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Understanding structure is critical for a wide range of plasma 
physics systems and applications ripe for data-driven 
approaches.
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M.J. Falato et al. J. Plasma Phys. 88, 895880603 
(2022).

Classification of Caltech Spheromak 
image data

W. Han et al. Scientific Reports 12,  
(2022).

Tracking blobs in fusion plasmas at the 
Tokamak à Configuration Variable

Automation and control of laser 
wakefield accelerators 

R.J. Shalloo et al. Nat. Comm. 11, 6355 
(2020).

Image enhancement of helioseismic and 
magnetic imager data

C.J. Díaz Baso and A. Aensio Ramos A &A. 614, A5 
(2018).

Characterizing instability growth in 
magneto-inertial fusion

Sparse view tomographic 
reconstruction

B.T. Wolfe et al. Rev. Sci. Instrum. 94, 023504 
(2023).

D.E Ruiz et al. Phys. Rev. Lett. 128, 255001 
(2022).



W.E. Lewis et al., J. Plasmas Phys. 88, 895880501 (2022).
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Segmentation convolutional neural network enabled reproducible and automated workflows

Statistical characterization of slowly varying background, noise, and signal levels

Understanding structure is critical for a wide range of plasma 
physics systems and applications ripe for data-driven 
approaches.
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Segmentation convolutional neural network enabled reproducible and automated workflows

Understanding structure is critical for a wide range of plasma 
physics systems and applications ripe for data-driven 
approaches.

Apart from being a shameless plug, this 
effort enabled the results I’m presenting 

today.

W.E. Lewis et al., J. Plasmas Phys. 88, 895880501 (2022).



Stagnation image data from Magnetized Liner Inertial Fusion 
can contribute to understanding performance and 
reproducibility. 
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•Magnetized Liner Inertial Fusion (MagLIF) stagnation images show significant variance arising from
◦ variation in a large number of experimental input conditions
◦ different spherical crystal x-ray imager configurations

•Need meaningful metrics to build understanding
◦ sensitivities to realities of experiment 
– (e.g. signal-to-noise, registration, imager configuration)

◦ physics basis i.e. interpretable and/or statistically insightful



Stagnation image data from Magnetized Liner Inertial Fusion 
can contribute to understanding performance and 
reproducibility. 
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•This talk:
◦ Combine ideas of data-augmentation and 
experimental data to understand sensitivities

– model-free with a small dataset

•Need meaningful metrics to build understanding
◦ sensitivities to realities of experiment 
– (e.g. signal-to-noise, registration, imager configuration)

◦ physics basis i.e. interpretable and/or statistically 
insightful

◦ Use space-scale representation to classify images

◦ Compare hand-picked to “less intuitive” 
representations



Stagnation image data from Magnetized Liner Inertial Fusion 
can contribute to understanding performance and 
reproducibility. 
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•This talk:
◦ Combine ideas of data-augmentation and 
experimental data to understand sensitivities

– model-free with a small dataset

•Need meaningful metrics to build understanding
◦ sensitivities to realities of experiment 
– (e.g. signal-to-noise, registration, imager configuration)

◦ physics basis i.e. interpretable and/or statistically 
insightful

◦ Use space-scale representation to classify images

◦ Compare hand-picked to “less intuitive” 
representations

But first things “first”, where do 
these images come from?!
A.K.A the plasma science in 
ICDDPS-4



Sandia’s Z Pulsed Power Facility
The Earth’s largest pulsed power 
machine

Z Building

Sandia’s Z Pulsed Power Facility
4



Sandia’s Z Pulsed Power Facility

Z Building

Z Machine

Pulsed Power 
Development 

Area

Z-Beamlet 
Laser

Target Chambers

Sandia’s Z Pulsed Power Facility
4

Ø >20 MA peak current
Ø 4 kJ, 1 TW laser
Ø kJ’s warm x-rays
Ø kJ’s fusion yield

Ø Mbar’s planar drive
Ø >2MJ’s soft x-rays.            

Capabilities



The Magnetized Liner Inertial Fusion (MagLIF) concept 
fielded on Z relies on three stages to reach fusion relevant 
conditions.
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Stagnation
ImplosionPreheatApply Axial Magnetic Field

Gaseous
DD fuel
0.7 mg/cc

Be liner

~100ns

imploded by ~20 MA 
provided by Z 

6-8 mm

 S.A. Slutz et. al., Phys. Plasmas 17, 056303  (2010).
M.R. Gomez et al. Phys. Rev. Lett. 113, 155003 (2014).
 

