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2 What is a (vector) bundle?
Vector Bundles E

A vector space V (x) attached to each point x of a M

Can define a dual bundle E⋆ to a vector bundle E
Key spaces for continuum mechanics: real bundle R, pseudoscalar bundle Ψ,
tangent bundle T , cotangent bundle T ⋆

Can define bundle metric gE : gives an inner product on the bundle
Connections XE

Defines how to compare elements of a bundle at different x
Connections are used to define derivatives, for example the covariant
derivative ∇X; also known as parallel transport
Key connection for continuum mechanics: Levi-Civita connection for T on M
(the unique torsion-free metric-compatible affine connection)
Example: affine connections on T define the Christoffel symbols
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3 What are (vector) bundle-valued differential forms?

(vector) bundle-valued differential form (BVDFs)

xk
E ∈ Λk (E) and x̃k

E ∈ Λ̃k (E): smooth section of the tensor product bundle of
vector bundle E with the k th exterior power of the cotangent bundle T ⋆

Note Λ̃k (E) := Λk (E ⊗Ψ) (there are really only Λk (E) forms)
scalar-valued differential form (SVDFs) are just special cases of BVDFs with
E = R or E =Ψ

Λk := Λk (R)
Λ̃k := Λ̃k (R) = Λk (R⊗Ψ)≈ Λk (Ψ)

Why do SVDFs and BVDFs matter?

It turns out many physical quantities are best understood∗ as differential forms
(see Tonti2013,Tonti2014,Gilbert2023,Eldred2023) ex. ρ̃n, η0, D̃2, B2, u0

T, m̃n
T⋆

*under changes of coordinates and orientation, they transform as BVDFs
April 18, 2023



4 What is exterior calculus?

The calculus (integration, differentiation, products, etc.) of differential forms!

SVDF exterior calculus is somewhat familiar:
exterior derivative d, Hodge star ⋆̃, wedge product ∧, topological pairing ⟨⟨,⟩⟩,
inner product ⟨,⟩, Lie derivative L , flat ♭, sharp ♯

BVDF exterior calculus is less familiar, but same sort of operations with
similar properties can be defined:

(covariant) exterior derivative dX, Hodge star ⋆̃, topological pairing ⟨⟨,⟩⟩
χ
, inner

product ⟨,⟩
χ
, Trace T, Inclusion I, flat ♭1, sharp ♯1

BVDF exterior calculus reduces to SVDF exterior calculus when E = R or
E =Ψ

Exterior calculus is the natural language for developing geometric mechanics
formulations (variational, Hamiltonian, metriplectic, etc.)
It also underlies mimetic discretizations, such as discrete exterior calculus
and finite element exterior calculus
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5 What is (SVDF) discrete exterior calculus?

A discrete version of exterior calculus with the "same" properties!

See Hirani2003,Eldred2021,Eldred2022
Specifically, a Double deRham complex
method: a type of mimetic spatial
discretization, ex. ∇ ·∇×= 0, ∇×∇ = 0,
∇∗ =−∇·, etc.

introduce a pair of grids (straight and twisted), one for each type of differential
form, with a deRham complex on each grid
Connect complexes through the Hodge star ⋆̃

Explicit codifferential δ operator defined using exterior derivative d and Hodge
star ⋆̃: δ = (−1)k ⋆̃d ⋆̃

Explicit inner product ⟨,⟩ operator defined using Hodge star ⋆̃ and wedge
product ∧: ⟨a,b⟩=

∫
a∧ ⋆̃b

April 18, 2023



6 Main ideas behind (SVDF) DEC
Two grids that are topologically dual∗ (primal
and dual i.e straight and twisted): 1-1
relationship between k -cells on one grid
(0=points, 1=lines, 2=faces, 3=volumes) and
n−k -cells on the other grid
Discrete k -forms are real numbers
associated with a k -cell
Key operator is the Hodge star ⋆̃; uses 1-1
relationship between k -cells and n−k -cells;
highly grid geometry specific (ex. Voronoi,
barycentric, etc.)
Inner product ⟨,⟩ and codifferential δ defined
using Hodge star ⋆̃

*with boundaries things get more complicated but can still be done consistently, see Eldred2021
April 18, 2023



