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3 Fluorescence Imaging I

• Imaging at high optical resolutions is frequently achieved via
stochastic photo-switching of molecules over ≈ 104 frames
(Betzig et al., 2006; Heilemann et al., 2008).

• Stochastic imaging takes many different forms: DNA-PAINT,
(f)PALM, (d)STORM.

• Enables sparse subsets to be detected at any one time.
• Allows us to retrieve their spatial coordinates with high
precision.

• Large cellular structures/mechanisms can be imaged.



4 Obtaining super-resolution images I



5 Obtaining super-resolution images II
• Final superresolution images obtained by superimposition of
frames.

• Final image shows dense spatial data around molecules of
interest, which motivates spatial analyses.

1

1Data made available courtesy of Prof. Paul French at ICL.



6 Stochastic photo-switching I

• The photo-switching behavior gives key information about
the molecule e.g. inherent structure, pH, temperature.

• A molecule can be detected at most once in a single frame.
• Each frame gives a single representation of the mechanisms
under observation.

• Utilizing the time domain in stochastic superresolution is key
for analyzing underlying spatial structures.

1 We can better understand molecular structures given
partially-observed localizations through time. How do
we build a spatial model that leverages temporal
characteristics?

2 Can we use this to predict photo-switching rates and
underlying spatial positions, including molecular
count?



7 Characterizing photo-switching I
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8 The photo-switching process X(t)
• For each molecule, let {X(t)}t∈R≥0

be its underlying
continuous time Markovian signal.

• Accesses a single on state (1), d+ 1 off states (0, 01, . . . , 0d)
and an absorption state (2).

• Its state space is SX = {0, 01, . . . , 0d, 1, 2}.
• d = 0 for DNA-PAINT, BALM.
• d = 1 for (f)PALM.
• d = 2 for (d)STORM Patel et al. (2019, 2021)
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9 The generator G

G =



−σ0 λ001 0 0 0 0 . . . λ01 µ0

0 −σ01 λ0102 0 0 0 . . . λ011 µ01

0 0 −σ02 λ0203 0 0 . . . λ021 µ02
...

...
...

...
...

... . . . ...
...

0 0 0 0 0 . . . −σ0d λ0d1 µ0d
λ10 0 0 0 0 0 . . . −σ1 µ1

0 0 0 0 0 0 . . . 0 0


• The transition probability matrix Pt = eGt for any t ≥ 0 is such
that Pt(i, j) = P(Xt = j|X0 = i).

The non-zero transition rates λG in G are unknown.



10 The observation process I

• Consider K (known for now) molecules filmed over NF frames.
• Frame length ∆, minimum localization time is δ ∈ [0,∆).
• Let {Yn,k ∈ {0, 1},n = 1, . . . ,NF} be the discrete-time binary
process indicating whether emitter k is localized in frame n.

• {Zn,k ∈ W ⊂ Rm,n = 1, . . . ,NF} is the spatial localization
process. If Yn,k = 0, no observation is made. Otherwise, an
observation about its true spatial position ck ∈ W is made.

Tn,k =
∫ n∆

(n−1)∆
1{1}(Xk(t)) dt, Yn,k = 1[δ,∆)(Tn,k).

Zn,k =
{
∅ if Yn,k = 0

z ∼ N
(

c, ∆
NpTn,k

I2
)

if Yn,k = 1,

Np is the expected number of continuously emitted photons on ∆.



11 The observation process II



12 Ideal data tensor
Ideal data tensor Z uses Y to give exact fluorescent/binding
spatial localizations for each molecule:

Z =



1 2 3 . . . K − 1 K
1 z1,1 z1,2 z1,3 . . . z1,K−1 ∅
2 z2,1 ∅ ∅ . . . z2,K−1 ∅
3 z3,1 z3,2 ∅ . . . z3,K−1 z3,K
4 ∅ ∅ ∅ . . . ∅ ∅
5 ∅ z5,2 ∅ . . . ∅ ∅
...

...
...

... . . . ...
...

