
P R E S E N T E D  B Y

Sandia National Laboratories is a 
multimission laboratory managed and 
operated by National Technology and 

Engineering Solutions of Sandia LLC, a wholly 
owned subsidiary of Honeywell International 

Inc. for the U.S. Department of Energy’s 
National Nuclear Security Administration 

under contract DE-NA0003525.

Data-driven plastic anisotropy predictions 
using crystal plasticity and deep learning 
models

David Montes de Oca Zapia in1 ,  Hojun L im1 ,  
Taejoon Park 2 ,  Farhang Pourboghrat2

1Sandia National Laboratories
2The Ohio State University

Unclassified Unlimited Release

SAND2023-01490C

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly
owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract
DE-NA0003525.



Structure-Property Linkage: Plastic Anisotropy in Metals

Materials Processing

Change in grain morphology and 
crystallographic texturePolycrystalline microstructure

Accurate strength/formability predictions in metal 
forming

Accurate failure and fracture 
predictions

AHSS Workshop, (Stoughton, 2006) Sandia Fracture Challenge (Kramer et al., 2018)Deep drawing/ Forming simulations
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Structure-Property Linkage: Experimental Characterization of Anisotropy – Al7079

Initial texture
(100), (110) and (111) pole figures from XRD 
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EBSD

Simulated 
Texture
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(100) (110) (111)

(100) (110) (111)

XY plane YZ plane ZX plane

*Performed extrusion simulations that reproduces measured texture & heterogeneous intragranular features

Initial texture

Structure-Property Linkage: A computational Approach to Anisotropy 
Characterization



Structure-Property Linkage: Computational predictions of Yield stress/ lateral 
strain ratio 5

Park et al., MSMSE 2021
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Montes de Oca Zapiain et al., MSE A (2022)

54,880 
training set

8800 orientations

20,000 orientations

20,000 
testing set

4608 orientations

Spread= 10º
:

Spread= 20º
:

Spread= 30º
:

Random spread

Structure-Property Linkage: Using computational approaches to 
generate diverse training sets

Training Textures: 54,480

Testing Textures: 20,00



Materials Science Research Foundation

Surrogate Model: Obtaining Fingerprint Descriptor7

Fourier Series 
Representation:

Colors denote the crystal lattice orientation

GSH representation of Training Textures

GSH representation of Testing Textures

• Orthogonal Basis functions basis functions
• Customized to account for symmetry. 
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Surrogate Model: Neural Network Linkage8

• Architecture of 2 hidden layers with 81 nodes on each layer and 
sigmoid activation function to predict the output with a GSH 
truncation level of l=12.

• Monte Carlo Sampling of 50 samples to obtain the distribution of 
weights, which in turn yielded a distribution of output values. 

• Architecture trained to 5000 epochs. [Blundell et al. (2015)]



Deep Learning Anisotropy Predictions: Hill’s model

Texture quantification

54,880 crystal plasticity simulations 
performed to investigate anisotropic 
yield behavior and to fit Hill’s anisotropy 
yield model

54,880 textures represented by 
generalized spherical harmonics (GSH)

Crystal plasticity 
simulations

Crystallographic textures

Anisotropy Constants

Variation Bayesian Inference 
Neural Network Model 

54,880 training data
20,000 validation 
data 

Crystallographic orientation 
in Euler space
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Distribution of absolute relative 
error on the training and testing set

The mean error = 0.63%
Montes de Oca Zapiain et al., MSE-A 2022



Deep Learning Model: Results10



Deep Learning Model: Comparisons with Experiments & CP 
simulations

Parameterizing Hill’s quadratic anisotropic yield model:

Variation Bayesian Inference Neural Network (VBI-NN) model of Hill’s anisotropy model saves 
computational cost by an order of 1000 compared to crystal plasticity finite element simulations.

Al7079 F G H L M N
Crystal plasticity-FE (10 avg.) 0.5961 0.5788 0.4212 1.6133 1.8279 1.9291

Crystal plasticity (no FE) 0.6078 0.6067 0.3933 1.8898 1.7352 1.7920

Neural Network predictions
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Deep Learning Model: Generalized Anisotropy12

54,880 textures 54 anisotropy parameters: 18 normalized yield stresses 
and 36 lateral strain increments

CP vs. ML error:



Deep Learning Model: Application to Al5053 and 
Al707913

AA5053

AA7079

Initial texture

Initial texture



Deep Learning Model: Application to Cup Drawing FE 
Simulation14

Earing profiles of Al5053Yld2004-18p parameters for AA5053 & AA7079

ABAQUS/Explicit 
4-node shell element
Blank holding force = 8.9 kN
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Energy I-CORPS: Developing Data-Driven Frameworks Collaboratively15
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Energy I-CORPS: Knowledge Sharing with Industry and 
Academia

Industry Lag Time
Up to 6 months and specialized equipment to test materials. 

Forced to Use Existing Data
Use anisotropy measurements from a database of previously performed 
characterizations. 

