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3 I Fluorescence Imaging | m

. Imaging at high optical resolutions is frequently achieved via
stochastic photo-switching of molecules over ~ 10* frames
(Betzig et al., 2006; Heilemann et al., 2008).

. Stochastic imaging takes many different forms: DNA-PAINT,
(f)PALM, (d)STORM.

. Enables sparse subsets to be detected at any one time.

. Allows us to retrieve their spatial coordinates with high
precision.

. Large cellular structures/mechanisms can be imaged. !



. I Obtaining super-resolution images |
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5 I Obtaining super-resolution images Il

. Final superresolution images obtained by superimposition of

frames.

. Final image shows dense spatial data around molecules of
interest, which motivates spatial analyses.
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"Data made available courtesy of Prof. Paul French at ICL.




6 I Stochastic photo-switching | EU.:

. The photo-switching behavior gives key information about
the molecule e.g. inherent structure, pH, temperature. |

. A molecule can be detected at most once in a single frame.

. Each frame gives a single representation of the mechanisms |
under observation.

. Utilizing the time domain in stochastic superresolution is key
for analyzing underlying spatial structures.

@ We can better understand molecular structures given
partially-observed localizations through time. How do
we build a spatial model that leverages temporal
characteristics? '

@ Can we use this to predict photo-switching rates and |
underlying spatial positions, including molecular |
count?



7 I Characterizing photo-switching |




The photo-switching process X(t)

- For each molecule, let {X(t)}ter., be its underlying
continuous time Markovian signal.

. Accesses a single on state (1), d + 1 off states (0,04, ...

and an absorption state (2).
. Its state space is Sx = {0,04,...,0q,1,2}.
. d = 0 for DNA-PAINT, BALM.
. d =1 for (f)PALM.
. d =2 for (d)STORM Patel et al. (2019, 2021)
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0 I The generator G

—00 oo, 0 0 0 0 Aot Mo
0 —00, )\0102 0 0 0 )\011 Ho,q
0 0 —00, Ao05 0 O Aoyl 10,
G= : : : : : : . : :
0 0 0 0 0 ... —oo, Aog1 Mo,
AIO 0 0 0 0 0 e —01] 12451
0 0 0 0 0 0 e 0 0

. The transition probability matrix Py = e for any t > 0 is such
that P¢(i,)) = P(X; = j|Xo = I).

The non-zero transition rates A\ in G are unknown.




10 I The observation process | m

. Consider K (known for now) molecules filmed over N¢ frames.
. Frame length A, minimum localization time is § € [0, A). |
. Let {Y,r€{0,1},n=1,...,N¢} be the discrete-time binary
process indicating whether emitter k is localized in frame n. |
e {Znp e WCR™, n=1,...,N¢} is the spatial localization |
process. If Y, |, = 0, no observation is made. Otherwise, an
observation about its true spatial position ¢, € W is made.

nA
Tk = / Ly (Xe () dt, - Yo p = Tis.0) (The)- |
(h—=1)A
5 0 if Yor=0 :
k= Z ~ ./\/‘ <C, ﬁlQ) |f Yﬂ,l? = ].7 |

N, is the expected number of continuously emitted photons on A.
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0 I The observation process Il
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2 I Ideal data tensor

Ideal data tensor Z uses ) to give exact fluorescent/binding

spatial localizations for each molecule:

No. molecules

1 2 3 K—1 K
1 71,1 71,2 713 cee 21 K1 @
2 721 0 0 7oK1 0
3 z31 z32 Z3K—1  Z3K
4 0 0 0 0 0
Z = 5 0 252 0 0 ]
No. frames . .
Ne—11 0 0 0 0 ZNe—1.K
NF Q) ZNF’Q (Z) @

n




13 I Why is the ideal case ideal?

The format of data gives us:

. The exact number of imaged molecules.

. The frame in which each molecule is localized.

. The spatial localization of each molecule.
Spatial reconstruction of true molecular positions, or cluster
positions C = (¢, ¢o, .. .,cx) can be computed via Gaussian MLE:

_ 1
anzn’ﬁé@ 1 n:Zn,,ﬁé@
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1 I Why iIs the ideal case ideal?

The format of data gives us:
. The exact number of imaged molecules.
. The frame in which each molecule is localized.
. The spatial localization of each molecule.

Fluorescence/binding rates in G can be estimated using ) with
the photo-switching Hidden Markov Model (PSHMM) (Patel et al.,

2019), characterized with:

X(t)
. Initial probability vector : 5
Vv =V = P(X(O) =1). | i
. Transmission matrices 0 E i
2A 3

BY = BY(i.j) = | A
P(Y, = [LX(A) = j]X(0) = i). —(x)
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15 I Biological imaging data IEI:

. If molecules are sufficiently well-separated in space,
post-processing image recognition algorithms can be used to |
accurately obtain data as Y and Z (Lin et al., 2015).

. In dense spatial structures of interest, obtaining sufficiently |
good spatial separation between molecules is highly
challenging, if not impossible, to engineer.

. In this case, obtaining J, Z and K (number of molecules) is
more difficult to obtain from imaging data alone. |

. In each frame, localization algorithms fitting point-spread
function to high-photon intensity regions will obtain spatial
localizations; including false positive localizations.