7 Approach to BVDF DEC

Approach: Retain main ideas from SVDF DEC

Focus on Rn, specifically tangent T and cotangent bundles T ⋆

Metric g and connection X are trivial for T and T ⋆ in Rn; T and T ⋆ have a
position-independent, global basis

Should reduce to SVDF DEC when E = R or E =Ψ

Here we will show:
Discrete bundle-valued forms xk

E and ỹk
E

(Covariant) exterior derivative dX
Discrete wedge product ∧̇
Discrete Hodge star ⋆̃
Discrete pairings ⟨⟨,⟩⟩

χ
and ⟨,⟩

χ

Draws inspiration from Yavari2008, Angoshtari2013, Boom2022
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8 Discrete bundle-valued forms xk
E and ỹk

E

Discrete scalar-valued forms xk and ỹk are 1
real number attached to each k -cell (i.e.
co-chains)
Therefore, bundle-valued forms xk

E and ỹk
E

are r real numbers attached to a k -cell,
where r is the dimension of the vector space
E , for T and T ⋆ we have r = n
Key here: "twistedness" is a property of the
whole form, not the bundle or form part
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9 Discrete covariant exterior derivative dX
Covariant exterior derivative is

dX : Λk (E)→ Λk+1(E) (1)

The SVDF DEC discrete exterior derivatives Dk and D̄k are weighted (−1,1) sum
of "nearest-neighbor" k −1 cells with weights given by orientations, ex. 1-forms in
2D:

(D2x1)c = ∑
e∈EC(c)

x1
e nec (2)

Define BVDF DEC discrete exterior derivatives DE
k and D̄E

k as component-wise
versions of SVDF DEC operators, ex. T -valued 1-forms in 2D:

(DT
2 x1

T )c,r = ∑
e∈EC(c)

(x1
T )e,r nec (3)

Relies on trivial connection XT /X⋆
T for T and T ⋆ in R3

April 18, 2023



10 Discrete wedge products ∧̇ I

Continuous ∧̇ is
∧̇ : Λk (E1),Λ

l(E2)→ Λk+l(E3) (4)

where a canonical trivialization exists for E1 ⊗E2 → E3.

Important canonical trivializations
E ⊗E⋆ → R, E⋆⊗E → R
E ⊗R→ E (special case R⊗R→ R)
Ψ⊗Ψ→ R
R⊗Ψ→Ψ, Ψ⊗R→Ψ

These trivializations exist independent of the choice of a bundle metric gE .
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11 Discrete wedge products ∧̇ II

Here we focus on ∧̇ for E-valued straight k -forms and E⋆-valued twisted
n−k -forms, which makes E3 = R-valued twisted n-forms
The SVDF DEC ∧ for this case is just scalar multiplication on each k -cell,
relying on the duality between k -forms and n−k -forms of opposite type

xk ∧h ỹn−k := xk ỹn−k (5)

The BVDF DEC definition is just the natural extension of this: perform a scalar
product between the r components of T and the r components of T ⋆ at each
k -cell

xk
T ∧̇hỹn−k

T ⋆ := xk
T · ỹn−k

T ⋆ (6)

This definition of ∧̇ relies on trivial metric gT /g⋆
T for T and T ⋆ in R3

April 18, 2023



12 Discrete Hodge star ⋆̃ I

The Hodge star is:
⋆̃ : Λk (E)→ Λ̃n−k (E⋆) (7)

The SVDF DEC Hodge stars Hk and H̄k are defined as weighted sum of (n−k)
cells for some sparse set of weights Hk , ˜n−k or Hn−k ,k̃ , ex Hk :

(Hkxk )k = ∑
˜n−k

x̃n−k
˜n−k

Hk , ˜n−k (8)

Uses duality between k -form and (n−k)-form on opposite grids.
Many different Hodge stars in the literature ex. Voronoi (also known as
diagonal or circumcentric), Galerkin, barycentric. Choice imposes restrictions
on the grid geometry and/or topology.
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13 Discrete Hodge star ⋆̃ II

Just as for covariant exterior derivative, define BVDF DEC Hodge star HE
k and H̄E

k
using SVDF DEC Hodge star component-wise, ex HT

k :

