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Abstract

We develop an optically-pumped magnetometer (OPM) sensitive in the radiofre-

quency(RF) regime based on 85Rb in a natural abundance rubidium vapor cell to

operate in dynamic geomagnetic field environments. Because high sensitivity oper-

ation of RF OPMs requires control of the magnetic field environment near DC, we

develop an OPM comagnetometer that also utilizes the 87Rb present within the same

vapor cell to implement a secondary OPM variometer that provides information on

the field-environment near DC. This information is used to provide feedback via a

set of tri-axial field control coils that counters the unwanted effects of external geo-

magnetic fields from DC to 60 Hz, which in turn allows RF OPM operation with an

intrinsic sensitivity of around 9 fT Hz−1/2 in the presence of external magnetic fields

on the order of 10s of µT.
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Chapter 1

Introduction

In 1865, James Clerk Maxwell laid the theoretical foundation for much of the mod-

ern world [61]. His landmark synthesis of electromagnetic theory into a single set

of equations elucidated that light could be described as an electromagnetic wave

that propagates through space. In a series of landmark experiments in 1887-1888,

Heinrich Hertz experimentally confirmed the existence of electromagnetic waves as

predicted by Maxwell’s theory [41, 40, 43, 42]. Building on this success, genera-

tion and detection of electromagnetic waves became the basis for many of the great

technological innovations of the 20th century, with little indication of this rate of

technological innovation slowing thus far into the 21st.

The plethora of applications of electromagnetic waves stems partially from the

fact that their frequency can vary across a vast range. Everything from radio-

frequency (RF) and below on the low end ranging from near DC to about 300 MHz,

to microwaves in the range from 300 MHz to 300 GHz, and then infrared,visible, and

ultraviolet light up to hundreds of terahertz! In this work, we will focus on detection

of signals in the lower end of the RF portion of the spectrum, from about 3 kHz

to 3 MHz, corresponding to the very-low frequency (VLF), low frequency (LF) and

medium frequency (MF) bands [49]. Some applications in this area include nuclear
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magnetic resonance (NMR) and nuclear quadrupole (NQR) for chemical detection

and imaging [74, 76, 73, 54, 52, 24, 23, 22], and electromagnetic induction imaging

(EMI) in conductive materials [94, 95, 15, 16, 17, 28, 31, 31, 29, 57, 60, 50]. Signals of

interest require sensitivity on the level of fT Hz−1/2 or better. Existing pick-up coils

are pressed to achieve this level of sensitivity within a reasonable footprint for many

potential use cases, such as detection of explosives or achieving acceptable spatial

resolution in EMI images. We seek to develop a quantum sensor to address these

challenges.

This dissertation details the development of an OPM that uses 85Rb to achieve

exceptionally high sensitivity to electromagnetic fields in the above mentioned fre-

quency range from 3 kHz to 3 MHz. While the basic approach described here has

been implemented previously [75, 54, 74, 76, 73, 52, 24], this platform provides high

sensitivity while operating outside of a magnetically shielded environment without

the need for a multi-channel gradiometric configuration to facilitate common-mode

noise cancellation. Key to this approach is the implementation of a second OPM

within the same vapor cell using the 87Rb that is also present within natural ru-

bidium vapor. Using this comagnetometer, the low-frequency external field below

60 Hz is determined and actively compensated using a set of tri-axial field control

coils. Active stabilization of the magnetic field environment near DC allows for the

operation of our device within dynamic environments outside of a magnetic shield.

1.1 Radio-frequency Atomic Sensing

In the most basic atomic magnetometer, we use the Larmor precession of the mag-

netic moment of the atom. The frequency of Larmor precession fL depends on the

applied magnetic field B as given by the equation:

2πfL = γ|B|. (1.1)
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Figure 1.1: Larmor resonance of the atomic spin S about the longitudinal (z)-axis
in magnetic field B at angular frequency ωL = 2πfL.

So by measuring the Larmor frequency fL, we can determine the external field

amplitude |B| if we know the gyromagnetic ratio. However, we can look at this

equation in another way; by setting the external field |B|, we can detect signals at a

frequency f = fL, so long as the magnitude of the RF signal remains small compared

to the total field amplitude |B|. The bandwidth of the atomic response will be given

by an approximately Lorentzian profile centered at fL, as discussed in Section 2.1.1.

In the experiments detailed in this work, we use the atoms within a hot rubidium

vapor, with a bandwidth around ∆f = 1.5 kHz FWHM.

Savukov et al (2005) demonstrated how to make an OPM that is sensitive at

RF frequencies using this basic idea [75]. They were able to achieve a sensitivity

of 2 fT Hz−1/2. However, as seen from Equation 1.1, the magnetic field seen by

the atoms must be precisely controlled to enable this method. The requirement

of precise magnetic field control limited the application of this approach to shielded

environments. In this work, we develop a new approach for providing active feedback

to compensate the external field which enables the use of this approach outside a
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magnetically shielded environment.

1.2 Variometry for Bias Field Control

As seen in the previous section, RF atomic magnetometry requires precise control

of the magnetic field B. Compensation can be provided via currents run through

a set of tri-axial electromagnetic coils. However, we must know which currents to

apply for creating control fields that cancel the external field in each direction. For

this we need a vector magnetometer that operates at low frequencies to provide this

external field information. This can be accomplished using an additional fluxgate

magnetometer located as near as possible to the atoms used for RF sensing. Indeed,

it is done in several experiments in the United Kingdom focused on electromagnetic

imaging applications [31, 50, 16]. However, in order to reduce the volume, weight,

and power consumption of our device as much as possible, whilst simultaneously

sampling the magnetic field from within the same volume as the atoms measuring

the RF signal, we elected to use another OPM within the same vapor cell.

Our approach instead uses a secondary OPM variometer as detailed by Alexan-

drov et al. (2004) [4, 3]. This method starts with a standard scalar magnetometer

based on a hot alkali vapor that is only sensitive to the total field amplitude |B| and

adds a a rotating modulation within the transverse plane that imposes an amplitude

modulation on the signal when external fields are not aligned along the longitudi-

nal direction of the device. The phase of this amplitude modulation is additionally

dependent on the orientation of the external perturbing field, and can be used to

separate the signal into two orthogonal axes within the transverse plane. This leads

to a device that is separately sensitive to the transverse field B⊥ = Bxex+Byey and

total field amplitude, which is sufficient information to determine the tri-axial field
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information using the relation:

B = Bzez +Bxex +Byey; (1.2)

from which we can determine the z-direction field to be:

Bz =

√
|B|2 −B2

⊥. (1.3)

We implement a variometer within hot rubidium vapor using 87Rb that makes up

a minority of natural rubidium vapor. Our implementation has a feedback bandwidth

of DC-60 Hz, with a maximum effective slew rate of about 8µT s−1, limited primarily

by the need to maintain high RF sensitivity. As we shall see, there is a fundamental

trade-off between the sensitivity of the variometer and RF magnetometer.

1.3 Overview

In this dissertation, we will first review the atomic physics to both aspects of our

magnetometers. Chapter 2 provides a review of the physics of RF OPMS. Chapter 3

describes the principles of the OPM variometer. Chapter 4 discusses the synthesis of

both an RF OPM and OPM variometer into a single vapor cell, including the devel-

opment of the digital and analog aspects of the control system. Chapter 6 provides

a summary, conclusions, and future outlook. Additional content not included in this

document is archived separately at the Sandia National Laboratories Technical Li-

brary, New Mexico, reachable at 505-845-8287 or libref@sandia.gov. Access to this

additional content will be provided to appropriate parties upon request.

The work presented in Chapters 3 and 4 were published in the literature in a

peer-reviewed paper [33]*.

*Note that the author used their married last name for this publication. Because this
degree program was already in-progress before said marriage, they will retain their legal
last name “Bainbridge” as currently enrolled for purposes of this thesis.
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Chapter 2

The Physics of RF OPMs

In Section 1.1 a brief overview of RF sensing with an OPM was presented. This Sec-

tion explores the underlying physics of RF OPMs in more detail. Fundamentally, an

OPM is an ensemble of atoms with collective net magnetic moment µ that interact

with an external magnetic field BExt via the interaction Hamiltonian ĤB = µ ·BExt.

