
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly 
owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA-
0003525.

GPU Programming in LAMMPS via 
Kokkos

Stan Moore
Sandia National Laboratories

IPAM New Mathematics for the Exascale: 
Applications to Materials Science

SAND2023-02568CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do
not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly
owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract
DE-NA0003525.



§ Stan Moore
§ One of the LAMMPS code developers at Sandia National 

Laboratories in Albuquerque, New Mexico
§ Been at Sandia for 10 years
§ Main developer of the KOKKOS package in LAMMPS (runs 

on GPUs and multi-core CPUs)
§ Expertise in long-range electrostatics methods
§ PhD in Chemical Engineering, dissertation on molecular 

dynamics method development for predicting chemical 
potential

About Me

2



LAMMPS

§ Large-scale Atomic/Molecular Massively Parallel Simulator
§ https://lammps.org

§ Open source, C++ molecular dynamics code
§ Bio, materials, mesoscale

§ Particle simulator at varying length and time scales
§ Electrons  atomistic  coarse-grained  continuum

§ Spatial-decomposition of simulation domain for parallelism
§ Energy minimization, dynamics, non-equilibrium MD
§ GPU and OpenMP enhanced
§ Can be coupled to other scales: QM, kMC, FE, CFD, …

3



Kokkos Performance Portability Library

§ Kokkos is an abstraction layer between programmer and next-
generation platforms

§ Allows the same C++ code to run on multiple hardware (Intel CPU, 
NVIDIA GPU, Intel GPU, AMD GPU, etc.)

§ Kokkos consists of two main parts:
1. Parallel dispatch—threaded kernels are launched and mapped onto 

backend languages such as CUDA or OpenMP
2. Kokkos views—polymorphic memory layouts that can be optimized 

for a specific hardware (LayoutLeft, LayoutRight, etc.)
§ Used on top of existing MPI parallelization (MPI + X)
§ Used by many codes, open-source, can be downloaded at 

https://github.com/kokkos/kokkos

4C. R. Trott, et al. "Kokkos 3: Programming Model Extensions for the Exascale Era". IEEE Transactions on Parallel and Distributed Systems 33. 4(2022): 805-817.

https://github.com/kokkos/kokkos


Accelerator Packages in LAMMPS

§ Vanilla C++ version 
Accelerator packages:
§ USER-OMP Package: native OpenMP threading
§ USER-INTEL: native OpenMP threading, enhanced SIMD vectorization, 

uses hardware intrinsics, fast on CPUs but very complex code
§ GPU Package: native CUDA and OpenCL support, only runs a few 

kernels (e.g. pair force calculation) on GPU, needs multiple MPI ranks 
per GPU to parallelize CPU calculations

§ KOKKOS Package: tries to run everything on device, supports CUDA 
(NVIDIA GPUs), HIP (AMD GPUs), SYCL (INTEL GPUs), and OpenMP 
(CPU) threading backends via Kokkos library

5



§ Domain decomposition: each processor owns a portion of the 
simulation domain and atoms therein

MPI Parallelization Approach

6

proc 1 proc 2

proc 3 proc 4



§ Used on top of MPI domain decomposition
§ Each thread processes a subset particles in a processor’s 

subdomain
§ Threads run concurrently, no guarantee of order

Multithreading (e.g. OpenMP, CUDA)

7

proc 1

Thread 1
Thread 2



Threading in LAMMPS
§ Typically thread over owned atoms (nlocal)
§ Additionally can thread over neighbors to expose more parallelism, 

but can have overheads. Default for 16k or less atoms with simple 
pair-wise potentials, also used for expensive machine learning 
potentials with low atom counts/GPU

§ SNAP threads over atoms, neighbors, and bispectrum
§ Can collapse multiple loops
§ Typically use 1 MPI rank per GPU
§ If significant parts of the code are not running on the GPU, then 

using multiple MPI ranks per GPU can help (need to enable CUDA 
MPS on NVIDIA GPUs)

8



Thread Safety
§ Threads can execute in any order in a parallel loop, cannot assume 

same ordering as in serial
§ Two threads writing to the same memory location at the same time 

causes a “data race”, e.g. half list when one thread is updating force 
on atom i, another thread is updating force on neighbor j, and i = j

§ On GPUs, protect with atomic operations. Kokkos supports 
individual atomic operations and atomic views

§ On CPUs, atomics are typically slow and thread count is low. 
Duplicating memory for each thread and then summing at the end 
can be faster (but has memory overhead)

§ Kokkos provides both options conveniently via Kokkos::ScatterView 
(uses atomics for CUDA and data duplication for OpenMP)

9



Half Neighbor List

§ With newton flag on, each pair is stored only once, requires 
atomic operations for thread-safety

10



Full Neighbor List

§ Each pair stored twice which doubles computation but 
reduces communication and doesn’t require atomic 
operations for thread safety

11



Newton Option

§ Newton flag to off means that if two interacting atoms are on 
different processors, both processors compute their 
interaction and the resulting force information is not 
communicated 

§ Setting the newton flag to on saves computation but increases 
communication

§ Performance depends on problem size, force cutoff lengths, a 
machine’s compute/communication ratio, and how many 
processors are being used

§ Newton off typically better for GPUs

12



KOKKOS Package Options
§ For CPUs, half neighbor list and newton on typically fastest
§ For GPUs and simple pairwise potentials (e.g. Lennard Jones), 

full neighbor list and newton off typically fastest
§ For manybody potentials (e.g. Tersoff), more work to 

duplicate, half neigh list is typically fastest on GPUs (fast 
hardware FP64 thread atomics on modern GPUs are a game 
changer)

§ These options can be controlled via the package command, 
see https://docs.lammps.org/package.html

§ Package commands can also be invoked on the command line: 
–pk kokkos newton on neigh half

