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Abstract—This paper elaborates the results of the hardware
implementation of a traveling wave (TW) protection device
(PD) for DC microgrids. The proposed TWPD is implemented
on a commercial digital signal processor (DSP) board. In the
developed TWPD, first, the DSP board’s Analog to Digital
Converter (ADC) is used to sample the input at a 1 MHz sampling
rate. The Analog Input card of DSP board measures the pole
current at the TWPD location in DC microgrid. Then, a TW
detection algorithm is applied on the output of the ADC to detect
the fault occurrence instance. Once this instance is detected,
multi-resolution analysis (MRA) is performed on a 128-sample
data buffer that is created around the fault instance. The MRA
utilizes discrete wavelet transform (DWT) to extract the high-
frequency signatures of measured pole current. To quantify the
extracted TW features, the Parseval theorem is used to calculate
the Parseval energy of reconstructed wavelet coefficients created
by MRA. These Parseval energy values are later used as inputs to
a polynomial linear regression tool to estimate the fault location.
The performance of the created TWPD is verified using an
experimental testbed.

Index Terms—DC microgrid, Discrete wavelet transform, pro-
tection, traveling wave

I. INTRODUCTION

DC microgrid’s protection is of particular importance to
accommodate a reliable source of power to the microgrid’s
customers. Fast tripping protection schemes in DC microgrids
are required to isolate faults before the internal protection
of power electronics converters operate. Doing so, one can
ensure that these converters are not blocked and can supply
power after the fault is isolated [1]. Most of the existing
fast tripping protection schemes for DC microgrids utilize
numerical techniques to extract traveling waves (TWs) and
detect faults [2]. The TW-based protection of DC microgrids
has been addressed in [3]-[7]. In [4], the fault detection and
location of faults in DC microgrids are addressed by applying
signal processing techniques on current and voltage TWs.
These techniques extract the TW waveshape features such as
the time constant. Based on these features, the article generates
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a look-up table that maps each extracted feature to a fault
scenario. In [3], the TW features are extracted using multi-
resolution analysis (MRA) which is based on discrete wavelet
transform (DWT). These features are later used as inputs to
machine learning techniques for fault detection, classification,
and location. The fault detection and classification is con-
ducted using support vector classifiers. The fault location is
performed using Gaussian Process regression. The approach in
[3] requires many simulation studies to gather the data required
for training the machine learning algorithm. This issue has
been addressed in [5] where the physical properties of TWs
generated for different fault locations are used to generate data
required for the training of machine learning algorithms.

In this paper, the previous work of authors in [5] is
implemented on a commercial digital signal processor (DSP)
board. In the developed TW Protection device (TWPD), first,
the DSP board’s ADC is used to sample the input at a | MHz
sampling rate. The Analog Input card of DSP board measures
the pole current at the TWPD location in DC microgrid. Then,
a TW detection algorithm is applied to the output of the ADC
to detect the fault occurrence instance. Once this instance is
detected, multi-resolution analysis (MRA) is performed on a
128-sample data buffer that is created around the fault in-
stance. The MRA utilizes discrete wavelet transform (DWT) to
extract the high-frequency signatures of measured pole current.
To quantify the extracted TW features, the Parseval theorem is
used to calculate the Parseval energy of reconstructed wavelet
coefficients created by MRA. These Parseval energy values are
later used as inputs to a polynomial linear regression tool to
estimate the fault location. The performance of created TWPD
is verified using an experimental testbed.

II. COMPONENTS OF TWPD IN THE DSP BOARD

TWPD utilizes the pole current locally measured at its
location to find the fault location along the cable. We have
implemented the TWPD on a Texas Instrument’s (TI) DSP
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Fig. 1. The block diagram of TWPD in DSP board.

board called TMS320F28379D which is a member of the
C2000™ microcontroller (MCU) product family. These boards
are mostly used within embedded control applications. The
F28379D dual-core MCU design is based on the TI 32-bit
C28x CPU architecture. Each core is identical with access to
its own local RAM and flash memory, as well as globally
shared RAM memory. Sharing information between the two
CPU cores is accomplished with an Inter-Processor Commu-
nications (IPC) module. Additionally, each core shares access
to a common set of highly integrated analog and control
peripherals, providing a complete solution for demanding real-
time high-performance signal processing applications, such as
digital power, industrial drives, inverters, and motor control.
The block diagram of the different components required to
implement the proposed fault location algorithm in the DSP
board is illustrated in Fig. 1. In the following, each of these
blocks is elaborated in detail.