Z Machine RZ =16.5 m 
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Helmholtz-like coils are used to premagnetize the MagLIF 
load

without Bz with Bz

random helical

Premagnetize fuel
• embed 7-20 T in ~ms timescale
• reduce radial thermal conduction
• compress + traps fusion products

Bz

D. C. Rovang et al., Rev. Sci. Instrum. 85, 124701 (2014).
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Z Beamlet laser preheats the fuel establishing a higher 
adiabat

Preheat the fuel
• Z-Beamlet laser delivers 

~2-3 kJ to the Z chamber.
• Laser heats fuel through 

Inverse Bremsstrahlung 
(~100-200 eV, 1-2 kJ)

• Laser preheat sets the 
adiabat of the implosion.

M. R. Weis, et al., Phys. Plasmas 28, 012705 (2021).
A. J. Harvey-Thompson, et al., Phys. Plasmas 27, 113301 (2020).
A. J. Harvey-Thompson, et al., Phys. Plasmas 26, 032707 (2019).
A. J. Harvey-Thompson, et al., Phys. Plasmas 25, 112705 (2018).
M. Geissel, et al., Phys. Plasmas 25, 022706 (2018).
A. J. Harvey-Thompson, et al., Phys. Rev. E 94, 051201 (2016).
A. J. Harvey-Thompson, et al., Phys. Plasmas 22, 122708 (2015).
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Compress liner and fuel
• Lorentz force accelerated the 

liner.
• Fuel is then quasi-adiabatically 

compressed.
• Liner implosion leads to flux 

compression, amplifying B-field R. McBride et al., Phys. Plasmas 23, 012705 (2016).
3D implosion movie courtesy of C. Jennings.

Current from the Z pulsed power generator provides a 
magnetic pressure driving the liner to implode compressing 
the fuel
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Stagnation

6-8 mm

 S.A. Slutz et. al., Phys. Plasmas 17, 056303  (2010).
M.R. Gomez et al. Phys. Rev. Lett. 113, 155003 (2014).
 

Plasma parameter Shot z3289

70 km/s

Rburn 50 um

Tburn 2.7 keV

pburn 1.9 Gbar

2 ns

Y (DT equivalent) 2 kJ

When thermal pressure exceeds magnetic pressure, the liner 
decelerates resulting in stagnation



10 MagLIF offers a rich physics platform with paths to high yield at a next 
generation pulsed power (NGPP) facility.

D.E. Ruiz et. al., (Submitted) Phys. Plasmas.
 

•Physics:

◦ magnetized HED plasmas

◦ fusion relevant temperatures and densities

◦ thermonuclear neutron generation

•May provide route to fusion-energy on the grid*

◦ high-yield pulsed-power ICF has relevant gain 

factor

– need G~100

*S. Atzeni and J. Meyer-ter Vehn, The Physics of Inertial Fusion, (Oxford University Press Inc., New York, 2009).



A critical aspect of confidently scaling to NGPP is to ensure 
we understand and characterize the physics of MagLIF on Z 
today.
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P.F. Knapp et al., Phys. Plasmas 29, 052711 (2022).

LEH foil thickness

Laser conditioning

A.J. Harvey-Thompson et al. Phys. Plasmas 25, 112705 (2018).
D.A. Yager-Elorriaga et al. Nucl. Fusion 62, 042015 (2022).
W.E. Lewis et al. Phys. Plasmas (Submitted).
 

Final feed

Experimental input conditions Experimental performance



Data-driven methods paired with physics insight, theory, and 
simulation are playing a key role in this effort.
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Statistics, ML/DL, 
expert knowledge
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E.C. Harding et. al., (Under Review).
W.E. Lewis et al., J. Plasmas Phys. 88, 895880501 
(2022).
Invited paper ICDDPS-4 W.E. Lewis et al., (In 
Preparation).

 

Several challenges make addressing these questions 
difficult. 

