need a framework to asses how sensitive metrics are to previous

factors

> Need statist;galllarqer scale st
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M.R. Gomez et al., Phys. Rev. Lett. 125
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, 155002 (2020).

udies to understand relevance to physics

M.E. Glinsky et al., Phys. Plasmas 27, 112703 (2020).
P.F. Knapp et al., Phys. Plasmas 29, 052711 (2022).

D.J. Ampleford, D.A. Yager-Elorriaga et al. (In Preparation).
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« | which provides a space-scale representation amenable for image-to-
image comparison.

*Band pass filtering (first order) and “cross-scale correlation” (second order)

»Scales are reasonably matched to experiment
»Stable to small deformations
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” ‘ which provides a space-scale representation amenable for image-to-

image comparison.

*Band pass filtering (first order) and “cross-scale correlation” (second order)
»Scales are reasonably matched to experiment
- Stable to small deformations
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which provides a space-scale representation amenable for image-to-
image comparison.

*Band pass filtering (first order) and “cross-scale correlation” (second order)

»Scales are reasonably matched to experiment

«Stable to small deformations

. (=% +3%)
sin (k}.}r+ —sin (a:rt))g 20°
g T 1 4 g n
j:}= =K, =—=d=- —_—
4 15 E




S s e N
which provides a space-scale representation amenable for image-to-
image comparison.
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. | "Model-free” data augmentation can leverage known sources of
variance to help understand sensitivities and engineer metrics

Sensitivity to resolution via PSFs and high-resolution imager data

Sensitivity to texture/SNR via multiple scans

Scan1 Scan 3

signal (Arb. U.)

radial position (Arb. U.)

Invited paper ICDDPS-4 W.E. Lewis et al., (In Preparation).



. | “Model-free” data augmentation can leverage known sources of
variance to help understand sensitivities and engineer metrics

Sensitivity to texture/SNR via multiple scans

Scan1 Scan 3

_____________________________ Noise filtering can remove unwanted sensitivity to SNR

radial position (Arb. U.)

Invited paper ICDDPS-4 W.E. Lewis et al., (In Preparation).
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“Model-free” data augmentation can leverage known sources of

variance to help understand sensitivities and engineer metrics

Sensitivity to resolution via PSFs and high-resolution imager data Imager Configuration Resolution [m”)
High Resolution Continuum X-ray {(3)(1) single 15 = 16
Dual Continuus n X-ray (DCXI} dual Chl 54 = 120 Ch2 46 = 84
N N 175
L -~ :
[} 1.50 Note: Diagonal
' compares image to
-.! 4 25 itself
' —
N
Q
oo &
4 =N A A 3 _ cimi
! & = similar
0.7
| ;o 0753
"B .- 0.50 . = different
L i L
] 0.25

Nearest-neighbor identity unchanged

Invited paper ICDDPS-4 W.E. Lewis et al., (In Preparation).
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«Image metrics may vary between practitioners and studies

> Need a framework to asses how sensitive metrics are to previous

factors

> Need statisti1(n:aI/Iarqer scale st
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M.R. Gomez et al., Phys. Rev. Lett. 125
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, 155002 (2020).

udies to understand relevance to physics

M.E. Glinsky et al., Phys. Plasmas 27, 112703 (2020).
P.F. Knapp et al., Phys. Plasmas 29, 052711 (2022).

D.J. Ampleford, D.A. Yager-Elorriaga et al. (In Preparation).
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» |Stagnation morphology appears to be an important piece of
the puzzle of understanding performance and reproducibility

«Can we characterize relation to variance in «Improved moroholoav/reduced mix partially
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P.F. Knapp et al., Phys. Plasmas 29, 052711 (2022). D.J. Ampleford, D.A. Yager-Elorriaga et al. (In Preparation).




Data-driven methods are enabling metric exploration that is
building to more detailed understanding of important features.

Stagnation images often quantified with intuitive
metrics |

Centroid of Gaussian fit to horizontal slices :

* Integral of the |FFT|? provides a metric for
stability

More complicated structures may be present
bifurcations, dim regions, efc.
may require a more advanced metrics (e.g. MST) °
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Data-driven methods are enabling metric exploration that is
building to more detailed understanding of important features.