We first review the basic picture of the atom as a tuned oscillator introduced in

Section 1.1. Then, we examine the quantum-mechanical underpinnings of these dy-

namics, including, the methods used to spin-polarize the atoms via optical pumping

and the response of the atoms to incident light fields. Detailed modeling of the

physics within the alkali vapor cell via the state-operator method will also be ex-

plored. Finally, we will derive the fundamental quantum mechanical noise floor of

an RF OPM to understand its potential sensitivity.
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2.1 Basic Physical Principles

2.1.1 The Atoms as a Tuned Oscillator

As mentioned in Section 1.2, when an external magnetic field B is applied to an

atom with electronic spin S, Larmor precession can result. To create an RF OPM,

we control the applied field in Equation 1.1, which shall hereafter be referred to as the

bias field and be denoted B0. By convention, the direction of the bias field is along

the longitudinal direction of our magnetometer, which we denote as the z-direction,

so B0 = B0ez. The bias field sets the Larmor frequency such that it matches the RF

frequency we wish to detect, giving fRF ≈ fL. With the sensitive frequency set, we

can detect external electromagnetic RF fields by their magnetic part BRF, which will

resonantly excite the Larmor resonance of the electronic spins of the atoms about

the bias field under the following conditions:

1. The amplitude of the RF field BRF = |BRF| must remain small compared to

the bias field: BRF ≪ B0.

2. The magnetic field of the RF signal must have a part within the plane trans-

verse to the longitudinal axis (the xy-plane), so 0 ≤ BRF/BRF · ez < 1 .This

is because resonant spin precession takes place within the plane orthogonal to

the bias field; only the part of the RF field in the plane transverse to the lon-

gitudinal axis will contribute to resonant excitation. For maximum sensitivity

the RF field should be propagating along the longitudinal direction, so that the

magnetic field is entirely within the transverse plane, and (BRF/BRF ) · ez = 0

3. The atomic spin Smust be highly polarized along the longitudinal axis. We will

refer to the normalized spin vector P = S/S as the spin-polarization vector,

and its magnitude P as the spin-polarization. Thus for a spin polarized along

the longitudinal direction, Pz = P · ez ≈ 1.
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Figure 2.1: (a) Atomic spin S is polarized along the longitudinal axis defined by the
applied bias field B0. (b) An RF signal with magnetic field BRF = BRF cos (ωt)e⊥
where e⊥ is a unit vector in the transverse plane, resonantly drives Larmor resonance
of the polarized atomic spin.

The nature of this project guarantees the first condition is met. For instance,

using either naturally occurring isotope of rubidium for sensing at a frequency on

the order of 10− 100 kHz, the bias field amplitude will be on the order of 1− 10 µT.

Fields in which we are interested have a magnitude in the pT range or below. Higher

amplitude fields could easily be detected by existing inductive pick-up coil technology.

The second condition can be met by physically rotating the transverse (xy) plane of

the magnetometer into an orientation parallel to the RF magnetic field. The third

condition can be met by polarizing the electron spins via optical pumping, as detailed

in Section 2.2.2.

2.1.2 The Quantum Mechanical Picture

We may also view the dynamics of the atom from a quantum mechanical perspective.

In an alkali atom, there is a single electron in the outermost valence shell. The energy

level of this outermost electron is called the principal quantum number. Because the

principal quantum number is set only by the position of the alkali on the periodic

table, and remains unchanged in the dynamics we shall discuss, it is actually of little
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importance to us. Of much greater interest is that this unpaired outermost electron

has intrinsic spin angular momentum S = 1
2
ℏen where en is a general unit vector.

Henceforth, the factor of ℏ will be understood to be implied when discussing angular

momenta, and we will simply write S = 1
2
en and S = 1

2
. The projection of the

electron spin along the bias field mS = S · ez is called the spin quantum number. In

addition to spin, the electron has an angular momentum associated with its motion

around the nucleus, denoted L, which is called the orbital angular momentum. The

magnitude of this orbital angular momentum ℓ, defined by the relation L2 = ℓ(ℓ+1)

is called the azimuthal quantum number; it determines the orbital of the electron as

it moves around the nucleus. The total angular momentum of the electron is given by

the vector sum J = L+ S. The nucleus of the atom additionally has a spin denoted

by I, which is determined by the specific isotope in question. The vector sum of the

nuclear spin with the electronic angular momentum produces the total spin denoted

by F and expressed as F = I+ J.

We will consider the D1 and D2 alkali transitions, defined by the transition of

the electron from the ℓ = 0 to the ℓ = 1 orbitals. For the ground state of this

transition, J = L + S = 1/2. The excited state may have the electron spin either

add to or subtract from the orbital angular momentum, giving mJ = 1 ± 1/2 for

J = 1/2 or J = 3/2. The former has lower energy and is referred to as the D1

transition, while the latter has higher energy and is called the D2 transition. The

energy difference between the J = 1/2 and J = 3/2 excited states is called the fine

structure of the atom. Finally, we must consider the total angular momentum F , for

which the nuclear spin may further either add to or subtract from the total electron

angular momentum. This leads to the splitting of the electron energy structure into

further energy levels, which are called the hyperfine structure of the atom. The

overall structure of the atomic energy levels is shown in Figure 2.2.

Each hyperfine energy mainfold has a further total of 2F +1 sub-levels, called the

Zeeman levels (or states) of the electron, which are determined by the projection of
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Figure 2.2: Energy level structure of the outermost electron of an alkali atom. Solid
lines indicate the energy due to the orbital angular momentum, while dashed lines
indicate the fine structure, and dotted lines show the hyperfine structure.

the total spin onto the bias field along the longitudinal axismF = F·ez. Without any

magnetic bias field applied, these Zeeman levels are degenerate. When a bias field

is applied, this degeneracy is lifted as the symmetry is broken by the bias field as it

alters the energy levels of the spins within it. So long as the energy splitting between

Zeeman levels in the bias field remains small compared to the energy difference

between adjacent hyperfine manifolds (the hyperfine splitting), the energy splitting

of the sub-levels is termed the Zeeman effect, for which the energy difference between

adjacent states is approximately linear in the bias field, and given by

∆EZ = µBgFB0, (2.1)

where µB = qeℏ/(2me) = 9.274 × 10−24 JT−1 is the Bohr magneton, qe = 1.602 ×

10−19C is the elementary charge, me = 9.109 × 10−31 kg the mass of the electron,

and gF the Lande g-factor of the hyperfine transition. We can re-write Equation 2.1
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Figure 2.3: Zeeman energy levels of a nuclear spin 5/2 alkali atom in a nonzero bias
field. The stretched state is highlighted by a dashed line. The end state resonance
used for RF sensitivity used in this work is also shown.

in terms of the gyromagnetic ratio to find

∆EZ = ℏ
qe
2me

gFB0

= ℏγB0,

(2.2)

where γ = γegF is the gyromagnetic ratio, and γe = qe/2me = 2π × 28.025 GHz T−1

is the gyromagnetic ratio of a bare electron. Dropping the factor of ℏ, we find the

angular frequency of transitions between adjacent Zeeman levels is

ω = γB0

= ωL.
(2.3)

Equation 2.3 makes the picture of Larmor resonance presented previously clear

from a quantum mechanical perspective: Larmor precession is simply resonance be-

tween Zeeman levels in the hyperfine manifold. A diagram of the Zeeman levels in a

nonzero bias field for an I = 5/2 nuclear spin is shown in Figure 2.3.
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When the spin is highly polarized along the z-axis as discussed previously, we

know that mF = Fa = I + 1/2 is at its maximum magnitude, and the state of the

atoms in the hyperfine basis is |Fa,mF = Fa⟩. This is called the stretched state,

because the spin is “stretched” along the longitudinal axis to the greatest possible

extent. Of course a nearly resonant RF field will then induce resonance between

adjacent Zeeman levels. In particular it will couple the the stretched state and the

adjacent Zeeman level given by |Fa,mF = Fa − 1⟩. This end-state transition provides

the physical basis of the magnetometer.