NF − 1 ∅ ∅ ∅ . . . ∅ zNF−1,K
NF ∅ zNF ,2 ∅ . . . ∅ ∅



No. molecules

No. frames



13 Why is the ideal case ideal?

The format of data gives us:
• The exact number of imaged molecules.
• The frame in which each molecule is localized.
• The spatial localization of each molecule.

Spatial reconstruction of true molecular positions, or cluster
positions C = (c1, c2, . . . , cK) can be computed via Gaussian MLE:

ĉk =
1∑

n:Zn,k 6=∅ 1

∑
n:Zn,k 6=∅

zn,k.
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14 Why is the ideal case ideal?

The format of data gives us:
• The exact number of imaged molecules.
• The frame in which each molecule is localized.
• The spatial localization of each molecule.

Fluorescence/binding rates in G can be estimated using Y with
the photo-switching Hidden Markov Model (PSHMM) (Patel et al.,
2019), characterized with:

• Initial probability vector
νX := νi = P(X(0) = i).

• Transmission matrices
B(l)∆ := B(l)∆ (i, j) =
P(Yn = l, X(∆) = j|X(0) = i).

X(t)

t0

1

∆ 2∆ 3∆

X(0) X(∆) X(2∆) X(3∆)

Y0 Y1 Y2



15 Biological imaging data

• If molecules are sufficiently well-separated in space,
post-processing image recognition algorithms can be used to
accurately obtain data as Y and Z (Lin et al., 2015).

• In dense spatial structures of interest, obtaining sufficiently
good spatial separation between molecules is highly
challenging, if not impossible, to engineer.

• In this case, obtaining Y , Z and K (number of molecules) is
more difficult to obtain from imaging data alone.

• In each frame, localization algorithms fitting point-spread
function to high-photon intensity regions will obtain spatial
localizations; including false positive localizations.

• In each frame, a set of spatial localizations is obtained,
without specific molecular labels.



16 Spatial localization set time series



1 2 3 . . . K − 1 K
Z1 = {z1,1, z1,2, z1,3} z1,1 z1,2 z1,3 . . . ∅ ∅
Z2 = {z2,1, z2,K−1} z2,1 ∅ ∅ . . . z2,K−1 ∅
Z3 = {z3,2, z3,K−1} ∅ z3,2 ∅ . . . z3,K−1 ∅
Z4 = ∅ ∅ ∅ ∅ . . . ∅ ∅
...

...
... . . . ...

...
...

ZNF−1 = {zNF−1,K} ∅ ∅ ∅ . . . ∅ zNF−1,K
ZNF = {zNF,2} ∅ zNF ,2 ∅ . . . ∅ ∅



Aggregate (set union) localizations over K

No
.f
ra
m
es

Instead of the ideal data tensor, we have the spatial localization
set time series {Zn : n = 1, . . . ,NF} of localizations in each frame
by molecular and false-positive aggregation (set union):

Zn = An ∪
{ K⋃
k=1

Zn,k

}
.



17 Inference problem

Using the spatial localization sets {Zn}NFn=1, we want to estimate:
• The number of molecules K .
• Their spatial positions C = {c1, c2, . . . , cK}.
• Fluorescence/binding rates.

Spatial point process
A (simple, finite) spatial point process C = {c1, c2, . . . , cK}
contains random spatial points with density f (c) over W with
cardinality distribution pK(k) on Z≥0. Its density function is

f (C) := k!pK(k)
∏
c∈C

f (c).

Since observations sets Zn are related to C, we aim to infer:

f (C|{Zn}NFn=1) ∝ f ({Zn}NFn=1|C)π(C).



18 A pure spatial birth process I

• Before a molecule first fluoresces/binds, it ceases to be part
of the underlying molecular configuration.

• We introduce a hidden spatial point process
{Cn : n = 1, . . .NF} which gives the number and positions of
molecules that have already been activated before or in
frame n.

• Each Cn can be probabilistically compared with Zn at each
frame.

• Cn has the property that Cn
P→ C.

Under any νX we define for n ≥ 1

Cn = Cn−1 ∪ Bn C0 = ∅

Zn = Φ(Cn) ∪ An



19 A pure spatial birth process II

• Bn denotes the point process of molecules that are first
activated in frame n.