(HT
k xk

T )k ,r = ∑
˜n−k

(x̃n−k
T ⋆ ) ˜n−k ,r Hk , ˜n−k (9)

Relies on trivial metric gT /g⋆
T for T and T ⋆ in Rn

This will inherit all of the key properties of the SVDF DEC Hodge star, such as
Symmetric Positive Definiteness

Often, define some Hodge stars implicitly (requires invertible Hodge stars) such
that

H̄kHn−k = (−1)k(n−k)I (10)

which is discrete analogue of ⋆̃ ⋆̃(−1)k(n−k).
April 18, 2023



14 Discrete topological pairing (Poincaré duality) ⟨⟨,⟩⟩
χ

Continuous definition is in terms of ∧̇ and
∫

:〈〈
ak

E , b̃
n−k
E⋆

〉〉
χ

=
∫

ak
E ∧̇ b̃n−k

E⋆ (11)

The SVDF DEC definition (based on ∧ from above) is:〈〈
ak , b̃n−k

〉〉
:= ∑

k
ak

k b̃n−k
n−k (12)〈〈

ãk ,bn−k
〉〉

:= ∑
k
(−1)k(n−k)ãk

k bn−k
n−k (13)

The BVDF DEC definition (based on ∧̇ from above) is:〈〈
ak

T , b̃
n−k
T ⋆

〉〉
χ

:= ∑
k
(ak

T )k · (b̃n−k
T ⋆ )n−k (14)〈〈

ãk
T ,b

n−k
T ⋆

〉〉
χ

:= ∑
k
(−1)k(n−k)(ãk

T )k · (bn−k
T ⋆ )n−k (15)
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15 Discrete inner product ⟨,⟩
χ

Continuous definition is:〈
ak

E ,b
k
E

〉
χ

=
∫

ak
E ∧̇ ⋆̃bk

E

〈
ãk

E , b̃
k
E

〉
χ

=
∫

ãk
E ∧̇ ⋆̃ b̃k

E (16)

The SVDF DEC definition (based on ∧ and Hk /H̄k from above) is:〈
xk ,yk

〉
:= (xk )T Hkyk ,

〈
x̃k , ỹk

〉
:= (−1)k(n−k)(x̃k )T H̄k ỹk (17)

The BVDF DEC definition (based on ∧̇ and HE
k /H̄E

k from above) is:〈
xk

T ,y
k
T

〉
χ

:= (xk
T )

T HT
k yk

T ,
〈

x̃k
T , ỹ

k
T

〉
χ

:= (−1)k(n−k)(x̃k
T )

T H̄T
k ỹk

T (18)

with similar definitions for T ⋆-valued forms.
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16 Conclusions and Future Work
Summary

Extended discrete exterior calculus to (vector) bundle-valued differential forms
Focused on fundamental exterior calculus operators: dX, ⋆̃, ∧̇, ⟨,⟩

χ
, ⟨⟨,⟩⟩

χ

For R3, where tangent and cotangent bundles are flat and a global uniform basis
exists

Future Work
Transport operators for arbitrary BVDFs i.e. Lie derivatives Lu0

T
, interior

products i , wedge products ∧; and associated raising/lowering operators: T,
I, ♭1, ♯1, ♭, ♯
Extension to arbitrary manifolds i.e. non-flat bundles: will require a discrete
connection X

Application to momentum-based formulations of fluids, especially charged
fluid models

April 18, 2023
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19 Continuum mechanics models
Develop continuum mechanics models (CMMs) using geometric mechanics
formulations (GM, ex. variational Hamiltonian, metriplectic, etc.):

δ

∫
L [x] = 0

∂x
∂ t

= J(x)
δH

δx
+M(x)

δS

δx

Predicted quantities x used to build CMMs: momentum, velocity, stress, (mass)
density, entropy, electromagnetic fields, etc.

Fundamental questions:

(1) What types of mathematical objects should be used to represent x?

(2) What mathematical language should be used to build CMMs?

Traditional answers: (1) scalars, vectors and tensors (2) vector/tensor calculus
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20 Limitations of vector/tensor calculus
Use of vector/tensor calculus starts to break down when considering:

arbitrary manifolds and dimensions
coordinate system independent expressions

Additionally, transport behaviour is tricky and unintuitive:

∂ρ

∂ t
+∇ · (ρu) = 0

∂η

∂ t
+u ·∇η = 0

∂m
∂ t

+∇m ·u+m ·∇u+m∇ ·u = 0
∂B
∂ t

+∇× (B×u)+u∇ ·B = 0

How do we resolve these issues?