2.2 Detailed Atomic Dynamics

We have thus far considered the simple dynamics of an ideal single atom. Now we

shift our attention to a more realistic picture of an ensemble of many atoms. We

will denote the total number of atoms by N , and quantities such as the electron

spin S and the total spin F will be taken to refer to the ensemble average of these

quantities, given by K → K = 1
N

∑N
i=1Kn where K is a general atomic angular

momentum operator, and i refers to the i’th atom in the ensemble. This has the

effect of increasing the total signal in proportion to N . For the ∼ 1013 atoms present

in a 1 cm3 heated vapor cell, this provides the exquisite sensitivity we seek. On the

other hand, interactions between alkali atoms, buffer gas atoms present for reasons

explained below, and the glass walls of the vapor cell will degrade the sensitivity.

Optical pumping and inclusion of a carefully selected type and amount of buffer gas

will help ameliorate these effects.

2.2.1 Light-Atom Interactions and the Line Shape

The atoms within the ensemble will only have an appreciable interaction with an

incident light-field when the optical frequency ν of the the light field is near an
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atomic resonance and has a polarization capable of driving an allowed transition as

determined by the selection rules. See Harris and Bertolucci (1989) for a review of

the atomic selection rules [39]. An incident light-field that meets these criteria will

transfer photons to the atoms at an absorption rate denoted by RAbs(ν), which is

given by a sum over all possible allowed transitions

RAbs(ν) =
∑
i

σn(ν)Φ(ν), (2.4)

where σi(ν) is the photon absorption cross-section for the i’th allowed transition

at frequency ν, and Φ(ν) is the incident photon flux in photons per unit-time per

unit-area. Photon flux is set by the power and spot size of the incident laser light.

Modern semiconductor lasers as used in this work have a linewidth much smaller

than those of the optical transitions they drive, and can be treated as approximately

monochromatic. The response of the atoms to the incident light-field as captured

by the absorption cross-section σn(ν) has a lower bandwidth limit set by the natural

lifetime τN = 1
2πΓN

, where ΓN is the natural linewidth of the optical transition in

question, which is a well measured quantity for the D1 and D2 transitions in all alkali

species, and is summarized in Table A.2. The linewidth is then further broadened

by various effects that couple the atoms to external degrees of freedom and increase

decoherence. These include [25]:

1. Pressure broadening: Additional decoherence introduced by collisions be-

tween buffer gas particles and the alkali atoms will cause the optical linewidth

to widen. This effect broadens an optical line by an amount ΓP proportional

to the density of buffer gas present. The name of the effect is due to the fact

this density is typically specified by fill gas pressure when constructing a va-

por cell. It will also cause a shift of the resonance center frequency ∆ν0(P).

The total linewidth is a sum of the natural and pressure broadened lifetimes

ΓTot = ΓN + ΓP. Table A.3 gives the measured values for the pressure broad-

ening and resonance frequency shift caused by nitrogen gas within the most
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commonly utilized alkali species. The absorption of photons with resonant fre-

quency ν0 from a light-field at optical frequency ν is then a Lorentzian with

FWHM linewidth ΓTot given by [ΓTot/(2π)]/[∆ν
2+(ΓTot/2)

2] where ∆ν = ν−ν0
is the frequency shift from optical resonance. We may extend this result to also

include a dispersive part that modifies the index of refraction of light moving

through the vapor, given by ∆ν/[∆ν2 + (ΓTot/2)
2]. Both the absorptive and

dispersive terms can be expressed via a a single complex Lorentzian given by

[77]

L(∆ν,ΓTot) =
1

π

ΓTot/2 + i∆ν

∆ν2 + (ΓTot/2)2
. (2.5)

2. Doppler Broadening: An atom moving relative to a light-field with wave-

vector k at velocity v will experience a Doppler shift in its frequency given by

∆νD(v) = −ν(v
c
· k
k
) where c = 2.997925 × 108 m s−1 is the speed of light in

a vacuum. The i’th atom will therefore see an effective resonance frequency

that is dependent on its particular velocity vi. Because the atoms are in a

heated vapor cell, they will have a range of thermal velocities determined by a

three dimensional Maxwell-Boltzmann distribution. Thus the probability of vi

being within the volume-element d3v in the three-dimensional velocity domain

is given by

P (v)d3v =

√
m

2πkBT
exp

(
−mv · v
2kBT

)
, (2.6)

where kB = 1.381×10−23 JK−1 is the Boltzmann constant, T is the temperature

in Kelvin, and m is the mass of the alkali species in question. This distribution

of possible velocities leads necessarily to a distribution of optical resonance

frequencies via the aforementioned Doppler shift ∆νD(v). The result is an

effective broadening of the resonant line as atoms moving at different speeds are

resonant at shifted frequencies. The associated distribution in optical frequency

is in fact a Gaussian of the form [77]

G(∆ν,ΓG) =
2
√

ln 2/π

ΓG

exp

(
−4 ln 2∆ν2

Γ2
G

)
, (2.7)
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Figure 2.4: Comparison of Lorentzian profile due to pressure broadening with FWHM
linewidth of ΓL = 2 GHz, which is a realistic value for ∼ 100 Torr of nitrogen buffer
gas in a Rb cell, and a Gaussian profile due to Doppler broadening with FWHM
of ΓG = 566 MHz, which is a realistic value for 85Rb at 100◦C. Curves have been
re-scaled to have the same on-resonance value for comparison.

where ΓG is the FWHM of the distribution.

Regardless of the specifics, integrating the response of the atoms over all possible

optical frequencies gives the constant [77, 25]∫ ∞

0

σ(ν)dν = πrecfRes, (2.8)

where re = 2.82 fm is the so-called classical electron radius, and fRes is the oscillator

strength of the transition in question. For the D1 transition, fRes ≈ 1/2, while for the

D2 transition, fRes ≈ 2/3. There are slight deviations from these idealized values due

to perturbations to the exact dynamics caused by spin-orbit coupling, along with the

interaction of the outermost alkali electron with electrons in the filled shells below it

[64]. Exact measured values are given in Table A.2.

The natural linewidth in alkali atoms is on the order of ΓN ∼ 10 MHz, while

the Doppler-broadened linewidth is on the order of ΓG ∼ 100 MHz. The pressure
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broadened linewidth is of course determined by amount of buffer gas present. We

intentionally use enough buffer gas such that the individual hyperfine transitions

are not well-resolved to achieve a high efficiency of optical pumping, as discussed in

Section 2.2.2. This leads to a pressure-broadened linewidth on the order of ΓTot ∼

1 GHz. Thus pressure broadening is by far the dominant mechanism, and we can

treat the atomic response to the incident light as a Lorentzian as given by the real

part in Equation 2.5. The optical absorption then becomes

σ(∆ν) = πrecfRes
ΓTot/(2π)

∆ν2 + (ΓTot/2)2
. (2.9)

2.2.2 Optical Pumping

For the methods described in Section 2.1 to work, we must polarize the electron

spin S along the longitudinal axis such that Pz ≈ 1. To achieve this, many optical

pumping schemes have been developed since the technique was initially invented in

the 1950s, and many excellent works on the subject have been published. See, for

instance “Optically Polarized Atoms” by Auzinsh et al. (2010) [13]. An excellent

introduction specific to general magnetometry which considers optical pumping on

the D2 transition, along with the case of an arbitrarily polarized light-field, was

given by Seltzer in his Ph.D. thesis [77]. This discussion will summarize sections

of the latter relevant to our experiment. We simply need to put the atoms within

the ensemble into the stretched state. To do so, we illuminate the ensemble with a

“pump” or “pumping” light beam that is resonant with the D1 transition in our alkali

species of choice. Using the D2 transition, we could only achieve half as much spin

polarization, as shown by Seltzer (2008) [77]. Using rubidium as an example, this

means a source at 795 nm. Semiconductor lasers at this wavelength (along with those

of Potassium and Cesium) are readily available to use as a coherent light source.
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The atoms will start out in a highly randomized state* that is distributed among

the Zeeman levels by rapid collisions between atoms themselves and with the buffer

gas and cell walls. Thus the spin-polarization P of the ensemble will be very small,

and without well defined direction, giving P · ez ≈ 0. When illuminated by the

resonant light of the optical pumping beam, atoms in a lower energy states will be

coherently excited to higher states, provided the polarization of the pumping light

meets the selection rules imposed by the symmetries of the underlying dynamics. See

Harris and Bertolucci (1989) for greater details [39]. Depending on the polarization

of the pumping light, the atoms may do one of three things� in their interaction with

the light-field

1. σ± Transitions: The atom may gain (+) or lose (−) a quantum of angular

momentum to the light field, leading to a∣∣∣ℓ = 0, J = 1/2, F = I ± 1/2,mF = m
(0)
F

〉
→
∣∣∣ℓ = 1, J = 1/2, F = I ± 1/2,mF = m

(0)
F ± 1

〉
transition. This is caused by light with right(+) or left(−) circular polarization

along the bias field, and is denoted a σ± transition.

