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> | What is a (vector) bundle? @i

Vector Bundles £
m A vector space V(x) attached to each point x of a .#
m Can define a dual bundle E* to a vector bundle E

m Key spaces for continuum mechanics: real bundle R, pseudoscalar bundle V,
tangent bundle T, cotangent bundle T*

m Can define bundle metric gg: gives an inner product on the bundle
Connections X
m Defines how to compare elements of a bundle at different x

m Connections are used to define derivatives, for example the covariant
derivative Vx; also known as parallel transport

m Key connection for continuum mechanics: Levi-Civita connection for T on .#
(the unique torsion-free metric-compatible affine connection)

m Example: affine connections on T define the Christoffel symbols |
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3 I What are (vector) bundle-valued differential forms? @i

(vector) bundle-valued differential form (BVDFs)

m x& € AK(E) and Xk € A%(E): smooth section of the tensor product bundle of
vector bundle E with the kth exterior power of the cotangent bundle T~
m Note AX(E) := AK(E ® W) (there are really only AK(E) forms)

m scalar-valued differential form (SVDFs) are just special cases of BVDFs with
E=RorE=V
m Af = AK(R)
m A= AKR) = A (R W) ~ AF (V)

Why do SVDFs and BVDFs matter?

It turns out many physical quantities are best understood* as differential forms
(see Tonti2013,Tonti2014,Gilbert2023,Eldred2023) ex. 3", n°, D2, B2, u%, m%.
*under changes of coordinates and orientation, they transform as BVDFs |

April 18, 2023



+ | What is exterior calculus? @i

The calculus (integration, differentiation, products, etc.) of differential forms!

m SVDF exterior calculus is somewhat familiar:
m exterior derivative d, Hodge star *, wedge product A, topological pairing ((,)),
inner product (,), Lie derivative L, flat b, sharp
m BVDF exterior calculus is less familiar, but same sort of operations with
similar properties can be defined:
m (covariant) exterior derivative dx, Hodge star %, topological pairing <<’>>x’ inner
product (,),, Trace T, Inclusion L, flat b1, sharp £

m BVDF exterior calculus reduces to SVDF exterior calculus when E =R or
E=v

m Exterior calculus is the natural language for developing geometric mechanics
formulations (variational, Hamiltonian, metriplectic, etc.)

m |t also underlies mimetic discretizations, such as discrete exterior calculus
and finite element exterior calculus
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5 | What is (SVDF) discrete exterior calculus?

A discrete version of exterior calculus with the "same" properties!

m See Hirani2003,Eldred2021,Eldred2022 d d d

m Specifically, a Double deRham complex Wo > Wy 5 Wy 5 Wy
method: a type of mimetic spatial l * i* *
discretization, ex. V-Vx =0, VxV =0, WE T w2 Iyt o
V*= -V, etc. d d d

m introduce a pair of grids (straight and twisted), one for each type of differential
form, with a deRham complex on each grid

m Connect complexes through the Hodge star *

m Explicit codifferential 6 operator defined using exterior derivative d and Hodge
star %: § = (—1) %d*

m Explicit inner product (,) operator defined using Hodge star * and wedge
product A: (a,b) = [aA*b
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s | Main ideas behind (SVDF) DEC

m Two grids that are topologically dual* (primal
and dual i.e straight and twisted): 1-1
relationship between k-cells on one grid
(0O=points, 1=lines, 2=faces, 3=volumes) and
n— k-cells on the other grid

m Discrete k-forms are real numbers
associated with a k-cell

m Key operator is the Hodge star %; uses 1-1
relationship between k-cells and n— k-cells;
highly grid geometry specific (ex. Voronoi,
barycentric, etc.)

m Inner product (,) and codifferential 6 defined
using Hodge star *

*with boundaries things get more complicated but can still be done consistently, see Eldred2021 I
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Approach to BVDF DEC