MST Note: Diagonal Centroid fft energy
comes image to

“Wiggly” | ”Straight” tself
‘ : B = similar s
I - different 1L

aouejsIp ¢

Invited paper ICDDPS-4 W.E. Lewis et al., (In Preparation). J



Data-driven methods are enabling metric exploration that is
building to more detailed understanding of important features.

Large-scale studies can aid in investigating non-obvious structure in our data

True
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o

*random labeling with known class imbalance ~26% coated
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Invited paper ICDDPS-4 W.E. Lewis et al., (In Preparation).



. |captures more information. We are investigating how to best
leverage this.
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25 ‘Future directions and potential for collaboration

«Extension of sensitivity study to alternate metrics

3
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M.R. Gomez et al., Phys. Rev. Lett. 125, 155002 (2020).
M.E. Glinsky et al., Phys. Plasmas 27, 112703 (2020).

W.E. Lewis et al., Phys. Plasmas 28, 092701 (2021).

P.F. Knapp et al., Phys. Plasmas 29, 052711 (2022).

D.J. Ampleford, D.A. Yager-Elorriaga et al. (In Preparation).
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26 ‘Future directions and potential for collaboration

*Multiple view angles
> Do differences in image metric between multiple views contain valuable “integrated” information?

- E.g. value even if tomographic inversion ill-posed

*Develop metrics to quantify mix morphology, liner opacity impact, etc.

[ a)0°

| b)90°

E.C. Harding et al. (Submitted to RSI).

J.R. Fein et al., (In Preparation).
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7 ‘Future directions and potential for collaboration

*Applications to simulation based data to supplement insight

Helical seeds derived from

experimental radiography .
. . Exp. radiograph e “

= 3D HYDRA simulations are = 3
initialized with a background of |2 sl

white noise and helical grooves '

= Defined by a depth and width

= Helices are prescribed to
match previous radiographic
data which indicated 7- 10
degree initialization
Integrated simulations use 10- T o3 &3] w3 CEREE
20T but lack EKPEFimE ntal Dreiector Plane - X {cm} Dietecior Plane - X (cm)

data=10T
Courtesy Matthew Weis

.2

a.a

Dretector Plane - Y {em)

5 um nolse and 2.5 um noise and ) ) '
5 um helices 5 um helices Kraken animations courtesy C.A. Jennings




» | Data-driven methods have found successful application across a
range of problems in HEDP at Z and continues to grow!

Publications at the intersection of HEDP on Z and data science:

. Plarma Phys. (2022}, vol. 0. The Author(s), 2022
Published by Cambridge University Press
dei 10.1D17/S002237T822001 26X

J. Plasma Phys. (2022), voi. 88, 895880501 © The Author(s), 2022
Published by Cambridge University Press
doi: 10.1017/S0022377822000800

Statistical characterization of experimental
magnetized liner inertial fusion stagnation
images using deep-learning-based
fuel-background segmentation

Optimizing the configuration of plasma
radiation detectors in the presence of uncertain
instrument response and inadequate physics

P.F. Knapp ", W.E. Lewis ", V.R. Joseph?, C.A. Jennings' and
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Performance Sealing in Magnetized Liner Inertial Fusion Experiments
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Quantification of MagLIF morphology using
the Mallat scattering transformation ©
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A framework for experimental-data-driven assessment of Magnetized Liner

Inertial Fusion stagnation image metrics
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Tomographic reconstruction of MagLIF stagnation columns from orthogonal

projections using learned basis functions
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» | Data-driven methods have found successful application across a
range of problems in HEDP at Z and continues to grow!
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. |relation between morphology, performance, and
reproducibility

*Some possible physics sources of stagnation image variance

o preheat _ 700 525 350 175 004
600 Mo DPP; -3.5 mm 800 _ With DPP '- - -
-induced mix
E 300 300
. .. =
- induced vorticity 8 0
'
Q -300 -300

600
-600 -300 O 300 600 -600 -300 0 300 600

400 micron

T.J. Awe et al. Phys. Rev. Lett. 111, 235005 (2013).