2. π Transitions: The atom may gain energy, but neither gain nor lose any

angular momentum, leading to a∣∣∣ℓ = 0, J = 1/2, F = I ± 1/2,mF = m
(0)
F

〉
→
∣∣∣ℓ = 1, J = 1/2, F = I ± 1/2,mF = m

(0)
F

〉
transition. This is caused by light with a linear polarization along the bias

field, and is denoted a π transition.

*The exact state of the ensemble will in fact be given by a thermal distribution with
polarization PTh = tanh

(gsµBB
2kBT

)
�Technically, these cases only cover single-photon transitions. Multi-photon transitions

which transfer multiple quanta and are subject to different selection rules are possible, but
only become significant at higher light intensities than we will consider in this work.



Chapter 2. The Physics of RF OPMs 18

A general elliptical polarization of the light field will drive a superposition of

these transitions, which we will not consider here. For our purposes, we can simply

illuminate the atoms with a light-field that is polarized to drive σ+ transitions.

This can be achieved relatively easily using a birefringnet materiel cut to a proper

thickness to cause a λ/4 delay in the phase between its fast (lower index of refraction)

and slow (higher index of refraction) directions. Such a quarter-wave plate allows us

to easily rotate an initially linearly polarized light source, such as that from a diode

laser, into a circular polarization that will excite σ± transitions. We use light with

a right-hand circular polarization that drives σ+ transitions.

We now arrive at the reasons for the inclusion of a buffer gas: In a glass cell

containing only alkali atoms, the thermal motion discussed in Section 2.2.1 will cause

the atoms to quickly move to the walls of the cell. Upon collision with the cell walls,

these alkali atoms will briefly adhere to the the inner glass surface of the cell, where

complex interactions with the particles in the glass will quickly depolarize the spin.

After the atom re-enters the volume of the cell, it will have lost all spin polarization,

as illustrated in Figure 2.5.

We can model this process as simply treating all collisions of atoms within the

cell as becoming completely depolarized [10, 77]. There are several ways to address

this decoherence process. Coating the interior surfaces of the glass cell with certain

organic compounds can effectively prevent alkali atoms from depolarizing after col-

lisions with the walls. Seltzer gives a good overview in Chapter 5 of his thesis [77].

This approach typically limits the achievable alkali vapor density, as the organic

coating would be irreversibly damaged when heated beyond its melting tempera-

ture. Another well established approach, which is used in this work, is to include a

buffer gas that collides with the alkali atoms, slowing their diffusion to the cell walls.

While spin-depolarizing collisions still occur between the buffer gas and alkali atoms

as characterized by the cross-sections given in Table A.3, selection of a proper buffer

gas species with a sufficiently low cross-section for such spin-destruction collisions
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Figure 2.5: Collision of an alkali atom with the glass surface of the vapor cell. (a) An
initially spin-polarized alkali atom within the volume is incident on the glass surface.
(b) The atom briefly adheres to the glass, where complex interactions between the
glass and alkali atoms quickly depolarizes the spin. (c) The alkali atom returns to
the cell volume having lost its spin polarization.

at a properly selected density will lead to an overall depolarization rate much lower

than would occur in its absence.

We also wish to include a quenching gas to prevent radiation trapping : a phe-

nomenon that occurs when the photons of resonant light emitted by alkali atoms
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decaying from their excited states are re-absorbed by adjacent alkali atoms before

they can exit the vapor. Because the direction and polarization of these decay pho-

tons will be random, their absorption by neighboring alkali atoms will lead to addi-

tional decoherence that tends to randomize the state of the ensemble and degrade

the average spin coherence. A detailed treatment of radiation trapping is beyond the

scope of this work. See, for instance,“Radiation Trapping in Atomic Vapours” by

Molisch and Oehry (1998) for a detailed treatment [65]. Franz (1968) demonstrated

how to ameliorate the effect of radiation trapping via the inclusion of a quenching gas

[35]. Typically a diatomic molecule, the quenching gas allows for the alkali atoms

to quickly shed energy via complex interactions with the vibrational and rotational

molecular degrees of freedom, allowing them return to their ground state without

emitting resonant photons that would lead to radiation trapping. Within a Rb cell,

diatomic nitrogen gas functions well as both a buffer and quenching gas due to its

relatively small spin-destruction cross-section with Rb, and its high efficiency as a

quenching gas. See Table A.3 for a comparison of the spin-destruction and quenching

cross-sections between various alkali species and nitrogen buffer gas. Thus we use N2

for both functions, and will refer to it as the buffer gas from now on, but it should

be understood that it functions as a quenching gas as well.

There is one final benefit to the inclusion of a buffer gas: In its absence, the

Fa,b = I ± 1/2 (+ for a, - for b) manifolds of the ground state of the D1 transition

are individually well resolved, as the Dopplar-broadened linewidth is smaller than

the ground state hyperfine splitting. However, if we include sufficient buffer gas,

the pressure broadening effect discussed in Section 2.2.1 causes the linewidth of the

optical transition to become greater than the hyperfine energy splitting. In this

regime, the laser simultaneously energetically addresses all transitions from both

ground state hyperfine manifolds to the excited state. Then, the only liming factor is

that the polarization of the light matches the selection rules required for a transition

between any given Zeeman levels. The situation for pumping with σ+ light is shown
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in Figure 2.6.

Figure 2.6: Optical pumping on the D1 line in an I = 5/2 alkali atom such as
85Rb using σ+ photons. All transitions are energetically allowed, because the optical
linewidth of the transition is greater than the hyperfine splitting, meaning transitions
between individual hyperfine manifolds are not well resolved. The polarization and
the selection rules dictate that transitions must take place between an initial and
final Zeeman state such that the atom gains +1 angular momentum.

Once in the excited state, the electron will decay back to the ground state, either

by emitting photons at the rate RTot = 1/τTot = πΓTot, or by quenching as discussed

above. In the former case, the emitted photon will carry a random σ± or π polar-

ization, and the atom may decay from its excited state Zeeman level to any Zeeman
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Figure 2.7: A close up view of optical pumping into the stretched state of an Alkali
atom. Photons with σ+ polarization shown with red arrows drive the electron into
the excited state. The atom then decays via spontaneous emission and quenching,
shown by dashed gray arrows. Collisonal mixing (CM) is indicated by a gray double
arrow, while spin relaxation processes (SR) indicated by a single-sided solid gray
arrow, tend to degrade spin polarization.

level in the ground state that has the correct angular momentum mF to allow the

transition. A σ± photon results from a ∆mF = ∓1 decay, while a π photon is from a

∆mF = 0 decay, as required by the conservation of angular momentum. The relative

probability for each type of transition is given by branching ratios captured by the

Clebsch-Gordan coefficients. They can be found in reference tables [96]. The latter

case of decay via quenching is both more complex from a basic physics perspective,

and yet simpler for our purposes: the complex interactions between the vibrational

and rotational degrees of freedom of the diatomic quenching gas molecule and the

alkali electron quickly, which is to say on a time-scale much smaller than the natural

lifetime, distributes atoms in the excited state uniformly between all Zeeman levels.
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This results in a uniform probability of decay from the excited state to all allowed

Zeeman levels in the ground state [77].

Whatever the mechanism, once atomic decay leads it to the stretched state

|F = Fa,mF = Fa⟩, it can no longer absorb additional angular momentum from

the pumping light-field, as it already has the maximum possible angular momen-

tum along the longitudinal axis. Thus atoms in the stretched state are “dark” to

the pumping light-field, as the selection rules prevent the absorption of any further

photons. In the absence of relaxation mechanisms, the atoms in the ensemble will

eventually collect in the stretched state. In reality, the spin-relaxing processes of

spin-destruction and spin-exchange collisions will fight against the pumping process

and tend to re-distribute the electrons among the Zeeman levels of the ground state.