Approach: Retain main ideas from SVDF DEC

m Focus on R”, specifically tangent T and cotangent bundles T*
m Metric g and connection X are trivial for T and T in R"; T and T* have a
position-independent, global basis
m Should reduce to SVDF DEC when E=Ror E=V
m Here we will show:

m Discrete bundle-valued forms x& and yk
m (Covariant) exterior derivative dx

m Discrete wedge product A

m Discrete Hodge star *

m Discrete pairings ((,)), and (,),

m Draws inspiration from Yavari2008, Angoshtari2013, Boom2022




s | Discrete bundle-valued forms x& and y

m Discrete scalar-valued forms x* and y* are 1
real number attached to each k-cell (i.e.
co-chains)

m Therefore, bundle-valued forms x& and yk
are r real numbers attached to a k-cell,
where r is the dimension of the vector space
E,for Tand T*we have r=n

m Key here: "twistedness" is a property of the
whole form, not the bundle or form part
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o | Discrete covariant exterior derivative dx @i

Covariant exterior derivative is
dx : AK(E) = NH1(E) (1)

The SVDF DEC discrete exterior derivatives Dy and Dy are weighted (—1,1) sum
of "nearest-neighbor" k — 1 cells with weights given by orientations, ex. 1-forms in
2D:

(D2X1)c: Z X;nec (2)
ecEC(c)

Define BVDF DEC discrete exterior derivatives D£ and DE as component-wise
versions of SVDF DEC operators, ex. T-valued 1-forms in 2D:

(Dgx;’)c,r: Z (X1T)e,rnec (3)
ecEC(c)

Relies on trivial connection X7/X% for T and T* in R3 '
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10 | Discrete wedge products A |

Continuous A is
A NE(E),N(Eo) — N (Eg)

where a canonical trivialization exists for Ey ® E; — Es.

Important canonical trivializations
BERE"-R E*®E—R
B E®R — E (special case R®R — R)
BEVRWV R
BERUVV VQR >V

These trivializations exist independent of the choice of a bundle metric g¢.
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Discrete wedge products A

m Here we focus on A for E-valued straight k-forms and E*-valued twisted
n— k-forms, which makes E; = R-valued twisted n-forms

m The SVDF DEC A for this case is just scalar multiplication on each k-cell,
relying on the duality between k-forms and n— k-forms of opposite type

Xk /\hynfk — ij,nfk (5)

m The BVDF DEC definition is just the natural extension of this: perform a scalar
product between the r components of T and the r components of T* at each
k-cell

XAy 7" =X YT (6)

m This definition of A relies on trivial metric g7/g% for T and T* in R3




12 I Discrete Hodge star x |

The Hodge star is: y
% AK(E) — A'=K(E*) (7)

The SVDF DEC Hodge stars Hy and Hy are defined as weighted sum of (n— k)
cells for some sparse set of weights Hk7n1k or Hn—k,;?’ ex Hy:

(Hix" )k = Z;()N(g”_;l:Hk,Hk (8)
ni

m Uses duality between k-form and (n— k)-form on opposite grids.

m Many different Hodge stars in the literature ex. Voronoi (also known as
diagonal or circumcentric), Galerkin, barycentric. Choice imposes restrictions
on the grid geometry and/or topology.
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13 I Discrete Hodge star * Il

Just as for covariant exterior derivative, define BVDF DEC Hodge star Hf and HE
using SVDF DEC Hodge star component-wise, ex H/:

(HZX};')k,r - Z (ig’:k)nlk,er,n:k ©)

n"k

m Relies on trivial metric g7/g% for T and T* in R”

m This will inherit all of the key properties of the SVDF DEC Hodge star, such as
Symmetric Positive Definiteness

Often, define some Hodge stars implicitly (requires invertible Hodge stars) such
that

HH, = (—1)k0=R)) (10)

which is discrete analogue of %%(—1)k(7=k), |
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14 | Discrete topological pairing (Poincaré duality) ((,))

Continuous definition is in terms of A and [:

X

((akbp*)) = [akiby* (11)
The SVDF DEC definition (based on A from above) is:
((aBro)) = Y b (12)
K
((&0mF) ) = Y (1) Pgibnk (13)
K
The BVDF DEC definition (based on A from above) is:
((a5.B7F)) = Y(ah)- (BF5)n (14)
x k
((@5055)) = T (-1 @) (074, (15 |
x K
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15 | Discrete inner product (, ),

Continuous definition is:
(afbl) = / al Azxbk (ak.bl) = / &k ATB
X X
The SVDF DEC definition (based on A and H,/H from above) is:
(XEy%) = OOTHY, (R675) = (O TR
The BVDF DEC definition (based on A and HE/HE from above) is:

(xhyh) =0THIYE (K595) = () REE) TRIEE

with similar definitions for T*-valued forms.
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16 I Conclusions and Future Work

Summary
m Extended discrete exterior calculus to (vector) bundle-valued differential forms
m Focused on fundamental exterior calculus operators: dx, %, A, (,),, ((,)),

m For R3, where tangent and cotangent bundles are flat and a global uniform basis
exists

Future Work
m Transport operators for arbitrary BVDFs i.e. Lie derivatives LuoT , interior
products i, wedge products A; and associated raising/lowering operators: T,
L, b1, #1, 0, §
m Extension to arbitrary manifolds i.e. non-flat bundles: will require a discrete
connection X

m Application to momentum-based formulations of fluids, especially charged
fluid models
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19 I Continuum mechanics models

Develop continuum mechanics models (CMMs) using geometric mechanics
formulations (GM, ex. variational Hamiltonian, metriplectic, etc.):

ox 0 0.7
5/g[x]:o =300 M) %
Predicted quantities x used to build CMMs: momentum, velocity, stress, (mass)

density, entropy, electromagnetic fields, etc.

Fundamental questions:

(1) What types of mathematical objects should be used to represent x?

(2) What mathematical language should be used to build CMMs?

Traditional answers: (1) scalars, vectors and tensors (2) vector/tensor calculus
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o0 | Limitations of vector/tensor calculus

Use of vector/tensor calculus starts to break down when considering:
m arbitrary manifolds and dimensions
m coordinate system independent expressions

Additionally, transport behaviour is tricky and unintuitive:

ap B an _
a—t—i—V‘(pu)—O a—t+u-Vn—0
%T_|_Vm.u+m.Vu+mV.u:0 %?—FVX(BXU)—G—UV-B:O

How do we resolve these issues?

Use exterior calculus instead but keep GM formulations:
(1) physical quantities = differential forms (2) language = exterior calculus
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21 | What is exterior calculus?
The calculus of differential forms!

Integration, differentiation, etc.
Why use differential forms?

Strong argument (see Tonti2013, Tonti2014) that physical quantities should be
associated with (oriented) geometric entities (=differential forms). See also
Frankel2011, Kanso2007, Gilbert2023.

What is a differential form?

m scalar-valued differential form (SVDFs) x¥ € A and %k € AX: smooth
section of the kth exterior power of the cotangent bundle T*; ex. p”, n°, D?,
B2, ...

m (vector) bundle-valued differential form (BVDFs) xk € A¥(E) and
X& € AK(E): smooth section of the tensor product bundle of vector bundle £
with the kth exterior power of the cotangent bundle T*, ex. u%, m1., ...

m Typical vector bundles: R (=A¥), ¥ (=AK), T, T*
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How are "vectors" represented in exterior calculus?

m There are four "vector proxies" in exterior calculus: x%, 7., x' and X"

m Related through various operations such as g, %, b/b1, f/f1, etc. using volume
form "

m Look the "same" in vector calculus in R3, distinct in exterior calculus: source
of much confusion
m All play a key role in geometric mechanics formulations, as various measures
of fluid flow:
m ud = convective velocity (Euler-Poincaré and Lie-Poisson)
m 1}, = 24 = momentum (Euler-Poincaré and Lie-Poisson)
T
m v! = absolute velocity? circulation velocity? etc. (Curl-Form)
m F§ = 2% = mass flux (Curl-Form)
m This fits with the discuss in Tonti2013/Tonti2014 about the dual nature of
velocity, see for example FLU3 (=SVDFs) vs. FLU6 (=BVDFs) in Tonti2014
m Connects with question of what pu is? Mass flux or momentum density?