Use exterior calculus instead but keep GM formulations:
(1) physical quantities = differential forms (2) language = exterior calculus

April 18, 2023



21 What is exterior calculus?
The calculus of differential forms!

Integration, differentiation, etc.

Why use differential forms?

Strong argument (see Tonti2013, Tonti2014) that physical quantities should be
associated with (oriented) geometric entities (=differential forms). See also
Frankel2011, Kanso2007, Gilbert2023.

What is a differential form?

scalar-valued differential form (SVDFs) xk ∈ Λk and x̃k ∈ Λ̃k : smooth
section of the k th exterior power of the cotangent bundle T ⋆; ex. ρ̃n, η0, D̃2,
B2, ...
(vector) bundle-valued differential form (BVDFs) xk

E ∈ Λk (E) and
x̃k

E ∈ Λ̃k (E): smooth section of the tensor product bundle of vector bundle E
with the k th exterior power of the cotangent bundle T ⋆, ex. u0

T, m̃n
T⋆ , ...

Typical vector bundles: R (=Λk ), Ψ (=Λ̃k ), T , T ⋆
April 18, 2023



22 How are "vectors" represented in exterior calculus?

There are four "vector proxies" in exterior calculus: x0
T , x̃n

T ⋆ , x1 and x̃n−1

Related through various operations such as iu0
T
, ⋆̃, ♭/♭1, ♯/♯1, etc. using volume

form µ̃n

Look the "same" in vector calculus in R3, distinct in exterior calculus: source
of much confusion
All play a key role in geometric mechanics formulations, as various measures
of fluid flow:

u0
T = convective velocity (Euler-Poincaré and Lie-Poisson)

m̃n
T⋆ = δL

δu0
T

= momentum (Euler-Poincaré and Lie-Poisson)

v1 = absolute velocity? circulation velocity? etc. (Curl-Form)
F0
T = δH

δv1
= mass flux (Curl-Form)

This fits with the discuss in Tonti2013/Tonti2014 about the dual nature of
velocity, see for example FLU3 (=SVDFs) vs. FLU6 (=BVDFs) in Tonti2014

Connects with question of what ρu is? Mass flux or momentum density?
Also have "pseudovector proxies": x̃0

T , xn
T⋆ , x̃1 and xn−1, not discussed here
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23 Operators on SVDFs and BVDFs

Covariant exterior derivative dX, reduces to d for SVDFs and ∇X for vector
fields
Covariant wedge product ∧̇, reduces to ∧ for SVDFs
Covariant Hodge star ⋆̃, reduces to ⋆̃ for SVDFs
Inner product ⟨,⟩

χ
, reduces to ⟨,⟩ for SVDFs

Topological pairing ⟨⟨,⟩⟩
χ
, reduces to ⟨⟨,⟩⟩ for SVDFs

Lie derivative Lu0
T

, reduces to Lie bracket for vector fields

Diamond operator ⋄, (formal) adjoint of Lie derivative〈〈
ãn−k ,Lu0

T
bk

〉〉
=−

〈
u0
T, ã

n−k ⋄bk
〉

χ

(19)〈〈
ãn−k

E⋆ ,Lu0
T

bk
E

〉〉
χ

=−
〈

u0
T, ã

n−k
E⋆ ⋄bk

E

〉
χ

(20)

⋄ : ãn−k ,bk → x̃n
T ⋆ and ãn−k

E⋆ ,bk
E → x̃n

T ⋆
April 18, 2023



24 Geometric Mechanics Formulations
Assume fluid can be characterized by:

velocity u0
T ∈ Λ0(T )

an arbitrary number of simple advected SVDF’s a ∈ {Λk , Λ̃k} and BVDF’s
b ∈ {Λk (T ),Λk (T ⋆), Λ̃k (T ), Λ̃k (T ⋆)}:

∂a
∂ t

+Lu0
T

a = 0
∂b
∂ t

+Lu0
T

b = 0 (21)