Nevertheless, properly balanced optical pumping will create and maintain an atomic

ensemble that is nearly entirely in the stretched state, giving Pz ≈ 1. Proper tuning

can be achieved in a practical sense by setting the optical frequency to the center

of the resonance, and adjusting the power to the minimize the RF linewidth, as

discussed in Section 2.2.6.

2.2.3 The RF Atomic Response

Let us now consider the behavior of the spin when a bias field B0 = B0ez is applied.

The treatment given here is taken from Sections 2 and 3 in the thesis of Seltzer [77],

along with the discussion provided by Alexandrov and Vershovskiy (2013)[2], which

are in turn drawn from the orignal work of Bloch (1946) [19]. As mentioned at the

beginning of this Section, the atoms with magnetic moment µ = γℏS interact with

the magnetic field via the interaction Hamiltonian

ĤB = µ ·B0

= γℏS ·B0.
(2.10)
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The evolution of the spin is then given by

dS

dt
=
i

ℏ
[ĤB,S]

= iγ[S ·BExt,S].

(2.11)

Applying the angular momentum commutation relation [Si, Sj] = iϵijkSk,
� where ϵijk

is the Levi-Civita symbol, allows us to reduce this to

dS

dt
= γS×B0. (2.12)

This is just the equation of motion of a classical dipole in an external field, and leads

to Larmor precession as we might have expected. Now consider the addition of an

RF field in the plane transverse to the z-direction, given by BRF = BRF cos (ωRFt)ey.

This field can be written as the combination of two counter-rotating terms in the

complex plane, given by

B̃RF = 1
2
iBRF

(
e+iωRFt + e−iωRFt

)
. (2.13)

Let us now transform into a coordinate system [x′, y′, z] that co-rotates at +ωRF

about the longitudinal axis with the positively rotating portion of the RF field.

In this frame, the co-rotating portion of the field is static, with a magnitude of

BRF/2, while the counter-rotating part is moving away at frequency −2ωRF. We

can now make the so-called rotating-wave approximation, and assume that since the

RF linewidth is very small compared to the RF frequency, −2ωRF is very far from

resonance, and the counter-rotating part can be neglected entirely. By applying

vector transformation rules in the rotating frame, we find that the the bias field in

the rotating frame is given by

B′
0 =

(
B0 −

ωRF

γ

)
ez. (2.14)

�Note that the Einstein summation is being followed here, and a sum over repeated
indices is implied.
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Figure 2.8: Dynamics of the rotating-wave approximation. In the rotating frame,
the atoms experience a magnetic field B′ = (−∆ω/γ)ez+

1
2
BRFey′ , about which they

precess within the rotating frame at frequency Ω′ =
√

∆ω2
RF + (γBRF/2)2

Then the total magnetic field in the rotating frame is

B′ =
ω0 − ωRF

γ
ez +

1
2
BRFey′

=
−∆ωRF

γ
ez +

1

2
BRFey′ ,

(2.15)

where we have identified B0 = ω0/γ on the first line, and the shift from RF reso-

nance is ∆ωRF = ω0 − ωRF on the second. Figure 2.8 illustrates the rotating-wave

approximation. The Bloch Equation in the rotating frame is then [19, 77].

dS′

dt
= γS′ ×B′ − 1

T2
S′
⊥ − 1

T1
(Sz − S0)ez, (2.16)

where S′
⊥ = S ′

xex′ + S ′
yey′ is the transverse spin in the rotating frame, T1 is the

longitudinal spin-relaxation time, T2 is the transverse spin-relaxation time, and

S0 =
sROP

2(ROP +RRel)
(2.17)

is the equilibrium spin in the absence of the RF field, where s ≈ +1 is the photon

polarization for optical pumping with σ+ photons, ROP is the optical pumping rate,
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and RRel is a phenomenological parameter to characterize spin-relaxation processes.

The equilibrium solution to Equation 2.16 is

S ′
x =

1

2
γBRF

S0T2
1 + (γBRF/2)2T1T2 +∆ω2

RFT
2
2

(2.18a)

S ′
y = −1

2
γBRF

S0∆ωRFT
2
2

1 + (γBRF/2)2T1T2 +∆ω2
RFT

2
2

(2.18b)

Sz =
S0[1 + (∆ωRFT2)

2]

1 + (γBRF/2)2T1T2 +∆ω2
RFT

2
2

. (2.18c)

We transform back from the rotating frame to get the signal seen in the laboratory

Sx = S ′
x cos (ωRFt)− S ′

y sin (ωRFt)

=
1

2
S0γBRF

cos (ωRFt)T2 +∆ωRFT
2
2 sin (ωRFt)

1 + (γBRF/2)2T1T2 +∆Ω2
RFT

2
2

=
1

2
S0γBRF

[
1√

1 + (γBRF/2)2T1T2

πΓRF

(πΓRF)2 +∆ω2
RF

cos (ωRFt)

+
∆ωRF

(πΓRF)2 +∆ω2
RF

sin (ωRFt)

]
.

(2.19)

This is just the absorptive and dispersive parts of a Lorentzian curve with FWHM

linewidth given by 2πΓRF, where the RF linewidth is

ΓRF =
1

πT2

√
1 +

(
1
2
γBRF

)2
T1T2. (2.20)

In the regime of small magnetic fields on the order of pT and below that we wish

to measure, we will typically find that 2/(γ
√
T1T2) ≫ BRF, so the second term

under the radical related to power-broadening of the line can be neglected to find

the demodulated response can be written in the form of a complex Lorentzian as

defined by Equation 2.5

S̃(Demod)
x ≈ 1

2
γS0BRFL(∆ωRF,ΓRF). (2.21)

The nuclear spin will be “dragged” along by the motion of the electron spin due to

the hyperfine interaction given by ĤHF = aHFI · S where the aHF is the hyperfine
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Figure 2.9: The normalized response of the atomic spins to an RF field. Both the
in-phase (I) part describing absorption and the in-quadrature (Q) part describing
dispersion are shown. Realistic values of ω0 = 2π 21.5 kHz and ΓRF = 1.5 kHz were
used to generate these curves.

coupling, which is available for all alkali atoms in the literature [5]. As a result, in the

regime of high polarization in which we work, the nuclear spin precesses parallel to

the electron spin and the total spin F precesses at a rate that is a factor of q = 2I+1

slower than that of a bare electron alone [77, 19]. Appelt et al. (1998) showed that

the total spin-polarization due to an RF field BRF = BRFcos(ωRFt)ey with BRF ≪ B0

in the regime of high spin-polarization is [10]

Px =
Fx

F
≈ 1

2
γBRF sin (ωRFt)Re

(
L(∆ωRF ,ΓRF)

)
. (2.22)

where γ = γe/q is the modified gyromagnetic ratio of the electron due to the drag of

the nuclear spin.

Equation 2.22 provides a basis for understanding the atomic dynamics of the

magnetometer, and tells us the line-shape we can expect to see. The RF linewidth

ΓRF will set the sensitive bandwidth about the center frequency that is set by B0. As

we shall see in Section 2.2.6, the sensitivity depends inversely on the RF linewidth.
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On the other hand, the requisite bandwidth of the sensor depends on the applica-

tion; it may be preferable to trade some sensitivity for a wider bandwith in some

circumstances.

2.2.4 Full Dynamics and the State Operator

The phenomenological picture provided by the Bloch Equations is quite useful, but it

relies on simply assuming the existence of a spin-relaxation rate RRel. To more fully

characterize the dynamics of the atoms within the vapor cell, we need to consider

the interactions experienced by the alkali atoms that contribute to spin-relaxation.

These include collisions with other alkali atoms, collisions with buffer gas atoms, col-

lisions with the cell walls, interaction with external magnetic fields, interaction with

the light-fields of both the optical pumping and probing beams, and the hyperfine

interaction. Solving the Schrödinger Equation directly is essentially impossible for

this application, since we wish to characterize an ensemble of many atoms, and thus

must include both the quantum mechanical evolution of the individual atoms as well

as the statistical mixing implied by the ensemble approach. To do this, we employ

the state or density operator approach. Ballentine (1998) provides a careful general

treatment of the state operator in relation to the foundations of quantum mechanics

[14]. A good overivew of the of the application of this method to atomic systems is

provided by Auzinsh, Budker, and Rochester (2010) [13].

