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2 | Structure-Property Linkage: Plastic Anisotropy in Metals

Materials Processing
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3 | Structure-Property Linkage: Experimental Characterization
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Structure-Property Linkage: A computational Approach to Anisotropy
4 ¥ Characterization

500um

Initial texture

| YZ plae

Simulated =
Texture

*Performed extrusion simulations that reproduces measured texture & heterogeneous intragranular features
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Structure-Property Linkage: Computational predictions of Yield stress/ lateral
strain ratio
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Structure-Property Linkage: Using computational approaches to

generate diverse training sets
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- | Surrogate Model: Obtaining Fingerprint Descriptor

Colors denote the crystal lattice orientation
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Surrogate Model: Neural Network Linkage
» Architecture of 2 hidden layers with 81 nodes on each layer and
sigmoid activation function to predict the output with a GSH
truncation level of 1=12,
* Monte Carlo Sampling of 50 samples to obtain the distribution of I
weights, which in turn yielded a distribution of output values.

* Architecture trained to 5000 epOChS_ [Blundell et al. (2015)] Materials Science Research Foundation



9 ‘ Deep Learning Anisotropy Predictions:

Crystallographic textures

Palycrystalline Texture

54,880 textures represented by
generalized spherical harmonics (GSH)

Crystal plasticity

54,880 cryStimHabionsnulations
performed to investigate anisotropic
yield behavior and to fit Hill's anisotropy

yield model
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Deep Learning Model: Comparisons with Experiments & CP
11 I simulations

.. - . . : . 2 , 2 . e R
Parameterizing Hill's quadratic anisotropic yield nfo:deﬂar}.}.— c:r::) + 60— g, ) + r!'(crl-,»— HJ-;-) + E[Lr:_;-; + Moz, + N n'.;;.-]

Al7079 F G H L M N
Crystal plasticity-FE (10 avg.) 0.5961 0.5788 0.4212 1.6133 1.8279 1.9291
Crystal plasticity (no FE) 0.6078 0.6067 0.3933 1.8898 1.7352 1.7920
Neural Network predictions 0.6225 0.5984 0.4016 1.9128 1.8355 1.8035
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Variation Bayesian Inference Neural Network (VBI-NN) model of Hill's anisotropy model saves
computational cost by an order of 1000 compared to crystal plasticity finite element simulations.



2 | Deep Learning Model: Generalized Anisotropy

94 anisotropy parameters: 18 normalized yield stresses

54,880 textures = and 36 lateral strain increments
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Deep Learning Model: Application to AI5053 and

3 | AI7079
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Deep Learning Model: Application to Cup Drawing FE
14 | Simulation

Y1d2004-18p parameters for AA5053 & AA7079

Material AA5042 AAT079

Input data ACP CPFEM DL  ACP CPFEM DL
m 8 8 8 8 8 8
Cha 04619  0.2464  0.6263 1.0509  0.4302  0.7625
Cis 0.8858  1.1305 0.9573 05351  1.1655  0.1462
Ch 09848  1.0584 09338 11182 11990  0.7825
0;3 1.2299 1.1221 1.2882 1.3488 1.2892 1.2530
Ca 0.3762  0.3040 04930 10426 03258  1.1727
Cio 1.3049  1.3922 11947 0.6300 1.2479  0.4980
Cia 0.7878  0.4345 0.9902 12469 0.5231  1.0684
Css 16519 17722 11685 1.1925 1.7180  1.1753
Cs 0.7217  0.8402 0.7628 14531 0.9517  0.8235
Cha 0.7663 0.6731 08781 0.7356 05512  0.5213
Cra 1.1852  1.2779  0.9823 12552 1.1326  1.0376
Cyy 0.8840  0.5907 0.9893 05836 0.8244  0.1518
Coa 0.3346  0.1738 04572 12041  0.5072  -0.7896
Cy 1.3246 11097 12353 0.7653 1.1498  0.4781
Cia 0.6090 0.2081  0.7023 05736  0.4899  -0.7788
Ciy 1.2503 15792 1.0723 0.89048 1.4978  1.1589
Css 0.3369  0.0008 0.8386 0.8995  0.2875  1.0046
Ces 1.3630  1.2791  1.3378 0.6968 1.2489  1.4670
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s | Energy I-CORPS: Developing Data-Driven Frameworks Collaboratively
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Energy I-CORPS: Knowledge Sharing with Industry and

Academia
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@ Forced to Use Existing Data
tfZl:lﬁt ] Use anisotropy measurements from a database of previously performed

characterizations.

Capital intensive solution

Resultant simulations are not accurate. Consequently, need to perform forming
trials.

As a result, current efforts to predict a material’'s anisotropy from initial
microstructure can cost $2M-$5M/year per plant.

Massive Carbon Footprint Y '41
Mechanical test requires wasting tons of materigs, * ﬂand

dis po Si ng of wasted materials. National Nuclear Security Administration



MAD?: Packaging our research work into a easy-to-use
17 GUI
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MAD?: Packaging our research work into a easy-to-use

s I GUI

material data driven design
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MAD?®: Packaging our research work into a easy-to-

9 | use GUI

material data driven design
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MAD?: Packaging our research work into a easy-to-use |
20 GUI I
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2 | Summary

 CP-FEM simulations provide reasonable yield stresses and lateral strain ratio predictions.

* Deep Learning model was trained from CP data and showed good agreement in anisotropy
predictions.