Also have "pseudovector proxies”: X%, x7,, X! and x"~', not discussed here

o
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Operators on SVDFs and BVDFs

m Covariant exterior derivative dx, reduces to d for SVDFs and Vx for vector
fields

m Covariant wedge product A, reduces to A for SVDFs

m Covariant Hodge star %, reduces to * for SVDFs

m Inner product (,),, reduces to (,) for SVDFs

m Topological pairing ((,)),, reduces to ((,)) for SVDFs

m Lie derivative L , reduces to Lie bracket for vector fields
m Diamond operator ¢, (formal) adjoint of Lie derivative

(8 * L b)) = - <u%,é”*k<>bk>x (19)

<<aE*k, Lyo b >>X — <u°T,5’éIk<>b’g>X (20)

. 3N—K Rk gn an—K wk v
o: @ " b — X7, and ag, ", bt — X7,




24 | Geometric Mechanics Formulations @i

Assume fluid can be characterized by:
m velocity uy € A°(T)
m an arbitrary number of simple advected SVDF’s a € {A¥,A¥} and BVDF’s
b e {AK(T),AK(T*),AK(T),AK(T*)}:

Jda db
—; Tlwa=0 —¢ Hlub=0 (21)

Dynamics are given by semi-direct product theory (special case of matched pair
dynamics for simple advected quantities):

m Euler-Poincaré (Variational) Formulation

m Lie-Poisson (Hamiltonian) Formulation

m Curl-Form (Hamiltonian) Formulation (not shown)
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25 | Euler-Poincaré (Variational) Formulations
Lagrangian .#[u$,a,b] and Action .#[u},a,b] = [;2.&

17
5.7=6[ £=0 (22)
b
subject to the constraints
Sul = a{R+Llput (23)
ba = —lpa (24)
6b = —Lnb (25)
Introducing the momentum mj. = g% e A"(T*), the (constrained) variational
T
principle (22) gives
a ., - 0L 0.
aftmT*-f-LuonT*—Zgoa—Zﬁob:O (26)

April 18, 2023 This is basically Holm1998, written in the language of BVDFs. 1-form density = covector-valued twisted volume form.



26 | Lie-Poisson (Hamiltonian) Formulations

Use Legendre transform (assume invertible) to go from u$ to mf.

HImY.. a.b] = ((Mf..u})), —Z[u}.a.b] @7)
The functional derivatives of H are
S6H 0 S6H 8% SH 0%
—_— = _— = —— _— 2
sy, T 5a  oa 5 ob (8)

Thus we can write the Euler-Poincaré (26) and transport (21) equations as
d

8tmT*+L o mT*+Z5 +Z—<>b =0 (29)
Jda
E‘FL&?: a ==~ (30)
ab-H_ SH b =0 (31)
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Velocity v! and Kelvin-Noether Form
Consider v! = instead of m}.. Define a momentum straight 1-form m' as
m! = (¥} ) = Tmd. (32)
where Mm%, =mY. A {i". Note that m3, = #; *m7..