For a single particle with index n ∈ [1, N ], the quantum state can be written as

the general ket |ψn⟩. The state operator of this particle is given by the outer product

ρn = |ψn⟩ ⟨ψn|. The great utility of this approach becomes clear when we see that

this representation makes it possible to take an ensemble average of the quantum

states of the particles in the vapor cell

ρ =
1

N

N∑
n=1

ρn. (2.23)
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The value of any ensemble averaged operator K is then simply given by taking the

trace

⟨K⟩ = Tr[ρK] = Tr[Kρ]. (2.24)

In fact, Equation 2.24 extends to finding the expected value of any observable. For

our purposes, we shall be measuring the spin. The evolution of the atomic density

operator is found by combining the Schrödinger Equation

iℏ
d

dt
|ψ⟩ = ĤTot |ψ⟩ , (2.25)

where ĤTot is the total Hamiltonian, with Equation 2.23 which gives

d

dt
ρ =

d

dt

1

N

N∑
n=1

|ψn⟩ ⟨ψn|

=
1

N

N∑
n=1

[(
d

dt
|ψn⟩

)
⟨ψn|+ |ψn⟩

(
d

dt
⟨ψn|

)]

=
1

N

N∑
n=1

[
1

iℏ
ĤTot |ψn⟩ ⟨ψn| −

1

iℏ
|ψn⟩ ⟨ψn| ĤTot

]

=
1

N

1

iℏ

N∑
n=1

(ĤTotρn − ρnĤTot)

=
1

iℏ
1

N

N∑
n=1

[ĤTot, ρn]

=
1

iℏ
[ĤTot, ρ].

(2.26)

This result is known as the Liouville, or master equation. The latter moniker is

used because it describes the population in the quantum states of the system as the

ensemble evolves over time. Equation 2.26 is trace preserving; meaning it does not

account for the effects of decoherence due to the coupling of the system to external

degrees of freedom. However, we can extend the result to include the open quantum

system dynamics of loss and decoherence from couplings of the spins to external

degrees of freedom through various processes such as interactions with the optical

pumping light-field, buffer gas particles, and the cell walls. The total master Equa-

tion including decoherence mechanisms for the evolution of a collection of atomic
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spins within a vapor cell was complied by Appelt et al. (1998)[10]. It is given by

d

dt
ρ(i) =

a
(i)
HF

iℏ
[Ii · Si, ρ

(i)] +
µBg

(i)
s

iℏ
[BExt · Si, ρ

(i)] +R
(i)
OP[ϕ

(i)(1 + 2s · Si)− ρ(i)]

+R
(i)
SD(ϕ

(i) − ρ(i)) +R
(i)
SE[ϕ

(i)(1 + 4⟨Si⟩ · Si)− ρ(i)] +Di∇2ρ(i).

(2.27)

In this representation i indexes the alkali species. In general there may be multiple

species. Of specific interest to us is natural rubidium, which has 72.15% 85Rb and

27.85% 87Rb. Although more general combinations such as Rb and Cs are also possi-

ble. The term ϕ(i) = ρ(i)/4+Si · (ρ(i)Si) describes the part of the state that is purely

nuclear spin-polarized via the hyperfine interaction, such that ρi−ϕi is the part with

purely electron spin-polarization. The terms in the top row of Equation 2.27 de-

scribe respectively the hyperfine interaction between the nuclear and electronic spins

of the alkali atoms, the interaction of the electron spin with the external magnetic

field, and optical pumping of the electron spin at the rate R
(i)
OP by a light-field with

polarization s as described above. The optical pumping term along with the terms

in the second row describe the various spin-decoherence mechanisms that contribute

to the overall spin relaxation rate. We will now examine them in more detail.

The fourth term describes collisions between the alkali atoms that destroy spin

coherence, appropriately called spin-destruction collisions. These occur both with

other alkali atoms and with buffer gas particles, with rates given by R
(ij)
SD The total

spin destruction cross-section for the i’th alkali is then R
(i)
SD =

∑
j R

(ij)
SD .

The fifth term describes the effect of spin-exchange collisions arising from the spin-

spin interaction during a collision. This coupling conserves the total spin F1 + F2

of the two particles. However, as the collisions take place on a time-scale much

shorter than the hyperfine interaction, the electron spins of the two particles can

be re-distributed between hyperfine levels during the interaction while leaving the

nuclear spins unaffected. Figure 2.10 shows an example where the electron spins

are interchanged, while conserving the total spin of the two particles. This leads to
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Figure 2.10: A spin-exchange collision between particle 1 shown in blue, and particle
2, shown in orange. (a) Two incoming particles with opposite electron spins collide.
(b) After collision, electron the spins are reversed between the two particles, but the
nuclear spins are unaffected, and the total spin F1 + F2 is conserved.

redistribution of the total spins among the various Zeeman levels, and thus degrades

the spin-polarization of the ensemble. Spin-exchange can thus lead to significant spin

depolarization. But it can be considerably ameliorated by properly balanced optical

pumping, as discussed in Section 2.2.6.

The final term describes diffusion to the walls with diffusion constantDi. Particles

incident on the walls are fully depolarized, as discussed in Section 2.2.2.

These terms collectively describe the physical origins of the phenomenological spin

relaxation rate RRel. The RF linewidth of the end state transition is determined by

all of them. The state operator approach enables us to effectively model the detailed

dynamics of the atoms within the vapor by solving solving the differential equation

given by Equation 2.27. To make practical use of the state operator approach, we

must first choose a complete basis {|n⟩} in which to represent the state operator as a

matrix with components given by ρ
(i)
n,m = ⟨n| ρ(i) |m⟩. The basis of total angular mo-
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mentum states {|F,mF ⟩} is approximately orthonormal in the regime of linear Zee-

man splitting, making it an appropriate appropriate choice for modeling the atomic

dynamics for our applications. Because there are NZ = 2(2I+1) total Zeeman levels,

the state operator can be represented as a NZ×NZ matrix, with components indexed

by the total angular momentum F and its longitudinal projection mF , so the matrix

becomes ρ
(i)
n,m = ⟨F,mF | ρ(i) |F ′,m′

F ⟩. Recall that Fa = I + 1/2 is the total angular

momentum of the upper hyperfine manifold, with a total of Na = 2Fa + 1 Zeeman

levels while Fb = I−1/2 is the total angular momentum of the lower hyperfine man-

ifold with Nb = 2Fb + 1 total Zeeman levels. We will use the convention that ρ
(i)
1,1 =

|Fb,mF = −Fb⟩ ⟨Fb,mF = −Fb|, ρ(i)2,2 = |Fb,mF = −Fb + 1⟩ ⟨Fb,mF = −Fb + 1|, up

to ρ
(i)
Nb,Nb

= |Fb,mF = +Fb⟩ ⟨Fb,mF = +Fb|. After this, we start over with states in

the upper hyperfine manifold, so ρ
(i)
(Nb+1),(Nb+1) = |Fa,mF = −Fa⟩ ⟨Fa,mF = −Fa|,

and then the angular momentum once again increases down the diagonal as we it-

erate through the Zeeman levels of the upper hyperfine manifold, so ρ
(i)
(Nb+2),(Nb+2) =

|Fa,mF = −Fa + 1⟩ ⟨Fa,mF = −Fa + 1|, all the way up to ρ
(i)
(Nb+Na),(Nb+Na)

=

|Fa,mF = +Fa⟩ ⟨Fa,mF = +Fa|, where Nb+Na = NZ . An example of such a matrix

for an I = 5/2 alkali species such as 85Rb is given in Equation 2.28.
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ρ =



