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> 1 Source Mechanism

Specifically, a seismic source mechanism

- Often represented as a “beachball”, a point on a source-mechanism
plot (Hudson, fundamental Lune), or a 3x3 tensor

- Useful for ... explosion/earthquake

discrimination

well field fracture monitoring

tectonic interpretation =

® Walter 2010 (n=14)
e o | c L © Walter 2009 (n=13)
© Minson 2007 (n=18)
© Foulger 2008 (n=26)
® Ford 2000 (n=32)
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* Linearized inversion assumes

Forward model: Seismic Moment Tensors

. . M M M
knowledge of the time and location of the source S
o ” M;j = h(t) |Myx My, M,,
source is “small” (1 > source area) M M M
. . . zZXx zZy zZZ
data is a sum of M convolutions of M sources with the Earth:
because of symmetry...
M source terms convolution - M. = [Ml: MZ: M3: M4, M5: M6]T
\M [ 1 ‘ /

u;(x',t') = 2 f_

A

seismic data at
station i

u= GM-

T
Gij (x,t: X, t — t')Mj (Xj, t)dt ~<«—— mathematical model
T

e \

The j-th Green’s function The j-th source term

from source location to located at Xj (the epicenter)
station i. This is a function of

the Earth model!!

Moment Tensor, M Sensor Data, u
u=GxM

||near eqUatIOﬂS and Green’s Function, G
solve for M

set up as a system of @ T gy JO

M= G'xu
Tierney, 2019




4 ‘ How are inversions usually done?

pseudo-Green’s

functions scaled by m;

“absorb” source function into the
forward model by convolving it
with the Green’s function

v

T
G;;(t) = jGij(t)S(t—T)dT

=T

six scalar values m

low frequency wavefield insensitive to Earth heterogeneities
the source function is known < this s kind of a big deal

m,
solve for m m; Myxy Myy My,
ms
~u=0m-—— m= m, |7 Mi= Myy Myz /7
ms Mgz
(Mg | i
M_{estimated} ..“,,-/ \\
I/ ’\
l\nrf \
i
- YA
Assumptions \ e
linear =
single point source
source function identical for all components of the MT

s(t) is the source function; assumed, a-priori
for teleseismic data, s(t) is usually

modeled as a delta function

s(t) is the ‘source time function’, but we
usually use ds(t)/dt, which we refer to as the

moment rate function

- works pretty good for low frequency |
teleseismic and/or global scale data
- Because at low frequencies the source

function is virtually a delta function |



Blue Canyon Dome

* 1 kg TNT-equivalent HE source
« 24 m, in a water-filled borehole

Hudson Bay

?ﬁ'
P ;
L ¥ Canada < NEWFOUNDLAND
: ALBERTA : - AND LABRADOR
BRITISH

COLUMBIA 4 . MANITOBA

SASKATCHEWAN

QUEBEC

ONTARIO
PE

WASHINGTONI® & R { i NOVA SCOTIA
g~ 7 v ‘ 3 Y Ottawa

™ M ' ! " * Montreal

~ N } % it Vi

MINNESOTA NI

Toronto

WISCONSIN . NEW YORK

OREGON
L 2 3 1 - " : { MICHIGAN

8 cr
_Chicago .
o p \ New York
ILLINOIS
| INDIANA
1 WEST
VIRGINIA
MISSOURI
KENTUCKY
NORTH
CAROLINA
TENNESSEE

OKLAHOMA SOUTH
ARKANSAS CAROLINA

ALABANA GEORGIA

LOUISIANA
.

FLORIDA
Houston

Gulf of
Mexico

SN, PNNL, EMRTC

e
b—% - -1



¢ | Invert near-source, high frequency explosion seismograms

* Inverted for MT (30 < f< 130 Hz)

» Results are terrible
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Questions:

CLVD I

CLVD

« Why are the results so bad?

* Is this even the correct approach
to invert this type of data? o T-axs

X P-axis




; | For this type of data the source function can be
multi-mechanism and have a resolvable time history

this is how it's normally done

teleseismic scale data

« 0.01>f>0.1

« moment rate function can be approximated as a
delta function at time=0

« moment rate function is assumed to be identical for
each component of the tensor

« source mechanism has no time dependance!

example: pure Yo = "o w = e w m
double couple R My Mys.
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maybe we should be doing it this way

local, high frequency explosion data
« >>1Hz

« moment rate function is a waveform: time

dependence!

« moment rate function is not identical for all

components
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Synthetic example 1: invert data with delta function
¢ ¥ source assumption et s
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Synthetic example 2: invert data with independent, time variable
° " source assumption

actual source terms (gray) fit to data = perfect
estimated source terms (red)

total variance reduction = 100%
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Let's revisit the BCD data, invert with
0 ¥ time-variable source assumption

Inversion specifics:
» three 3C stations
« 30<f<130Hz

« only minimal damping
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Results:

initial P arrival not fit
very well

post-P fits very well
strong isotropic
component
significant on-diagonal
energy at t<0.1 s
energy some off-
diagonals at t~0.3s.

interpretation: initial explosion is
‘pseudo isotropic’, with double-couple
energy arriving later! The source
mechanism changes through time.
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. ‘ Time-evolving source mechanism
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1

) ‘ How do we interpret this?

+ISO

Crack ¢

LVD

1: volumetric
expansion starting at
explosion initiation and
slight opening of pre-
existing bi-wing
fracture
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2: additional opening of
bi-wing fracture at end
of explosion

3: volumetric
contraction due to
elastic rebound of
cavity and borehole

walls
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4: pre-existing
fracture closes and

shears at end of
rebound




i3 I Concluding remarks

- Conventional moment tensor inversion methods may not be appropriate for high
frequency, local-scale seismic data from buried explosions

- Better to invert for the time-variable force couples corresponding to the moment
tensor

- Let the source time functions (or moment rate functions) be independent for
each MT component

- Can decompose the time-varying source functions into source mechanisms and
beachball diagrams which also evolve through time

« Analyzing a small explosion reveals a complex, time-evolving series of source
mechanisms
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