•Unspecified experiment dependent SNR

•Multiple distinct spherical crystal imaging modalities

◦ Continuum vs spectral lines

◦ Resolution

◦ Views

•Typically no spatial fiducial 

◦ Registration

Challenges*
*By no means 
exhaustive



•Image metrics may vary between practitioners and studies

◦ Need a framework to asses how sensitive metrics are to previous 

factors

◦ Need statistical/larger scale studies to understand relevance to physics

13

Challenge

M.R. Gomez et al., Phys. Rev. Lett. 125, 155002 (2020).
M.E. Glinsky et al., Phys. Plasmas 27, 112703 (2020).
P.F. Knapp et al., Phys. Plasmas 29, 052711 (2022).
D.J. Ampleford, D.A. Yager-Elorriaga et al. (In Preparation).

Several challenges make addressing these questions 
difficult. 
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M.R. Gomez et al., Phys. Rev. Lett. 125, 155002 (2020).
M.E. Glinsky et al., Phys. Plasmas 27, 112703 (2020).
P.F. Knapp et al., Phys. Plasmas 29, 052711 (2022).
D.J. Ampleford, D.A. Yager-Elorriaga et al. (In Preparation).

Several challenges make addressing these questions 
difficult. 



•Band pass filtering (first order) and “cross-scale correlation” (second order)
•Scales are reasonably matched to experiment
•Stable to small deformations

For concreteness, we take the Mallat Scattering Transform as our metric, 
which provides a space-scale representation amenable for image-to-
image comparison.

14
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For concreteness, we take the Mallat Scattering Transform as our metric, 
which provides a space-scale representation amenable for image-to-
image comparison.



Invited paper ICDDPS-4 W.E. Lewis et al., (In Preparation).

16 “Model-free” data augmentation can leverage known sources of 
variance to help understand sensitivities and engineer metrics



17 “Model-free” data augmentation can leverage known sources of 
variance to help understand sensitivities and engineer metrics

Noise filtering can remove unwanted sensitivity to SNR

filter

Image metric components Image metric components
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Invited paper ICDDPS-4 W.E. Lewis et al., (In Preparation).



Invited paper ICDDPS-4 W.E. Lewis et al., (In Preparation).

18 “Model-free” data augmentation can leverage known sources of 
variance to help understand sensitivities and engineer metrics

= similar

= different

L
2  distance

Note: Diagonal 
compares image to 

itself

Nearest-neighbor identity unchanged



•Image metrics may vary between practitioners and studies

◦ Need a framework to asses how sensitive metrics are to previous 

factors

◦ Need statistical/larger scale studies to understand relevance to physics
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Challenge

M.R. Gomez et al., Phys. Rev. Lett. 125, 155002 (2020).
M.E. Glinsky et al., Phys. Plasmas 27, 112703 (2020).
P.F. Knapp et al., Phys. Plasmas 29, 052711 (2022).
D.J. Ampleford, D.A. Yager-Elorriaga et al. (In Preparation).

Several challenges make addressing these questions 
difficult. 



•Improved morphology/reduced mix partially 

responsible?

20 Stagnation morphology appears to be an important piece of 
the puzzle of understanding performance and reproducibility
•Can we characterize relation to variance in 

performance?

◦ 7 of top 10 performers coated

◦ 1 of bottom 10 performers coated

P.F. Knapp et al., Phys. Plasmas 29, 052711 (2022).
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D.J. Ampleford, D.A. Yager-Elorriaga et al. (In Preparation).



21
Data-driven methods are enabling metric exploration that is 
building to more detailed understanding of important features.

• Stagnation images often quantified with intuitive 
metrics

• Centroid of  Gaussian fit to horizontal slices
• Integral of the |FFT|2 provides a metric for 

stability
• More complicated structures may be present

• bifurcations, dim regions, etc.
• may require a more advanced metrics (e.g. MST)

Simple Complex
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= similar

= different

L
2  distance

Note: Diagonal 
compares image to 

itself

MST

Data-driven methods are enabling metric exploration that is 
building to more detailed understanding of important features.

Invited paper ICDDPS-4 W.E. Lewis et al., (In Preparation).

”Straight”“Wiggly”
Centroid fft energy
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Large-scale studies can aid in investigating non-obvious structure in our data 

Data-driven methods are enabling metric exploration that is 
building to more detailed understanding of important features.

Invited paper ICDDPS-4 W.E. Lewis et al., (In Preparation).