ρ1,1 ρ1,2 ρ1,3 ρ1,4 ρ1,5 ρ1,6 ρ1,7 ρ1,8 ρ1,9 ρ1,10 ρ1,11 ρ1,12

ρ2,1 ρ2,2 ρ2,3 ρ2,4 ρ2,5 ρ2,6 ρ2,7 ρ2,8 ρ2,9 ρ2,10 ρ2,11 ρ2,12

ρ3,1 ρ3,2 ρ3,3 ρ3,4 ρ3,5 ρ3,6 ρ3,7 ρ3,8 ρ3,9 ρ3,10 ρ3,11 ρ3,12

ρ4,1 ρ4,2 ρ4,3 ρ4,4 ρ4,5 ρ4,6 ρ4,7 ρ4,8 ρ4,9 ρ4,10 ρ4,11 ρ4,12

ρ5,1 ρ5,2 ρ5,3 ρ5,4 ρ5,5 ρ5,6 ρ5,7 ρ5,8 ρ5,9 ρ5,10 ρ5,11 ρ5,12

ρ6,1 ρ6,2 ρ6,3 ρ6,4 ρ6,5 ρ6,6 ρ6,7 ρ6,8 ρ6,9 ρ6,10 ρ6,11 ρ6,12

ρ7,1 ρ7,2 ρ7,3 ρ7,4 ρ7,5 ρ7,6 ρ7,7 ρ7,8 ρ7,9 ρ7,10 ρ7,11 ρ7,12

ρ8,1 ρ8,2 ρ8,3 ρ8,4 ρ8,5 ρ8,6 ρ8,7 ρ8,8 ρ8,9 ρ8,10 ρ8,11 ρ8,12

ρ9,1 ρ9,2 ρ9,3 ρ9,4 ρ9,5 ρ9,6 ρ9,7 ρ9,8 ρ9,9 ρ9,10 ρ9,11 ρ9,12

ρ10,1 ρ10,2 ρ10,3 ρ10,4 ρ10,5 ρ10,6 ρ10,7 ρ9,10 ρ10,9 ρ10,10 ρ10,11 ρ10,12

ρ11,1 ρ11,2 ρ11,3 ρ11,4 ρ11,5 ρ11,6 ρ11,7 ρ11,8 ρ11,9 ρ11,10 ρ11,11 ρ11,12

ρ12,1 ρ12,2 ρ12,3 ρ12,4 ρ12,5 ρ12,6 ρ12,7 ρ12,8 ρ12,9 ρ12,10 ρ12,11 ρ12,12


(2.28)

ρb

ρa

Entries on the diagonal in the matrix representation of ρ in Equation 2.28 represent

the normalized relative population of the Zeeman levels. The region highlighted

by the blue dashed line in the upper left corner of the matrix representation of

ρ in Equation 2.28 shows the sub-matrix ρb for the lower hyperfine manifold with

F = Fb = I − 1/2 = 2, while the region highlighted by the red dashed line shows the

sub-matrix ρa representing the upper hyperfine manifold with F = Fa = I+1/2 = 3.

Off-diagonal entries within these blocks describe coherence between the Zeeman levels

within a single manifold, such as those induced by the RF field. Entries outside the

blocks describe coherence between the upper and lower hyperfine manifolds, such as

would be introduced by a driving field with energy equal to the hyperfine splitting.

For instance, in 85Rb, the |F = Fb,mF = 0⟩ ↔ |F = Fa,mF = 0⟩ “clock” transition

is at approximately 3 GHz, and the coherence induced by a such a driving field is

captured by ρ3,9 and ρ9,3.

To calculate the evolution of ρn,m as a function of time, we must calculate an
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appropriate representation of BExt, and s. They can both be represented as three-

dimensional vectors V = [Vx, Vy, Vz] relative to their x, y, and z components. For

our optical pumping scheme, we have the particularly simple arrangement of s ≈

ez = [0, 0, 1]. The external magnetic field will be a combination of the bias field and

an RF magnetic field in the transverse plane, so BExt = B0ez + BRF cos (ωRFt)ey =

[0, BRF cos (ωRFt), B0].

We must also find the representations of the angular momentum operators F,S, I

in this basis. They will take the form of NZ × NZ × 3 vector-operators that can

be represented as three-dimensional arrays. An appropriate representation of their

components is most conveniently found by making a change of basis from the [x,y,z]

basis to the so called spherical basis given by the coordinate transformation

e0 = ez

e± = ∓ 1√
2
ex −

i√
2
ey.

(2.29)

This basis corresponds to the photon polarization of optical pumping, as a photon

with π polarization will have a polarization-projection of unity along the e0 direc-

tion, while photons with σ± polarization will have polarization-projections of unity

along the e± axes respectively. Because this basis respects the inherent spherical

symmetry of the system, it also allows us to calculate the components of the general

angular momentum operator K = K̂0e0 + K̂+e+ + K̂−e−. This operator has matrix

components given by

⟨F,mF |K |F ′,m′
F ⟩ =

∑
q

⟨F,mF | K̂q |F ′,m′
F ⟩ eq, (2.30)

where q = 0,±1 is the spherical index of the transition. In the spherical basis, we

know the action of the operators K̂q on the basis states {|K,mK⟩}

K̂0 |K,mK⟩ = mK |K,mK⟩

K̂± |K,mK⟩ =
√
K(K + 1)−mK(mK ± 1) |K,mk ± 1⟩ ,

(2.31)
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since the z-component is the same as the q = 0 operator, and the q = ±1 operators

are simply angular momentum ladder operators. Equation 2.31 makes calculation of

the components Fn,m particularly easy in the spherical basis

⟨F,mF | F̂0 |F ′,m′
F ⟩ = m′

F δF,F ′δmF ,m′
F

⟨F,mF | F̂± |F ′,m′
F ⟩ =

√
F ′(F ′ + 1)−m′

F (m
′
F ± 1)δF,F ′δmF ,m′

F±1

, (2.32)

where δn,m is the Kroneker delta. The final key to calculating the all the components

of the F comes from the the Wigner-Eckhart theorem [13]

⟨F,mF | K̂q |F ′,m′
F ⟩ = ⟨F ′,m′

F , 1, q|F,mF ⟩ ⟨F | |K| |F ′⟩ , (2.33)

where ⟨F ′,mF ′ , 1, q|F,mF ⟩ is the Clebsch-Gordan coefficient of the transition, and

⟨F | |K| |F ′⟩ is the reduced matrix element of the transition that depends only on the

starting and ending values of F and not on the spherical index q. As mentioned

earlier, Clebsch-Gordan coefficients are tabulated in various references [96], or they

can be computed as discussed by Auznish, Budker, and Rochester [13]. Thus the

problem can be solved by computing the reduced matrix element ⟨F,mF | |F| |F,m′
F ⟩

using Equation 2.31 and the Winger-Eckhart theorem (Eq. 2.33). Note that the

operator F cannot couple the F = Fa and F = Fb manifolds, as it is inherently

diagonal in the basis of its own eigenstates. Then we can compute the rest of the

matrix elements using the reduced-matrix element and the appropriate Clebsch-

Gordan coefficients as prescribed by the Wigner-Eckhart theorem (Eq. 2.33).

With Fn,m, known it is sufficient to calculate either of In,m or Sn,m, as in the

ground state L = 0, so F = I + S and thus the difference gives final unknown

operator. We will calculate the the electron-spin operator S. This is a bit more

involved. It can be broken into finding components within the F = F ′ = Fa,b

manifolds, and those that couple the Fa,b and F
′ = Fb,a manifolds. The former can

be computed using the ratio of matrix elements given by

⟨Fa,b|S |Fa,b⟩
⟨Fa,b|F |Fa,b⟩

= ± 1

2I + 1
, (2.34)
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where the positive sign corresponds to F = Fa and the negative sign is for F = Fb.

Thus Equation 2.34 and the already known values ⟨F | |F| |F ⟩ give the components of

S for which F = F ′. For the terms that couple the two manifolds, we must expand

the coupled basis {|F,mF ⟩} in terms of electron and nuclear spin states using the

Clebsh-Gordon coefficients

|F,mF ⟩ =
∑
mI

∑
mS

⟨I,mI , S = 1
2
,mS|F,mF ⟩ |I,mI , S,mS⟩ . (2.35)

Utilizing Equation 2.35 and operating with Ŝ0 gives

⟨F,mF | Ŝ0 |F ′,m′
F ⟩ =

∑
mI ,mS

ms⟨I,mI , S = 1
2
,mS|F,mF = mI +mS⟩

× ⟨I,mI , S = 1
2
,mS|F ′,m′

F = mI +mS⟩.
(2.36)

Setting F = Fa,b, F
′ = Fb,a and mF = m′

F = 0, then combing the result with the

Wigner-Eckhart theorem (Eq. 2.33) gives the result we seek

⟨Fa,b| Ŝ0 |Fb,a⟩ =
1

2⟨Fa,b, 0, 1, 0|Fa,b, 0⟩

(
⟨I,−1

2
, 1
2
, 1
2
|Fa, 0⟩⟨I,−1

2
, 1
2
, 1
2
|Fb, 0⟩

− ⟨I, 1
2
, 1
2
,−1

2
|Fa, 0⟩⟨I, 12 ,

1
2
,−1

2
|Fb, 0⟩

)
.