A. Signal Sampling

The initial step is to perform high-fidelity sampling on
the measured signal. We have implemented this step by
considering a 1 MHz sampling rate on the pole current that is
fed to the Analog Input (AI) card of DSP. The utilized DSP
has two cores. Each core is associated with a co-processor
namely the Control Law Accelerator (CLA). This enables
DSP to perform parallel Floating-Point Unit (FPU) processing
[8]. The CLA can enhance DSP’s bandwidth for computing
purposes by allowing CPU to focus on other tasks rather than
reading results from the ADC. The ADC peripheral has two
sampling resolutions of 12 or 16 bits. It can also have 16 or
8 different ADC channels, respectively. This depends on the
sampling resolution. The CLA then reads 128 samples from
ADC samples and then raises a flag to inform CPU when
128 samples are collected. These 128 samples are stored in a
moving buffer as a new sample is read. The DSP has an FPU
library that is capable of the execution of optimized complex
mathematical operations. In this paper, we have used the signal
convolution operator for implementing DWT and MRA. The
detailed process on how ADC and CLA are configured is
described in [9].

B. Traveling Wave Detection Algorithm

Once the measured pole current is properly sampled and a
128-sample data buffer is created, the TW detection algorithm

is run to detect the fault incident. The algorithm requires
knowing the fault instance in order to create an appropriate
data buffer for the MRA stage. Once a fault occurs, the pole
current experiences a rapid change. We utilize the discrete
wavelet transform (DWT) decomposition and apply it to the
128-sample data buffer. The DWT uses Daubechies8 as the
mother wavelet, which has a filter length of 16. For the
sampling frequency of 1 MHz, DWT decomposition results in
detail coefficients that correspond to the frequency range from
250 to 500 kHz. According to [9], since the convolution library
in DSP applies zero padding, one needs to account for the
effect of zero padding to avoid the edge effect on the processed
data. To this end, in every data buffer, the algorithm adds the
last 15 samples from the previous buffer to the beginning of the
current buffer. This results in 158 coefficients after performing
convolution. The algorithm then discards the first and last 15
samples. However, for the first data buffer that DSP reads,
since no previous buffer is available, the algorithm removes
the first and last 15 samples from the results of the convolution
stage and then zero pads the beginning of the signal with 15
zeros. In the final stage, downsampling by the order of two is
applied which results in 64 coefficients. The algorithm finds
the maximum of these coefficients and compares it against a
threshold to detect the TW incident. Since this TW incident is
found on the downsampled data, the actual TW incident can
be found by multiplying this value by two.

C. Preparing the Input to MRA

Once the TW incident is detected, a data buffer is created
for the MRA stage to calculate MRA coefficients. A signal of
length 128 values is given as an input signal to calculate its
wavelet decomposition and reconstruction. In our implemented
approach, the data buffer includes 64 data samples before the
TW detection instance and 64 samples after the TW detection
instance. If the TW instance ID is less than 64, samples from
the previous data buffer are required in addition to the samples
from the current buffer. If the TW ID is greater than 64, one
requires to use data from next data buffer, which creates a
delay. If the TW ID is exactly 64, the current 128-sample
buffer is used. For pole-to-pole (PP) faults at 200 m of a cable,
the created data buffers are shown in Fig. 2.
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Fig. 2. 128-sample buffers created for MRA.

D. Extracting the High-Frequency Features of the Measured
Current

In order to effectively extract the high-frequency features of
measured pole current, this paper utilizes the MRA approach.
The details of MRA is provided in [3], [5]. MRA can find
wavelet coefficients of a signal for different frequency ranges
using a set of low-pass and high-pass filters. The MRA will
consist of two separate stages, namely wavelet decomposition
and wavelet reconstruction. The mother wavelet Daubechies8
is used, which has a filter length of 16. After the MRA’s
reconstruction coefficients are calculated, they are passed
through the Parseval energy calculator to effectively quantify
these coefficients. Parseval energy can correlate the wavelet
reconstruction coefficients to the measured signal energy spec-
trum. The details of Parseval energy calculation is provided
in [3], [5]. Herein, six MRA frequency levels are used to
incorporate an adequate portion of the frequency spectrum for
extracting fault current features as the fault location changes.
For the six frequency ranges (i.e., Level 1 to Level 6), Level
1 denotes the highest frequency range. For each frequency
range the corresponding Parseval energy value is calculated.
The Parseval energy of a specific MRA constructed coefficient
d;, at m*" time step after an initial time ¢, is calculated as

