his paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do SAND2023-02568C
not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia

Exception al service in the national interest National
Laboratories

GPU Programming in LAMMPS via
Kokkos

% Q4K RIDGE
%) ENERGY I"TW JINCTTHER Stan Moore
e e — Sandia National Laboratories
IPAM New Mathematics for the Exascale:

Applications to Materials Science

TR U S GEFARTMERT OiF
' 7 3! EN ERG'V f".'.".'l? Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly
J W owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA-
0003525.

Sandia National Laboratories WIS3ndia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly_
— owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract
@ENEREY NOISA DE-NA0003525.

About Me) i,

= Stan Moore

One of the LAMMPS code developers at Sandia National
Laboratories in Albuquerque, New Mexico

Been at Sandia for 10 years

Main developer of the KOKKOS package in LAMMPS (runs
on GPUs and multi-core CPUs)

Expertise in long-range electrostatics methods

PhD in Chemical Engineering, dissertation on molecular
dynamics method development for predicting chemical
potential

LAMMPS L

= large-scale Atomic/Molecular Massively Parallel Simulator

" https://lammps.org

Open source, C++ molecular dynamics code
Bio, materials, mesoscale

Particle simulator at varying length and time scales
= Electrons = atomistic = coarse-grained = continuum

Spatial-decomposition of simulation domain for parallelism
Energy minimization, dynamics, non-equilibrium MD

GPU and OpenMP enhanced

Can be coupled to other scales: QM, kMC, FE, CFD, ...

Sandia
National
Laboratories

Kokkos Performance Portability Library @.

” Kokkos is an abstraction layer between programmer and next-
“ generation platforms
= Allows the same C++ code to run on multiple hardware (Intel CPU,
NVIDIA GPU, Intel GPU, AMD GPU, etc.)
= Kokkos consists of two main parts:

1. Parallel dispatch—threaded kernels are launched and mapped onto
backend languages such as CUDA or OpenMP

2. Kokkos views—polymorphic memory layouts that can be optimized
for a specific hardware (LayoutLeft, LayoutRight, etc.)

= Used on top of existing MPI parallelization (MPI + X)

= Used by many codes, open-source, can be downloaded at
https://github.com/kokkos/kokkos

C. R. Trott, et al. "Kokkos 3: Programming Model Extensions for the Exascale Era". IEEE Transactions on Parallel and Distributed Systems 33. 4(2022): 805-817. 4

https://github.com/kokkos/kokkos

Accelerator Packages in LAMMPS h) S,

= Vanilla C++ version

Accelerator packages:
= USER-OMP Package: native OpenMP threading

= USER-INTEL: native OpenMP threading, enhanced SIMD vectorization,
uses hardware intrinsics, fast on CPUs but very complex code

= GPU Package: native CUDA and OpenCL support, only runs a few
kernels (e.g. pair force calculation) on GPU, needs multiple MPI ranks
per GPU to parallelize CPU calculations

= KOKKOS Package: tries to run everything on device, supports CUDA
(NVIDIA GPUs), HIP (AMD GPUs), SYCL (INTEL GPUs), and OpenMP
(CPU) threading backends via Kokkos library

) R

MPI Parallelization Approach

= Domain decomposition: each processor owns a portion of the
simulation domain and atoms therein

Multithreading (e.g. OpenMP, CUDA) h) e

= Used on top of MPI domain decomposition

= Each thread processes a subset particles in a processor’s
subdomain

= Threads run concurrently, no guarantee of order

O O @ |proc

Thread 1 ©
Thread 2

Sandia

Threading in LAMMPS) e,

= Typically thread over owned atoms (nlocal)

= Additionally can thread over neighbors to expose more parallelism,
but can have overheads. Default for 16k or less atoms with simple
pair-wise potentials, also used for expensive machine learning
potentials with low atom counts/GPU

= SNAP threads over atoms, neighbors, and bispectrum
= Can collapse multiple loops
= Typically use 1 MPI rank per GPU

= |f significant parts of the code are not running on the GPU, then

using multiple MPI ranks per GPU can help (need to enable CUDA
MPS on NVIDIA GPUs)