Dynamics are given by semi-direct product theory (special case of matched pair
dynamics for simple advected quantities):

Euler-Poincaré (Variational) Formulation
Lie-Poisson (Hamiltonian) Formulation
Curl-Form (Hamiltonian) Formulation (not shown)
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25 Euler-Poincaré (Variational) Formulations
Lagrangian L [u0

T,a,b] and Action S [u0
T,a,b] =

∫ t2
t1 L

δ S = δ

∫ t2

t1
L = 0 (22)

subject to the constraints

δ u0
T = ∂t ζ

0
T+Lζ 0

T
u0
T (23)

δa = −Lζ 0
T

a (24)

δb = −Lζ 0
T

b (25)

Introducing the momentum m̃n
T⋆ = δL

δu0
T
∈ Λ̃n(T ⋆), the (constrained) variational

principle (22) gives

∂

∂ t
m̃n

T⋆ +Lu0
T

m̃n
T⋆ −∑

δL

δa
⋄a−∑

δL

δb
⋄b = 0 (26)

This is basically Holm1998, written in the language of BVDFs. 1-form density = covector-valued twisted volume form.April 18, 2023



26 Lie-Poisson (Hamiltonian) Formulations
Use Legendre transform (assume invertible) to go from u0

T to m̃n
T⋆

H[m̃n
T⋆ ,a,b] =

〈〈
m̃n

T⋆ ,u0
T

〉〉
χ
−L [u0

T,a,b] (27)

The functional derivatives of H are

δH
δm̃n

T⋆

= u0
T

δH
δa

=−δL

δa
δH
δb

=−δL

δb
(28)

Thus we can write the Euler-Poincaré (26) and transport (21) equations as

∂

∂ t
m̃n

T⋆ +L δH
δm̃n

T⋆

m̃n
T⋆ +∑

δH
δa

⋄a+∑
δH
δb

⋄b = 0 (29)

∂a
∂ t

+L δH
δm̃n

T⋆

a = 0 (30)

∂b
∂ t

+L δH
δm̃n

T⋆

b = 0 (31)
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27 Velocity v1 and Kelvin-Noether Form
Consider v1 = instead of m̃n

T⋆ Define a momentum straight 1-form m1 as

m1 = (⋆̃m̃n
T⋆)♭ = Tm0

T⋆ (32)

where m̃n
T⋆ = m0

T⋆ ∧̇ µ̃n. Note that m0
T⋆ = ♯1 ⋆̃m̃n

T⋆ .
Then assume the existence of a total mass density twisted n-form D̃n that is a
linear combination of advected densities ãn:

D̃n = ∑ci ãn
i (33)

with associated straight 0-form D0 = ⋆̃ D̃n.
Using m1 and D0, the velocity straight 1-form v1 is

v1 =
1

D0 ∧ (⋆̃m̃n
T⋆)♭ =

1
D0 ∧m1 (34)

Algebra yields Kelvin-Noether form of the Euler-Poincaré equations (26)

D0 ∧
(

∂

∂ t
v1+Lu0

T
v1
)
−∑

δL

δa
⋄kna−∑

δL

δb
⋄knb = 0 (35)
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28 Curl-Form1 (Hamiltonian) Formulation I
Let H [v1,a,b] = H[m̃n

T⋆ ,a,b], use chain rule along with (34) to get

δH

δv1
= ⋆̃

[
1

D0 ∧ (
δH

δm̃n
T⋆

)♭
]
=

1
D0 ∧ ⋆̃(

δH
δm̃n

T⋆

)♭ = i δH
δm̃n

T⋆

D̃n (36)

δH

δãn =
δH
δãn +

∂ D̃n

∂ ãn ∧ i δH
δm̃n

T⋆

v1
δH

δa
=

δH
δa

δH

δb
=

δH
δb

(37)

The equations of motion for advective velocity U0
T =

[
⋆̃( 1

D0 ∧ δH
δv1

)
]♯

= δH
δm̃n

T⋆
are:

∂ v1

∂ t
+iU0

T
dv1+∑

1
D0 ∧ [

δH

δa
⋄kn a]−∑

1
D0 ∧ [

δH

δb
⋄kn b] = 0 (38)