*random labeling with known class imbalance ~26% coated

True

Pr
ed
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Reducing AR and applying coating improve stability. MST 
captures more information. We are investigating how to best 
leverage this. 
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25 Future directions and potential for collaboration

•Extension of sensitivity study to alternate metrics 

M.R. Gomez et al., Phys. Rev. Lett. 125, 155002 (2020).
M.E. Glinsky et al., Phys. Plasmas 27, 112703 (2020).
W.E. Lewis et al., Phys. Plasmas 28, 092701 (2021).
P.F. Knapp et al., Phys. Plasmas 29, 052711 (2022).
D.J. Ampleford, D.A. Yager-Elorriaga et al. (In Preparation).

Apply model free data-
augmentations and understand 

sensitivities

= similar

= different

L
2  distance

Note: Diagonal 
compares image to 

itself



26 Future directions and potential for collaboration

•Multiple view angles
◦ Do differences in image metric between multiple views contain valuable “integrated” information?
– E.g. value even if tomographic inversion ill-posed

•Develop metrics to quantify mix morphology, liner opacity impact, etc. 

E.C. Harding et al. (Submitted to RSI).
J.R. Fein et al., (In Preparation).



27 Future directions and potential for collaboration

•Applications to simulation based data to supplement insight

Courtesy Matthew Weis

 
Kraken animations courtesy C.A. Jennings
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Publications at the intersection of HEDP on Z and data science:

Data-driven methods have found successful application across a 
range of problems in HEDP at Z and continues to grow!
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Publications at the intersection of HEDP on Z and data science:

Data-driven methods have found successful application across a 
range of problems in HEDP at Z and continues to grow!



Backup Slides
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We must understand sources of image variance to uncover 
relation between morphology, performance, and 
reproducibility

T.J. Awe et al. Phys. Rev. Lett. 111, 235005 (2013).
A.J. Harvey-Thompson et al. Phys. Plasmas 25, 112705 (2018).
M.R. Weis et. al., Phys. Plasmas 28, 012705  (2021).
D.A. Yager-Elorriaga et al. Nucl. Fusion 62, 042015 (2022).

 

•Some possible physics sources of stagnation image variance

◦ preheat 

– induced mix

– induced vorticity



15 To understand sources of image variance we must explore 
experiments with targeted changes to input conditions

P.F. Schmit et al. Phys. Rev. Lett. 117, 205001 (2016).
A.J. Harvey-Thompson et al. Phys. Plasmas 25, 112705 (2018).
G.A. Shipley et al. Phys. Plasmas 26, 102702 (2019).
S.M Miller et al. Rev. Sci. Instrum. 91, 063507 (2020).
B.R. Galloway et al. Phys. Plasmas 28, 112703 (2021).
A.J. Harvey-Thompson et al. Rev. Sci. Instrum. (Submitted).
D.J. Ampleford, D.A. Yager-Elorriaga et al. (In Preparation).

 

•Want to investigate 

◦ Impact of mitigation mechanisms

– dielectric coatings

– dynamic screw pinch

– laser gate

– cryogenic cooling



Mallat scattering transform intuition
2

•Band pass filtering (first order) and “cross-scale correlation/interference” (second order)
•.Nice properties, scales are reasonably matched to experiment give resolution values in each 
direction

•Small deformations don’t move significant signal between bands so that small changes in 
imager resolution etc. not expected to be critically important (but may still be present)

This is just a local estimate for 
the energy in a spectral band 
(j,l) at location x. I.e. a 
localized FFT or band-passed 
image. 

This is a smoothing/pooling 
function which makes us less 
sensitive to e.g. translation etc.



Mallat scattering transform intuition (pooling of 
information)

2

•Convolution with large-scale envelop (aka father wavelet) introduces correlation, so we can 
safely subsample
◦Space-scale representation

x

k

x

k

scalespace

x

k

Space-scale



Mallat scattering transform intuition
2

•Band pass filtering (first order) and “cross-scale correlation” (second order)
•.Nice properties, scales are reasonably matched to experiment give resolution values in each 
direction

•Small deformations don’t move significant signal between bands so that small changes in 
imager resolution etc. not expected to be critically important (but may still be present)



Mallat scattering transform intuition (second order)
2

•Convolution with large-scale envelop (aka father wavelet) reduces sensitivity e.g. to 
translations, but at the cost of loss of information about local coherence between frequencies.

Manifestation of beat 
frequencies due to 
coherence between 
spectral components

Smoothed by 
convolution with father 
wavelet

Recover coherence information by bandpass 
filtering again! This is basically the same info 
as a Fourier transform, just processed in a way 
to provide local spectral information.



MST visualization methods
2