Thread Safety) i,

Threads can execute in any order in a parallel loop, cannot assume
same ordering as in serial

Two threads writing to the same memory location at the same time
causes a “data race”, e.g. half list when one thread is updating force
on atom i, another thread is updating force on neighborj, andi=j

On GPUs, protect with atomic operations. Kokkos supports
individual atomic operations and atomic views

On CPUs, atomics are typically slow and thread count is low.
Duplicating memory for each thread and then summing at the end
can be faster (but has memory overhead)

Kokkos provides both options conveniently via Kokkos::ScatterView
(uses atomics for CUDA and data duplication for OpenMP)

Half Neighbor List) .

= With newton flag on, each pair is stored only once, requires
atomic operations for thread-safety

Full Neighbor List) .

= Each pair stored twice which doubles computation but
reduces communication and doesn’t require atomic
operations for thread safety

Newton Option h) o,

= Newton flag to off means that if two interacting atoms are on
different processors, both processors compute their
interaction and the resulting force information is not
communicated

= Setting the newton flag to on saves computation but increases
communication

= Performance depends on problem size, force cutoff lengths, a
machine’s compute/communication ratio, and how many
processors are being used

= Newton off typically better for GPUs

KOKKOS Package Options) i,

= For CPUs, half neighbor list and newton on typically fastest

= For GPUs and simple pairwise potentials (e.g. Lennard Jones),
full neighbor list and newton off typically fastest

= For manybody potentials (e.g. Tersoff), more work to
duplicate, half neigh list is typically fastest on GPUs (fast
hardware FP64 thread atomics on modern GPUs are a game
changer)

= These options can be controlled via the package command,
see https://docs.lammps.org/package.html

= Package commands can also be invoked on the command line:
—pk kokkos newton on neigh half

https://docs.lammps.org/package.html

Execution Spaces) .

With GPUs, Host execution space = CPU backed (serial or
OpenMP), Device = GPU

All Kokkos pair styles are templated on DeviceType

Compiler creates two different versions of the code, one for
CPU backend and one for GPU backend

User can choose at runtime which version to use via the
LAMMPS suffix command

Memory Spaces) o

= GPUs typically have high bandwidth memory that is not
accessible from CPU: pointers to CPU DRAM cannot be

accessed on GPU; pointers to GPU HBM cannot be access on
CPU

= Performance penalty when transferring data between GPU
and CPU: try to keep memory on GPU as much as possible

= |f a LAMMPS style is not ported to Kokkos it will run on CPU in
serial and require data transfer every time it is invoked:
consider porting to Kokkos to improve performance

= |n LAMMPS we use Kokkos::DualView sync and modify on
Device and Host to transfer data

= Do not use LMPDeviceType directly, use DeviceType template
parameter instead, since could be running on Host

15

Sandia
P | National
Laboratories

Parallel Kernel Abstractions

= Kokkos supports functors, tagged kernels where the whole
class is the functor, and C++ lambdas (anonymous functors)

= Functors are the most general but take the most programming
effort (have to copy all the needed data into the functor)

= Typically use tagged kernels in LAMMPS for convenience

= Can use C++ lambdas for simple kernels, but they have several
limitations

= Can’t capture this pointer either explicitly or implicitly on GPUs.
Requires creating a local copy of every class variable that gets
captured instead

= Cannot call class device functions within the lambda either
= Better with C++17

16
-~ ...

How to Optimize GPU Performance L

Saturate GPU threads (increase number of atoms or expose more
parallelism)

Use caches efficiently (improve memory access patterns and data
locality, be mindful of view LayoutLeft or LayoutRight)

Keep atom data in GPU memory (avoid moving data as much as
possible, port all kernels to Kokkos, use subview array instead of
multiple scalar views)

Avoid launch latency overhead for small systems (fuse kernels if
possible)

Avoid allocating memory every timestep (overallocate views and
only grow if size is exceeded, don’t shrink)

Watch out for Kokkos view initialization overheads (on by default
but can turn off)

