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Evaluating

Goal:

* Computational tools allow high frequency (>1| Hz) seismic simulation;
however, modeling uncertainties limits the accuracy of these results. How
would refining these simulations to higher frequencies increase Bayesian
seismic monitoring capabilities! Do we benefit from higher frequencies?

Bayesian Seismic Monitoring Problem:

* Infer event parameters with uncertainty: Longitude, Latitude, Depth,
Origin Time, Source Time Function, and Moment Tensor

e Observations: Filtered seismic waveforms at various locations

* Uncertainty to integrate: Travel time uncertainty, earth structure
heterogeneity, background noise process
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Evaluation Approach:

*  We use the approach of Bayesian experimental desigh where we
estimate the expected information gain of the Bayesian inference
problem under different low-pass filter frequency assumptions. This
replicates the effect of limiting our simulations to certain frequencies.

* Expected information gain (see Mathematical Methods for definition) is
an information theoretic quantify that broadly measures the change from
the prior parameter distribution to the posterior distribution.

* Algorithm Outline:

|) Create a representative set of seismic sources with different
locations and source properties

2) Simulate high-frequency waveforms for each of these sources and
add background noise from a known noise model

3) For each waveform apply a set of low pass filters with different
cutoff frequencies

4) For each representative event and filtered waveform solve the
Bayesian inference problem to find the posterior distribution on the
event parameters and compute the information gain

5) Average the information gain over all events for each of the filters
to capture the effect of frequency content on seismic monitoring.

This research was funded by the National Nuclear Security Administration, Defense Nuclear Nonproliferation Research and

from LANL, LLNL, MSTS, PNNL, and SNL. Sandia National Laboratories is a multimission laboratory managed and operated by
National Technology &Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the
U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NAOO03525.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholl

0000000000000

Development (NNSA DNN R&D). The authors acknowledge important interdisciplinary collaboration with scientists and engineers

* Domain: 222 km wide and 40km in depth

Setup:

* 2D waveform simulation with an AK135
earth model + stochastic perturbations,
sample rate 200 Hz and f__, 10 Hz.

* Exponentially distributed log,, moment
magnitude factor between -2 to 2 and
Isotropic moment tensor

 (Gaussian source time function with std 0
to 0.1 sec and origin time 0 to 60 sec

* Low additive background noise from

Peterson (1993)

lllustration of filtered waveform with five filters
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* Band pass filtered using sinc filter from 0.05
Hz to max frequency cutoff.

* Simulated 100 representative events

Results:

Panel A — Expected information gain for different cutoff frequencies at different background
noise levels.We see in all cases there is little change in information gain above 4 Hz

Panel B, Panel C, Panel D — Information gain for each representative event for the five filters vs
the true signal power. Background level noise: Panel B SNR50%=1.5, Panel C SNR507%=0.15, and

Cutoff Freq
1.519 Hz
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Panel D SNR50%=0.015. We see similar trends between B, C, D, just shifted to higher gains.
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Conclusio

Discussion:

* Using the framework of Bayesian experimental design we can quantify the
utility of different frequency content in high fidelity seismic simulation for
seismic monitoring.

* Under our assumptions of an AK135 earth model, stochastic perturbations,
and background noise process, we observe that the contribution of higher
frequency information is limited above 4.0 Hz for this regional setup.

Future Directions:

* We would like to extend this analysis to cases where instead of a single
earth model, we have many candidate earth models. This introduces
another source of uncertainty beyond the background noise.

* We made assumptions about the background and source mechanism to
facilitate computation, relaxing the assumptions and using more realistic
models may influence these results.

Quantifying Information Gain :

* Bayesian Inference: p0 D)= 2P \(2)19(9)
p
+ Kullback-Leibler (KL) Divergence KL[p(8|D) ||p(8)] = [ p(6|D) 1ogpf(‘ef) o

measures information due to inference

lllustration of information gain in bits
for three posteriors

Prior 2 Post1 0.5 Bits
Prior = Post 2 1 Bit
Prior = Post 3 1 Bit

* Expected Information Gain (EIG) from a model with filter frequency (S):
Z(S)=EKL[pO|D)[lp@®O)]|D~p(D]|S)]
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Distribution of hypothetical data KL Divergence to measure

p(D|S) = fp(D 10/,8) p(0") do’ information gain
Likelihood model in the frequency domain:

* Let w, be the Discrete Fourier Transform (F) of the predicted waveform at
frequency j for an event characterized by (Lat-Lon L, Depth z, Magnitude

m, Origin Time t,and STF width A7)
wj (L, z,m,to,\) = F;w (L, z,m,t5,A) 1 [s; < f]
* Then the likelihood of the observed Discrete Fourier Transform (&) up to
frequency f given the predicted waveform and white noise is
p ({1 UG | m, to, A) =p (v01 = Real [§1 — w (£, 2,m, t, A)]) X
[ »(0; = Real [¢; — w; (£, 2,m, to, A)]) p (15 = Imag [§; — w; (£, z,m, 10, A)])

p(0|D,S)log d9dD
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