. In each frame, a set of spatial localizations is obtained, |
without specific molecular labels. I



16 I Spatial localization set time series m

Aggregate (set union) localizations over K

1 2 3 .. K=1 K
Ly ={z1,212.213} (211 212 Z13 ... 0 0
Zy ={z21,722x 1} |[221 0 0 Zo.K—1 0
é Z3 = {Z372, Z37K71} Q) 7232 (Z) ce. Z3K-1 (Z)
ElZy=0 0 0 o ... 0 0
Sl - . . . .
= . . . . : .
ZNFfl — {ZNFfLK} q) (Z) (Z) c. Q) ZNg—1,K
Zng = {2 2} 0 zyo 0O . 0 0
Instead of the ideal data tensor, we have the spatial localization

set time series {Z, : n =1,...,Ng} of localizations in each frame
by molecular and false-positive aggregation (set union): I

K
7n :AHU{UZM}.
k=1



y I Inference problem

Using the spatial localization sets {Z,}"* ,, we want to estimate:
. The number of molecules K.
. Their spatial positions C = {ci,ca,...,cx}

. Fluorescence/binding rates.

nlr

Spatial point process

A (simple, finite) spatial point process C = {¢1,c¢a, ..., ck}
contains random spatial points with density f(c) over W with
cardinality distribution pg(R) on Zx¢. Its density function is

= Ripk(R) [[ f (o).

ceC

Since observations sets Z,, are related to C, we aim to infer:

FICHZn}NEy) o F({Zn}nEq|C)m(C).



18 I A pure spatial birth process |

. Before a molecule first fluoresces/binds, it ceases to be part
of the underlying molecular configuration.

. We introduce a hidden spatial point process
which gives the number and positions of

molecules that have already been activated before or in
frame n.

. Each . can be probabilistically compared with Z, at each
frame.

- |G has the property that [Gq| fe.

Under any vy we define forn > 1

Zn = @(Cn) UAn




9 I A pure spatial birth process I m

. - denotes the point process of molecules that are first
activated in frame n.

. A, denotes the point process of false positive observations,
with rate ¢, in frame n.

. Eachc e . generates an offspringz € ®(C,), where zis a
variate from the density

flz*|e) = N < NpATn /2>

with probability pp , and is empty with probability 1 — pp p.

0 with probability 1 —pp I
7z =
{z*} with probability ppnf(z*|c).



2 I An illustration




2 I Characterizations | m
Forn > 1, let pg.»(0) to be the probability a molecule first
appears, and pp,»(0) to be the probability of detecting a single
molecule in frame n, dependent on 8 = {Ag, d, a}.

% 0 0 _1(1
Pe.n(0) VXT(Bg*),azo)(B(A,)azo)n 1B(A,)5:01d+3

Po.n(0) = 1 S VAR,

0.25 0.01
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_0.15 . 0.006

a )

a a |
0.1 0.004 l
0.05 0.002
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22 I Characterizations I [EI:

« f8,(C') = e PO ] ) Aepa, (0)b(c)
. fAn (C/) =e @ HCEC’ Oéa(C)
. Spatial prior over W, e.g. a(c) = b(c) = 1/|W| (CSR).
We can then determine f(Cy, [{Z,}%,) by iteratively computing;

F(Cal{Zn}0_10) o F(Cal{Zw }0), 0)F (Z0|Chn, 6).

. First term requires finding all smaller subsets of C, that give
rise to different birth sets in each frame.

. Second term requires finding all subsets of Z, that could !
come from false positive observations and C,. Computed
offline: sets of size k yield observations of size < k, rest are
false-positives.




» I Inference | m

. The computation of f(Cn|{Zn}"_},,0) can become

computationally intractable for large sets Cp.

. For molecules that are already activated before imaging, e.g.
in dSTORM, pg , = 0 for n > 1, which allows for fast
computation.

. We use a birth-death-shift MCMC sampler to sample Cy, from
{Zy ﬂ;l (i.e. underlying spatial positions and its cardinality).

. 8 ={Xg,0,a} can also be estimated within the algorithm
through its contribution in pp p.

. In real applications the localization standard deviation is |
determined through the localization algorithm, and is |
therefore known.



2 I Simulations |
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2 I Simulations Il
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2% I Simulations Ill
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. Chromosomes labeled with Alexa Fluor 488 fluorophores

Application to Real Data | Eﬂi

embedded in Polyvinyl Alcohol (PVA) resin considered.?
Imaged over 10* frames, at a frame rate of A = 0.03 seconds,
with dSTORM.

Investigated 2 clusters of molecules using subsets of raw
image.

The algorithm of Ovesny et al. (2014) applied to find high
photon intensity spots, and localizations determined via
Gaussian PSFs.

Under all experiments, the d = 2 model was picked, with '
po = po; = po, = 0.




2 I Application to Real Data




Application to Real Data Il
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Spatial estimates (with cardinality) of two clusters of image. Spatial regularity of about between fluorophores, with
structure, is observed.

ZDataset was made available by Professor Paul French, Imperial College
London.




% I Model summary IEI:

. Leveraging temporal characteristics of molecules imaged in
stochastic superresolution is key for understanding
underlying spatial structures.

. Data of imaging observations has been described - both |
ideal and real cases.

. In the ideal case, spatial analysis is straight-forward. !

. In the real case, a spatial-temporal joint point process can be
formulated that utilizes photo-switching/binding temporal
characteristics. |

. This model is used to describe a pure birth hidden process of
molecular positions and count as they become activated.

. Hidden process related to observation point process which |
includes false positive measurements. I

. Inference via MCMC can be utilized to recover hidden process.
. Robust method shown on simulations and real data.
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