Sandia
National
Laboratories

17

Performance of Different Potentials

400 1

Millions of atom-steps/sec

o]
=]
=

Pt
=]
=

LJ: single node

1K 4K 16K 64K 256K 1M 4M 16M
Atom count

ReaxFF HNS: single node

1K 4K 16K 64K 256K 1M
Atom count

—a8— Skylake
—— V100-1

—8— Skylake
—&— V100-1

Millions of atom-steps/sec

EAM: single node

[= B]
BN = 2 kN]
tn 9 W & W S uw

—a— Skylake
—&— V100-1
07K 4K 16K 64K 256K 1M aM 1&M
Atom count
SNAP: single node
—&— Skylake
—e— V100-1

Millions of atom-steps/sec

——0—0—0—0— 00009

1K 4K 16K 64K 256K 1M
Atom count

Sandia
P | National
Laboratories

Typical Debugging Workflow

Much easier to debug on CPU than GPU!

1. Match Kokkos Serial backend (thermo output) with vanilla CPU version
= Tools: Kokkos debug mode, gdb, valgrind, AddressSanitizer, printf
= Compiling with “-O0” can help get an accurate backtrace
= Typical issue: general bugs

2. Match Kokkos OpenMP backend running on 2 or more threads with
vanilla CPU (or Kokkos Serial)
1. Typical issue: data race or other thread safety issues
2. Tools: Intel Inspector (many false positives), printf

3. Match Kokkos CUDA backend with Kokkos Serial backend:
= Tools: cuda-gdb, cuda-memcheck, compile with UVM, printf
= Compiling with Kokkos debug options (adds —lineinfo) or —G can help

= Typical issues: missing sync/modify for data transfer (find with UVM), thread
safety issues

= Turn off fix langevin for determinism

19

Sandia
P | National
Laboratories

Performance Profiling Tools

1. Timing breakdown in LAMMPS log file*

Kokkos tools: my favorite tool is space-time-stack, shows
both kernel times and memory use

3. nvprof (deprecated) for NVIDIA GPUs and rocprof for AMD
GPUs

4. NVIDIA Nsight Compute and Systems tools (replacement for
nvprof)

5. gprof, TotalView, etc. for CPU kernels

*Note: for KOKKOS package on NVIDIA GPUs, LAMMPS log file
timing breakdown won’t be accurate without export
CUDA _LAUNCH_BLOCKING=1

20

Getting Help) .

= | ook at LAMMPS documentation, latest version here:
https://docs.lammps.org/Manual.html

= Search the MatSci LAMMPS forum archives
https://matsci.org/lammps, join and post new questions

= Submit a draft pull request on Github:
https://github.com/lammps/lammps

= LAMMPS reference paper: gives an overview of the code
including its parallel algorithms, design features,
performance, and brief highlights of many of its materials
modeling capabilities
https://doi.org/10.1016/j.cpc.2021.108171

21
-~ ...

https://docs.lammps.org/Manual.html
https://matsci.org/lammps
https://github.com/lammps/lammps
https://doi.org/10.1016/j.cpc.2021.108171

Code Examples)

= Coul/wolf, simple pairwise potential:
https://github.com/lammps/lammps/blob/develop/src/KOKK
OS/pair_coul_wolf kokkos.cpp

= EAM, manybody potential:

https://github.com/lammps/lammps/blob/develop/src/KOKK
OS/pair eam kokkos.cpp

= PACE, machine learning potential:

https://github.com/lammps/lammps/blob/develop/src/KOKK
OS/pair pace kokkos.cpp

https://github.com/lammps/lammps/blob/develop/src/KOKKOS/pair_coul_wolf_kokkos.cpp
https://github.com/lammps/lammps/blob/develop/src/KOKKOS/pair_coul_wolf_kokkos.cpp
https://github.com/lammps/lammps/blob/develop/src/KOKKOS/pair_eam_kokkos.cpp
https://github.com/lammps/lammps/blob/develop/src/KOKKOS/pair_eam_kokkos.cpp
https://github.com/lammps/lammps/blob/develop/src/KOKKOS/pair_pace_kokkos.cpp
https://github.com/lammps/lammps/blob/develop/src/KOKKOS/pair_pace_kokkos.cpp

Thank You) i,

" Questions?