13

https://docs.lammps.org/package.html


Execution Spaces
§ With GPUs, Host execution space = CPU backed (serial or 

OpenMP), Device = GPU
§ All Kokkos pair styles are templated on DeviceType
§ Compiler creates two different versions of the code, one for 

CPU backend and one for GPU backend
§ User can choose at runtime which version to use via the 

LAMMPS suffix command

14



Memory Spaces
§ GPUs typically have high bandwidth memory that is not 

accessible from CPU: pointers to CPU DRAM cannot be 
accessed on GPU; pointers to GPU HBM cannot be access on 
CPU

§ Performance penalty when transferring data between GPU 
and CPU: try to keep memory on GPU as much as possible

§ If a LAMMPS style is not ported to Kokkos it will run on CPU in 
serial and require data transfer every time it is invoked: 
consider porting to Kokkos to improve performance

§ In LAMMPS we use Kokkos::DualView sync and modify on 
Device and Host to transfer data

§ Do not use LMPDeviceType directly, use DeviceType template 
parameter instead, since could be running on Host

15



Parallel Kernel Abstractions
§ Kokkos supports functors, tagged kernels where the whole 

class is the functor, and C++ lambdas (anonymous functors)
§ Functors are the most general but take the most programming 

effort (have to copy all the needed data into the functor)
§ Typically use tagged kernels in LAMMPS for convenience
§ Can use C++ lambdas for simple kernels, but they have several 

limitations
§ Can’t capture this pointer either explicitly or implicitly on GPUs. 

Requires creating a local copy of every class variable that gets 
captured instead

§ Cannot call class device functions within the lambda either
§ Better with C++17

16



How to Optimize GPU Performance
§ Saturate GPU threads (increase number of atoms or expose more 

parallelism)
§ Use caches efficiently (improve memory access patterns and data 

locality, be mindful of view LayoutLeft or LayoutRight)
§ Keep atom data in GPU memory (avoid moving data as much as 

possible, port all kernels to Kokkos, use subview array instead of 
multiple scalar views)

§ Avoid launch latency overhead for small systems (fuse kernels if 
possible)

§ Avoid allocating memory every timestep (overallocate views and 
only grow if size is exceeded, don’t shrink)

§ Watch out for Kokkos view initialization overheads (on by default 
but can turn off)

17



Performance of Different Potentials

18



Typical Debugging Workflow
Much easier to debug on CPU than GPU!
1. Match Kokkos Serial backend (thermo output) with vanilla CPU version

§ Tools: Kokkos debug mode, gdb, valgrind, AddressSanitizer, printf
§ Compiling with “-O0” can help get an accurate backtrace
§ Typical issue: general bugs

2. Match Kokkos OpenMP backend running on 2 or more threads with 
vanilla CPU (or Kokkos Serial)

1. Typical issue: data race or other thread safety issues
2. Tools: Intel Inspector (many false positives), printf

3. Match Kokkos CUDA backend with Kokkos Serial backend:
§ Tools: cuda-gdb, cuda-memcheck, compile with UVM, printf
§ Compiling with Kokkos debug options (adds –lineinfo) or –G can help
§ Typical issues: missing sync/modify for data transfer (find with UVM), thread 

safety issues
§ Turn off fix langevin for determinism

19



Performance Profiling Tools
1. Timing breakdown in LAMMPS log file*
2. Kokkos tools: my favorite tool is space-time-stack, shows 

both kernel times and memory use
3. nvprof (deprecated) for NVIDIA GPUs and rocprof for AMD 

GPUs
4. NVIDIA Nsight Compute and Systems tools (replacement for 

nvprof)
5. gprof, TotalView, etc. for CPU kernels

*Note: for KOKKOS package on NVIDIA GPUs, LAMMPS log file 
timing breakdown won’t be accurate without export 
CUDA_LAUNCH_BLOCKING=1

20



Getting Help

§ Look at LAMMPS documentation, latest version here: 
https://docs.lammps.org/Manual.html

§ Search the MatSci LAMMPS forum archives 
https://matsci.org/lammps, join and post new questions

§ Submit a draft pull request on Github: 
https://github.com/lammps/lammps

§ LAMMPS reference paper: gives an overview of the code 
including its parallel algorithms, design features, 
performance, and brief highlights of many of its materials 
modeling capabilities 
https://doi.org/10.1016/j.cpc.2021.108171

21

https://docs.lammps.org/Manual.html
https://matsci.org/lammps
https://github.com/lammps/lammps
https://doi.org/10.1016/j.cpc.2021.108171


Code Examples

§ Coul/wolf, simple pairwise potential: 
https://github.com/lammps/lammps/blob/develop/src/KOKK
OS/pair_coul_wolf_kokkos.cpp

§ EAM, manybody potential: 
https://github.com/lammps/lammps/blob/develop/src/KOKK
OS/pair_eam_kokkos.cpp

§ PACE, machine learning potential: 
https://github.com/lammps/lammps/blob/develop/src/KOKK
OS/pair_pace_kokkos.cpp

22

https://github.com/lammps/lammps/blob/develop/src/KOKKOS/pair_coul_wolf_kokkos.cpp
https://github.com/lammps/lammps/blob/develop/src/KOKKOS/pair_coul_wolf_kokkos.cpp
https://github.com/lammps/lammps/blob/develop/src/KOKKOS/pair_eam_kokkos.cpp
https://github.com/lammps/lammps/blob/develop/src/KOKKOS/pair_eam_kokkos.cpp
https://github.com/lammps/lammps/blob/develop/src/KOKKOS/pair_pace_kokkos.cpp
https://github.com/lammps/lammps/blob/develop/src/KOKKOS/pair_pace_kokkos.cpp


Thank You

§ Questions?

23