« Developed a GUI-based app that instantly predicts plastic anisotropy from initial texture.

 ML-based model provides a convenient & direct link from material’s microstructure to macro-scale
anisotropy of metals.
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https://newsreleases.sandia.gov/quality testing/

David Montes de Oca Zapiain:
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23 | Yield models

1. Hill 1948 function (6 coefficients) [1]

f=8%=(G+H)ok + (H+Flajy + (F + G)oZ; — 2(Foyy0,; + G0,,05x + Hoxr0yy) + 2(LoJ, + MoZ, + NoZy)
2. Y1d2004-18p function (18+1 coefficients) [2]
=452 = 8 =" + |5, = 5| + |51 =T +|F2 =T + |52 =5 + 52— Fs| + |3 =T +|F3 =5 + |§3 57| [

S’ and §”; (i=1,2, and 3) are principal components of the linearly transformed deviatoric stresses, s’ and s” .

[Sxx 0 =y, =45 0 0 0 s,
Syy €'y 0 '3 0 0 0 |[5yy

— _ Szrz _ ' _ _Cigl '_L_ng ﬂ ﬂ U D SZZ

S =, 1565 = o 0 0 4 0 0 |5
Sl 0 0 0 0 e 0|5
LSzy 0 0 0 0 0 e Sxy

3. CPB06ex2 (18+1 coefficients) [3]
o 3m & kT N™ (5 — kT D™ 4 (5 — kT + (57 — kIS N™ + (57 — kIS 0™ + (57 — kl57.0N"™ i
f =" = g LS~ kED" + F = kT + (§s = kTS + T KT + 7 — kl)" + (55— k5] |

[Sxx | ¢y €2 €3 0 0 0 sy,
Syy €z € €2 0 0 0 ||5vy

7 = Sis —C's = €y €y 33 0 0 0 || 5z [1] Hill, R., 1948. A Theory of the Yielding and Plastic Flow of Anisotropic Metals, 281-297.
Sxy 0 0 0 cyy 0 0 ||5: [2] Barlat, F., Aretz, H., Yoon, J.W., Karabin, M.E., Brem, J.C., Dick, R.E., 2005. Linear transformation-
Syz 0 0 0 0 s 0 j” based anisotropic yield functions. International Journal of Plasticity 21, 1009-1039.
L5z 0 0 0 0 0 el [3] Plunkett, B., Cazacu, O., Barlat, F., 2008. Orthotropic yield criteria for description of the anisotropy

in tension and compression of sheet metals. Int J Plasticity 24, 847-866.



2 | Computational microstructure 2: Simulated texture

(100) (110) (111)

Texture after the
| first extrusion
deformation

CP-FEM typically assumes uniform
dislocation distributions and intraganular
crystal orientations
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s | Outline

1. Predicting plastic anisotropy using large-scale crystal
plasticity finite element simulations'?

Investigating the effects of heterogeneous microstructural
features and constitutive models on plastic anisotropy
predictions using crystal plasticity simulations.

2. Predicting plastic anisotropy using Bayesian neural network
surrogate models34

Developing an efficient data-driven protocol to accurately
predict plastic anisotropy from initial crystallographic texture
using Variational Bayesian Inference techniques

C N B B

3. Revolutionizing Manufacturing through Machine Learning

Revolutionizing the manufacturing process by eliminating the
need to perform expensive, timely, and resource heavy
mechanical materials test by utilizing the power of machine
learning.

'Corona et al., IJSS (2021), ?Park et al., MSMSE (2021), *Montes de Oca Zapiain et al., MSE-A (2022), 4Park et al., (in progress)

I i Em B



26 ‘ Effects of CP hardening model
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7 | Crystal Plasticity — Finite Element (CP-FE) method

»

Polycrystalline body FE discretization

« Grain-level (mesoscale) approach to materials modeling using
multiscale strategies — realistic length and time scales

» Explicitly model discrete grains and slip systems based on
dislocation slip

* Predicts heterogeneous material’s responses resulting from
microstructure.

* More predictive than macroscopic plasticity models (e.g. texture
evolution and elastic/plastic anisotropy)

™ Crystal plasticity
constitutive equations

Dislocation evolution:

12
dp® = (m Zp-ﬁ - ng“) |d~y|
B=1

Hardening matrix:  pgof — po. 53

12 {111}<110> slip systems for FCC



s | Computational microstructures 1: Sampled texture

XRD (106 data points)

(100) (110)

FE mesh: 3,375,000 (150x150%150) hex elements
Average grain aspect ratio ~ 7:3:1 along X, Y, Z directions
RVE with ~3,000 grains

“Sampled texture”



29 ‘ Effects of initial microstructures
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30 ‘ CP-FE simulations

Eng. stress (MPa)

100 @® Experiment 1
= =Sim. (Homogeneous DD)
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Eng. strain

Table 2. Material parameters used in the sampled texture CP-FEM simulations.

Clonstants Values Clonstants Values Constants Values
Ciy 108.2 GPa 40 10" g1 0 17 = 10" m—*
Cis iil.3 GPa m 0.012 #1 L0 o= 10® m!
Claa 28.5 GPa A 0.4 Ko 28
T 25.7 GPa b 286 =10 m 0 143 MPa

Von Mises stress Equivalent plastic strain Crystal rotations

Deformed microstructures at 20%

10 realizations of equivalent microstructures
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