A.J. Harvey-Thompson et al. Phys. Plasmas 25, 112705 (2018).
M.R. Weis et. al., Phys. Plasmas 28, 012705 (2021).

D.A. Yager-Elorriaga et al. Nucl. Fusion 62, 042015 (2022).



s | To understand sources of image variance we must explore

experiments with targeted changes to input conditions

«Want to investigate

> Impact of mitigation mechanisms

- dielectric coatings
- dynamic screw pinch
- laser gate

- cryogenic cooling

P.F. Schmit et al. Phys. Rev. Lett. 117, 205001 (2016).

A.J. Harvey-Thompson et al. Phys. Plasmas 25, 112705 (2018).

G.A. Shipley et al. Phys. Plasmas 26, 102702 (2019).

S.M Miller et al. Rev. Sci. Instrum. 91, 063507 (2020).

B.R. Galloway et al. Phys. Plasmas 28, 112703 (2021).

A.J. Harvey-Thompson et al. Rev. Sci. Instrum. (Submitted).
D.J. Ampleford, D.A. Yager-Elorriaga et al. (In Preparation).
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Mallat scattering transform intuition

*Band pass filtering (first order) and “cross-scale correlation/interference” (second order)

«.Nice properties, scales are reasonably matched to experiment give resolution values in each
direction

«Small deformations don’t move significant signal between bands so that small changes in
imager resolution etc. not expected to be critically important (but may still be present)

2 1 = ¢
w(x) — A(Eiku*x . B)E 2a2 Sj._é'(x) |I(X) *@5’; (){N * ¢'J (X):
'El [ _j _j 9 \
w:f {x} =2 125’(2 ?EK)' This is just a local estimate for o ) ,
This is a smoothing/pooling

the energy in a spectral band
(j,l) at location x. l.e. a
localized FFT or band-passed
image.

function which makes us less
sensitive to e.g. translation etc.

S_i 0,50 (X) = “I *w (x)| *"i’j |*¢'1
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information)

«Convolution with large-scale envelop (aka father wavelet) introduces correlation, so we can
safely subsample

> Space-scale representation space scale

v
\ 4

Space-scale

A

—

v
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Mallat scattering transform intuition
*Band pass filtering (first order) and “cross-scale correlation” (second order)
«.Nice properties, scales are reasonably matched to experiment give resolution values in each
«Small deformations don’t move significant signal between bands so that small changes in
mbnortant (hiit mav still he nresent)

i in range(512}:
for j in range(512}):
tesrcli,jl = (np.sin(12B8/512+np.pi*i + np.pi/4+np.sin(32/512=np.pi*j))
Janp.exp({=({i=236)/512)#*2=( [ j=256) /512 }>x2) /{2%(32/512 )==x2) )

direction
imaaer resoliition etc not exnected to he critically i

for i in range(512):
for j in range(512):
tesrcli,jl = (np.sin(64/512+np. pizxi + np.pi/d+np.sin(32/512=np.pixj))
Yenp.expl(=((1-256) /512)s2—((j-256) /512)%2) / (2%(32/512 )42} )




Mallat scattering transform intuition (second order)

«Convolution with large-scale envelop (aka father wavelet) reduces sensitivity e.g. to
translations, but at the cost of loss of information about local coherence between frequencies.

= (np.cos(1.1%np.pi*x)+np.cos(0.9%np.pikx)+np.cos(5.7*np.pikx+1.0)+
np.cos(np.pi/3+1.3%np.pi*x))

o : 0 » - 20 10 o 10 e \

Manifestation of beat sz’e’j v = “I ﬂb ) I*% |*¢J Smootheq by :
frequencies due to Recover coherence information by bandpass convolution with father
coherence between filtering again! This is basically the same info wavelet

spectral components as a Fourier transform, just processed in a way

to provide local spectral information.



" | MST visualization methods
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