∂a
∂ t

+LU0
T

a = 0 (39)

∂b
∂ t

+LU0
T

b = 0 (40)

1Also known as vector-invariant or Carter-LicnerowiczApril 18, 2023



29 Curl Form (Hamiltonian) Formulation II

Alternatively, for mass flux F0
T =

[
⋆̃ δH

δv1
)
]♯

the equations are:

∂ v1

∂ t
+iF0

T

dv1

D0 +∑
1

D0 ∧ [
δH

δa
⋄kna]−∑

1
D0 ∧ [

δH

δb
⋄knb] = 0 (41)

∂a
∂ t

+LF0
T

a
D0 = 0 (42)

∂b
∂ t

+LF0
T

b
D0 = 0 (43)
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30 Scalar/Vector Proxies- SVDFs I
Let’s count the number of degrees of freedom for various scalar-valued differential
forms and group them, for n = 3 (similar results for other n)

Scalar-Valued Forms (Straight or Twisted)
Form Tensor Equivalent Number of Dofs Proxy Type Examples

x0 (0,0AS) 1 Scalar T , η

x1 (0,1AS) 3 Vector v, H, E
x2 (0,2AS) 3 Vector F, B, D
x3 (0,3AS) 1 Scalar ρ

How do we convert between scalars/vectors and various proxies?

Use wedge products ∧, interior products i , Hodge stars ⋆̃, flat ♭ and sharp ♯
operators
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31 Scalar/Vector Proxies- SVDFs II
Given vector field x1

T (i.e. straight vector-valued 0-form), can get straight 1-form x1

(circulation) and twisted n−1-form x̃n−1 (flux):

x1 = (x0
T )

♭ (44)

x̃n−1 = ⋆̃x1 = ix0
T

µ̃
n (45)

Given pseudovector field x̃1
T (i.e. twisted vector-valued 0-form), can get twisted 1-form x̃1

(circulation) and straight n−1-form xn−1 (flux):

x̃1 = (x̃0
T )

♭ (46)

xn−1 = ⋆̃ x̃1 = ix̃0
T

µ̃
n (47)

Given scalar x0 (i.e. straight 0-form), can get twisted volume form x̃n (density):

x̃n = ⋆̃x0 = x0 ∧ µ̃
n (48)

Given pseudoscalar x̃0 (i.e. twisted 0-form), can get straight volume form xn (density):

xn = ⋆̃ x̃0 = x̃0 ∧ µ̃
n (49)
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32 Vector/Tensor Proxies- BVDFs I
Let’s count the number of degrees of freedom for various bundle-valued differential
forms and group them, for n = 3 (similar results for other n)

Bundle-Valued Forms (Straight or Twisted, T or T ⋆)
Form Tensor Equivalent Number of Dofs Proxy Type Examples

x0
T (1,0AS) 3 Vector u

x1
T (1,1AS) 9 2-Tensor

x2
T (1,2AS) 9 2-Tensor τ

x3
T (1,3AS) 3 Vector m

How do we convert between vectors/tensors and various proxies?

Use covariant wedge products ∧̇, covariant Hodge stars ⋆̃, covariant flat ♭1,
covariant sharp ♯1, trace T and inclusion I operators
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33 Vector/Tensor Proxies- BVDFs II

Given a straight vector-valued 0-form x1
T , can get straight 1-form x1 (circulation),

the twisted n−1-form x̃n−1 (flux) and the twisted covector-valued n-form x̃n
T ⋆ :

x1 = (x0
T )

♭ (50)
x̃n−1 = ⋆̃x1 = ix0

T
µ̃

n (51)

x̃n
T ⋆ = ⋆̃x1

T = ⋆̃(x1)♯ (52)

The twisted covector-valued n-form x̃n
T ⋆ can be decomposed into a straight

covector-valued 0-form x0
T ⋆ and the volume form µ̃n as

x̃n
T ⋆ = x0

T ⋆ ∧̇ µ̃
n (53)

Using the trace/inclusion operators, the following relationships hold

x1 = Tx0
T ⋆ ↔ x0

T ⋆ = Ix1 (54)
x̃n−1 = T⋆ x̃n

T ⋆ ↔ x̃n
T ⋆ = I⋆ x̃n−1 (55)
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