• An denotes the point process of false positive observations,
with rate α, in frame n.

• Each c ∈ Cn generates an offspring z ∈ Φ(Cn) , where z is a
variate from the density

f (z∗|c) = N
(

c, ∆

NpTn
I2
)
,

with probability pD,n and is empty with probability 1− pD,n.

z =

{
∅ with probability 1− pD,n
{z∗} with probability pD,nf (z∗|c).



20 An illustration
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21 Characterizations I
For n ≥ 1, let pB,n(θ) to be the probability a molecule first
appears, and pD,n(θ) to be the probability of detecting a single
molecule in frame n, dependent on θ = {λG, δ, α}.

pB,n(θ) = ν∗>
X (B(0)T∗,δ=0)(B

(0)
∆,δ=0)

n−1B(1)∆,δ=01d+3

pD,n(θ) = ν>
X eG(n−1)∆B(1)∆ 1d+3.
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22 Characterizations II

• K ∼ Poi(λK). NB,n ∼ Poi(λKpB,n(θ)):
• fBn(C′) = e−λKpBn (θ)

∏
c∈C′ λKpBn(θ)b(c)

• fAn(C′) = e−α
∏

c∈C′ αa(c).
• Spatial prior over W, e.g. a(c) = b(c) = 1/|W| (CSR).

We can then determine f (CNF |{Zn}
NF
n=1) by iteratively computing:

f (Cn|{Zn′}nn′=1θ) ∝ f (Cn|{Zn′}n−1
n′=1,θ)f (Zn|Cn,θ).

• First term requires finding all smaller subsets of Cn that give
rise to different birth sets in each frame.

• Second term requires finding all subsets of Zn that could
come from false positive observations and Cn. Computed
offline: sets of size k yield observations of size ≤ k, rest are
false-positives.



23 Inference I

• The computation of f (Cn|{Zn′}n−1
n′=1,θ) can become

computationally intractable for large sets Cn.
• For molecules that are already activated before imaging, e.g.
in dSTORM, pB,n = 0 for n > 1, which allows for fast
computation.

• We use a birth-death-shift MCMC sampler to sample CNF from
{Zn}NFn=1 (i.e. underlying spatial positions and its cardinality).

• θ = {λG, δ, α} can also be estimated within the algorithm
through its contribution in pD,n.

• In real applications the localization standard deviation is
determined through the localization algorithm, and is
therefore known.



24 Simulations I
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Simulation 2.

Spatial estimates of 2 simulation studies under the d = 2 model.



25 Simulations II



26 Simulations III



27 Application to Real Data I

• Chromosomes labeled with Alexa Fluor 488 fluorophores
embedded in Polyvinyl Alcohol (PVA) resin considered.2

• Imaged over 104 frames, at a frame rate of ∆ = 0.03 seconds,
with dSTORM.

• Investigated 2 clusters of molecules using subsets of raw
image.

• The algorithm of Ovesný et al. (2014) applied to find high
photon intensity spots, and localizations determined via
Gaussian PSFs.

• Under all experiments, the d = 2 model was picked, with
µ0 = µ01 = µ02 = 0.



28 Application to Real Data II



29 Application to Real Data III

Spatial estimates (with cardinality) of two clusters of image. Spatial regularity of about between fluorophores, with
structure, is observed.

2Dataset was made available by Professor Paul French, Imperial College
London.



30 Model summary
• Leveraging temporal characteristics of molecules imaged in
stochastic superresolution is key for understanding
underlying spatial structures.

• Data of imaging observations has been described - both
ideal and real cases.

• In the ideal case, spatial analysis is straight-forward.
• In the real case, a spatial-temporal joint point process can be
formulated that utilizes photo-switching/binding temporal
characteristics.

• This model is used to describe a pure birth hidden process of
molecular positions and count as they become activated.

• Hidden process related to observation point process which
includes false positive measurements.

• Inference via MCMC can be utilized to recover hidden process.
• Robust method shown on simulations and real data.
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