Capital intensive solution
Resultant simulations are not accurate. Consequently, need to perform forming 
trials. 
As a result, current efforts to predict a material’s anisotropy from initial 
microstructure can cost $2M-$5M/year per plant.

Massive Carbon Footprint
Mechanical test requires wasting tons of materials, transporting materials, and 
disposing of wasted materials.

$



MAD3: Packaging our research work into a easy-to-use 
GUI17

DOE Software Copyright Assertion 
(SCR#2683)

Mac/Windows compatible

Licensing: IP@SANDIA.GOV



18

DOE Software Copyright Assertion 
(SCR#2683)

Mac/Windows compatible

Licensing: IP@SANDIA.GOV

MAD3: Packaging our research work into a easy-to-use 
GUI
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DOE Software Copyright Assertion 
(SCR#2683)

Mac/Windows compatible

Licensing: IP@SANDIA.GOV

MAD3: Packaging our research work into a easy-to-
use GUI
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DOE Software Copyright Assertion 
(SCR#2683)

Mac/Windows compatible

Licensing: IP@SANDIA.GOV

MAD3: Packaging our research work into a easy-to-use 
GUI



Summary

• CP-FEM simulations provide reasonable yield stresses and lateral strain ratio predictions. 

• Deep Learning model was trained from CP data and showed good agreement in anisotropy 
predictions.

• Developed a GUI-based app that instantly predicts plastic anisotropy from initial texture.

• ML–based model provides a convenient & direct link from material’s microstructure to macro-scale 
anisotropy of metals.
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THANK  YOU !

22

David Montes de Oca Zapiain: dmonte@sandia.gov 
Hojun Lim: hnlim@sandia.gov

https://newsreleases.sandia.gov/quality_testing/

mailto:dnonte@sandia.gov
mailto:hnlim@sandia.gov


Yield models23

1. Hill 1948 function (6 coefficients) [1]

2. Yld2004-18p function (18+1 coefficients) [2]

3. CPB06ex2 (18+1 coefficients) [3]

[1] Hill, R., 1948. A Theory of the Yielding and Plastic Flow of Anisotropic Metals, 281-297. 
[2] Barlat, F., Aretz, H., Yoon, J.W., Karabin, M.E., Brem, J.C., Dick, R.E., 2005. Linear transformation-
based anisotropic yield functions. International Journal of Plasticity 21, 1009-1039. 
[3] Plunkett, B., Cazacu, O., Barlat, F., 2008. Orthotropic yield criteria for description of the anisotropy 
in tension and compression of sheet metals. Int J Plasticity 24, 847-866.



Computational microstructure 2: Simulated texture

c.f. XRD

CP-FEM typically assumes uniform 
dislocation distributions and intraganular 

crystal orientations

Perform extrusion simulations that 
reproduces measured texture & 

heterogeneous intragranular features

“Simulated texture”
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Outline

1. Predicting plastic anisotropy using large-scale crystal 
plasticity finite element simulations1,2

2. Predicting plastic anisotropy using Bayesian neural network 
surrogate models3,4

3. Revolutionizing Manufacturing through Machine Learning

 Investigating the effects of heterogeneous microstructural 
features and constitutive models on plastic anisotropy 
predictions using crystal plasticity simulations. 

 Revolutionizing the manufacturing process by eliminating the 
need to perform expensive, timely, and resource heavy 
mechanical materials test by utilizing the power of machine 
learning.

 Developing an efficient data-driven protocol to accurately 
predict plastic anisotropy from initial crystallographic texture 
using Variational Bayesian Inference techniques

25

1Corona et al., IJSS (2021), 2Park et al., MSMSE (2021), 3Montes de Oca Zapiain et al., MSE-A (2022), 4Park et al., (in progress)



Effects of CP hardening model

Slip resistance:

Lee et al., IJP (2010)
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Crystal Plasticity – Finite Element (CP-FE) method

Polycrystalline body FE discretization

Crystal plasticity 
constitutive equations

• Grain-level (mesoscale) approach to materials modeling using 
multiscale strategies – realistic length and time scales

• Explicitly model discrete grains and slip systems based on 
dislocation slip

• Predicts heterogeneous material’s responses resulting from 
microstructure.

• More predictive than macroscopic plasticity models (e.g. texture 
evolution and elastic/plastic anisotropy)

• Slip rate: 

• Slip resistance:

• Dislocation evolution:

• 12 {111}<110> slip systems for FCC

• Hardening matrix:
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2 mm

FE mesh: 3,375,000 (150×150×150) hex elements 
Average grain aspect ratio ~ 7:3:1 along X, Y, Z directions
RVE with ~3,000 grains

XRD (106 data points)

“Sampled texture”

(100) (110) (111)

(100) (110) (111)

28 Computational microstructures 1: Sampled texture



Effects of initial microstructures29



CP-FE simulations

10 realizations of equivalent microstructures

Von Mises stress Equivalent plastic strain Crystal rotations

Deformed microstructures at 20%
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