Eprsi(m) =Y _ di(to + jAt), (1)

j=1
E. Regression Engine

The regression engine uses the six Parseval energy values
to estimate the fault location along the cable. In order to
effectively implement the regression engine in DSP board,
we utilized polynomial linear regression as the regression
engine. Polynomial regression is technically a special case of
multiple linear regression that can be used to model nonlinear
functions. This regression tool models the relationship between
the independent variable x and the dependent variable y and
is formulated as an n'” degree polynomial of x. In the case
of fault location on a DC cable, we use six levels of Parseval
energy values as the input and the output is the fault location.
This multi-input polynomial regression of 3rd degree can be
formulated as

y=bo+ 2?212?:1bijxij 2

where x1, zo, x3, 24,25, and xg are the six levels of Parseval
energy values and y is the fault location. by and b;; are the
polynomial model coefficients.

III. VERIFICATION RESULTS

In order to verify the performance of TWPD on a DSP
board, the simulated pole current signals in PSCAD/EMTDC
are played back on another DSP board. The playback DSP
board’s analog output (AO) is connected to the analog input
(AD) of the DSP with TWPD. The experimental testbed is
shown in Fig. 3. The test circuit is adopted from [5] and is
shown in Fig. 4. The parameters of this microgrid are provided
in [5]. The created TWPD is located at R25 protecting the
cable from Bus 2 to Bus 5. We have utilized the training
approach proposed in [5] to train the polynomial linear re-
gression engine. The training and testing datasets are created
based on PP faults at every 25 m of the cable length. Out of
this set, the faults at 150 m, 250 m, 350 m, ..., are used for
testing the TWPD. In fact, the positive pole current measured
at R25 in PSCAD/EMTDC is played back on playback DSP.
The TWPD DSP reads the fault current from the AO card
of the playback DSP. To verify the performance of MRA
and Parseval Energy calculator, the results gathered from the
DSP board are compared against the results from different
Python libraries for three levels of MRA for a PP fault at
350 m. These comparisons are summarized in Figs. 5 to 7.
For the reconstruction coefficients in Figs. 5 to 7, “sigconv”
denotes the “convolve” library of “’Scipy”; “npconv” denotes
the convolve library of “Numpy”; “wavedec” denotes the
Python’s wavelet transform tool. Fig. 8§ compares the Level
1 Parseval energy value calculated by DSP against the value
calculated in Python. As seen, the created code in DSP can
effectively calculate the MRA reconstructed coefficients and
Parseval energy values. DSP uses the 111*" data buffer index
number of Pareval Energy values as inputs to the polynomial
linear regression tool. The Parseval Energy Testing of the
created regression model resulted in 1.64% of mean absolute
percentage error. The estimated fault locations by the DSP
against the actual fault locations are illustrated in Fig. 9.

Fig. 3. Experimental testbed with two DSP boards.
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Comparison between Parseval Energy results of Level 1

—— Using Python

5009 —-- Using DSP board

400 4

300 A

200 A

Parseval Energy

100 A

0 20 40 60 80 100

Data buffer index number

Fig. 8. Comparison between Parseval Energy of frequency level 1 collected
from DSP board versus Python.

Polynomial regression

2000 A

—— Actual fault location
*  Predicted fault location

1750 A

1500 A

1250

1000 -

750 A

Fault location (m)

500 A

250 4

=
N A

w 4

g

o

7 8

9 10 11 12 13 14 15 16 17 18

Testing datasets

Fig. 9. Fault location prediction by polynomial regression.

IV. CONCLUSION

In this paper, a TWPD for DC microgrids is implemented in
a commercial DSP board. The DSP board’s ADC is configured
to sample the input at a 1 MHz sampling frequency. A TW
detection algorithm based on DWT is developed to detect the
fault occurrence instance. Once this instance is detected, MRA
is performed on a 128-sample data buffer that is created around
the fault occurrence instance. The Parseval energy values of
MRA coefficients are used as inputs to a polynomial linear
regression tool to estimate the fault location. The performance
of created TWPD is verified using an experimental testbed
which shows that the created TWPD on a commercially
available DSP board is able to locate faults with high accuracy.
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