Then assume the existence of a total mass density twisted n-form D" that is a
linear combination of advected densities a":

D"=Y ¢l (33)
with associated straight 0-form D° = % D".
Using m! and D°, the velocity straight 1-form v is

1 " 1
vi :ﬁ/\(*mp)b:ﬁ/\ml (34)

Algebra yields Kelvin-Noether form of the Euler-Poincaré equations (26)

P §& 5.
DO/\<atv1+LuoTv1>—Z(saokna—z(Sboknb:O (35)

o




28 | Curl-Form' (Hamiltonian) Formulation |
Let s7|v!, a,b] = H[MY., a,b], use chain rule along with (34) to get

s [1 SH ] 1 H .,
v _*{A(&h;)} =0 Memr) T P
s 6H+aDnAI 4 _SH  ex oM
5an FEZM v ba  da b ~ b
8
The equations of motion for advective velocity U2 = { (5 A %’f)} = 52 are:
v T
ovt 1 OH
Qt +|U0 dV +ZD0 /\[ 6 kna]_Zﬁ/\[EOknb] = 0
Jda
8b

wiwz  AlSO known as vector-invariant or Carter-Licnerowicz




29 I Curl Form (Hamiltonian) Formulation Il

, YL ,
Alternatively, for mass flux F§ = [* 5'V1 )} the equations are:

Jvl dv! 5% 1 oA

8t +|FOW ZDO 63 Okna]_zﬁ/\[Tboknb] — O (41)
Jda a
db b
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30 | Scalar/Vector Proxies- SVDFs |

Let’s count the number of degrees of freedom for various scalar-valued differential

forms and group them, for n = 3 (similar results for other n)

Scalar-Valued Forms (Straight or Twisted)

| Form | Tensor Equivalent | Number of Dofs | Proxy Type | Examples |

x° (0,045) 1 Scalar T.n
x! (0,145) 3 Vector vV,H E
X2 (0,245) 3 Vector F,B,D
x3 (0,345) 1 Scalar p

How do we convert between scalars/vectors and various proxies?

Use wedge products A, interior products i, Hodge stars %, flat b and sharp #

operators

April 18, 2023
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31 | Scalar/Vector Proxies- SVDFs Il

Given vector field x‘T (i.e. straight vector-valued 0-form), can get straight 1-form x'
(circulation) and twisted n— 1-form X"~ (flux):
x'o= (x§) (44)
1_: m~n
X = Ix(;_[.L (45)

~~

)?n71 —

*?

Given pseudovector field X (i.e. twisted vector-valued 0-form), can get twisted 1-form X'
(circulation) and straight n— 1-form x™1 (flux):
X' = |
n-1 _ =~31_: ~n
X = *xX = If(?—"l (47)

Given scalar x? (i.e. straight 0-form), can get twisted volume form X" (density):
0= xOAf" (48)

X" =%x
Given pseudoscalar X° (i.e. twisted 0-form), can get straight volume form x” (density):

x"=%X"=x0A " (49)
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32 | Vector/Tensor Proxies- BVDFs |

Let’s count the number of degrees of freedom for various bundle-valued differential
forms and group them, for n = 3 (similar results for other n)

Bundle-Valued Forms (Straight or Twisted, T or T%)
| Form | Tensor Equivalent | Number of Dofs | Proxy Type | Examples |

x% (1,045) 3 Vector u
xh (1,145) 9 2-Tensor

X% (1,245) 9 2-Tensor T
x5 (1,345) 3 Vector m

How do we convert between vectors/tensors and various proxies?

Use covariant wedge products A, covariant Hodge stars %, covariant flat b1,
covariant sharp f1, trace T and inclusion T operators

April 18, 2023
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Vector/Tensor Proxies- BVDFs Il

Given a straight vector-valued 0-form x!., can get straight 1-form x' (circulation),

the twisted n— 1-form X"~ (flux) and the twisted covector-valued n-form X2.:

1 0
x = (x7)
)~(n—1 = ‘7(X1 =150 [L”
X7, = ixh=x(x")
T = T=

The twisted covector-valued n-form x7, can be decomposed into a straight
covector-valued 0-form x9. and the volume form ji" as

ir}* — x(%'* /\ﬂn
Using the trace/inclusion operators, the following relationships hold

1 _ iy 0 _ 7yt
X =TX3 <> X7 =1x

X" =T R o X =T %"

o