(2.37)

Equations 2.36, 2.37, and the Winger-Eckhart theorem (Eq. 2.33) again give us the

recipe to compute all the elements Sn,m of the electron-spin operator. Then we also

have the nuclear-spin operator from

In,m = Fn,m − Sn,m. (2.38)

Note that since the spin-operators are vector operators, all three spherical compo-

nents K̂q must be calculated for each. From here we may either rotate the operators

back into the [x, y, z] basis, or simply rotate any input vectors such as BExt into the

spherical basis for the computation.

With the operators in hand, we only need the prefactors to compute the state
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evolution from Equation 2.27. The electron g-factor is simply gs ≈ 2. The spin-

exchange and spin-destruction rates are given by

R
(ij)
SD(SE) = njσ

(ij)
SD(SE) ⟨vij⟩ , (2.39)

where RSD(SE) is the spin-destruction(spin-exchange) rate for the i’th alkali interact-

ing with the j’th species in the cell, nj is the density of the j’th species with which

the alkali interacts, σSD(SE) is the cross-section of spin-destruction(spin-exchange)

interactions between the i’th alkali and j’th species, and ⟨vij⟩ is the average rel-

ative velocity between the two particles due to their thermal motion. Note that

spin-exchange collisions only take place between alkali atoms in our system.§ In

contrast spin-destruction collisions occur between all particles interacting within the

vapor cell. The alkali density can be computed from the cell temperature using

the formula provided in Appendix A. If there is a temperature gradient within

the cell, as there typically is, then the minimum temperature of the cell will set

the alkali density, as alkali atoms will tend to preferentially condense there. The

spin-destruction(spin-exchange) cross-sections can be found in the literature, and

are summarized in Table A.3. The relative thermal motion is found by considering

the joint Maxwell-Boltzmann distribution for the thermal motion of the two species.

It turns out to be

⟨vij⟩ =

√
8kBT

πµij

(2.40)

where µij = mimj/(mi + mj) is the reduced mass of the two species and T is the

temperature. The optical pumping rate is set by the normalized photon absorption

rate given by Equation 2.8, and the intensity of the optical pumping beam. It is

typically on the order of 1000 s−1.

Finally, to treat the diffusion term, we can re-cast this part of the master Equation

in terms of polarization by taking the expectation values for the spin-polarization on

§Other species such as noble gas atoms can also take part in spin-exchange collisions,
but we do not use them in this work.
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both sides

∂

∂t
Tr
[
ρ(S/S)

]
= D∇2Tr

[
ρ(S/S)

]
∂

∂t
⟨P⟩ = D∇2 ⟨P⟩ .

(2.41)

We use a nearly cubic cell with a length of d on each side. Equation 2.41 is a

diffusion equation that is straightforward to solve by separation of variables using

the boundary conditions that the spins are highly polarized at the center of the cell

via optical pumping, so P0 = ⟨P(0, 0, 0, t)⟩ ≈ 1, while the polarization at the walls

is zero, so

⟨P(±d/2, y, z, t)⟩ = ⟨P(x,±d/2, z, t)⟩ = ⟨P(x, y,±d/2, t)⟩ = 0. The solution is

⟨P(x, y, z, t)⟩ =
∑

nx,ny ,nz

P
(nx,ny ,nz)
0 cos

(
nxπx

d

)
cos

(
nyπy

d

)
cos

(
nzπz

d

)
e−t/RWall ,

(2.42)

where nµ is an integer with µ ∈ {x, y, z}, P (nx,ny ,nz)
0 is the indexed amplitude of the

diffusion modes, and

RWall = 3D

(
π

d

)2

(2.43)

is the rate of wall collisions. The diffusion constant scales linearly with the density of

the buffer gas in the cell, and is specified relative to the value at a reference pressure

(and thus density) value D0. For a fill pressure of PN2 of N2 at TFill ∼ 0◦C, we can use

the ideal gas law to find that the density is nN2 = PN2/(kBT ). Therefore the diffusion

constant can be calculated from the reference value at 0◦C and 1 amg density found

in Table A.3, giving D = D0(n0/nN2) where n0 is the Loschmidt constant defined in

Appendix A. Using this, we can find the diffusion rate from the lowest order diffusion

mode to be RWall ≈ 2.6 s−1. This is a good approximation to the total diffusion, and

is negligible compared to the other broadening mechanisms, so we will henceforth

drop the diffusion term from our model.

We now have all the tools to model the detailed dynamics of the alkali ensemble

as it evolves in the vapor cell. For simulations carried out in this work, a framework

was built in MatLab. It takes in an initial state ρ0, the Alkali speices, the buffer



Chapter 2. The Physics of RF OPMs 39

gas species and their fill pressures, the cell temperature, and the optical pumping

rate. From this, it finds tabulated literature values and computes spin-exchange

and spin-destruction rates and the spin operators for the given alkali species, the

nuclear spin of which will set the size of the matrices required. All input vectors

are rotated into the spherical basis before the calculation. The evolution is found by

implementing Equation 2.27 directly using a solver for differential equations included

inMatLab. In most cases the initial state ρ0 is not of great importance, as we seek the

equilibrium behavior, and any initial state will converge to it. It is often convenient

to start with the stretched state ρS = |F = Fa,mF = +Fa⟩ ⟨F = Fa,mF = +Fa| or

the maximally mixed state ρM = 1
NZ

I where I is the identity matrix. Then we can

obtain ρ(t), and from it, compute the value of any observable as a function of time.

We are particularly interested in the transverse spin-polarization Fx = Tr[F̂xρ(t)],

which corresponds to what we measure, as will be seen in the next Section.

2.2.5 Measuring Atomic Polarization

To measure the RF field, we wish to measure the transverse spin-polarization. To ac-

complish this, we utilize an atom-light interaction within the vapor cell: the Faraday

effect. Linearly polarized light passing through a medium parallel to an a magnetic

field B will experience a rotation of its polarization vector by an angle β given by

β = VdB. (2.44)

Where V is the Verdet constant of the medium, and d is the distance the light travels

through the it. Figure 2.11 illustrates the Faraday effect as it rotates the polarization

of a propagating beam of light.

Within the vapor cell, the atom-light interaction is governed by the interaction
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Figure 2.11: An illustration of the Faraday effect. The polarization of the incident
light-field is rotated by an angle β as it passes through the medium that is within
magnetic field B. Image credit to user Wikimedia Commons user DrBob. Shown
here unedited under a CC BY-SA 3.0 license.

Hamiltonian [70]

ĤF = −1

2
αv

F

F
· E× E∗

i

= −1

2
αv

F

F
· E2s,

(2.45)

where s = E× E∗/(iE2) is the photon-polarization vector first introduced earlier, ∗

denotes complex conjugation, and αv is the vector atomic polarizability of the alkali

species. This effect causes the polarization axis of linearly-polarized light propagating

along the µ axis to rotate by an angle [70]

β =
4π2dn

λD1

Re(αv)
⟨Fµ⟩
F

, (2.46)

where d is the distance traveled through the medium, λD1 is the wavelength of the

light at D1 resonance, and n = N/V is the number density of the alkali species. For
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our vapor cell, d = 1 cm. Because we wish to measure the transverse spin, we will

select µ = x. For a a probe beam tuned near the D1 optical resonance such as the

one used in this work, the vector polarizability is given by [70]

αV (ν) =
fResrec

2

2νD1

(−iπ)L(∆ν,ΓTot), (2.47)

where ν is the optical frequency, νD1 is the resonance frequency of the D1 transition,

re = 2.818 fm is the classical electron radius, fRes ≈ 1/2 is the oscillator strength of

the D1 transition, ΓTot is the optical linewidth, ∆ν = ν − νD1 is the detuning from

optical resonance, and L is the complex Lorentzian defined by Equation 2.5. Thus

we have

Re(αV ) =
fResrec

2

2νD1

∆ν

∆ν2 + (ΓTot/2)2
=
λD1fResrec

2
Im
(
L(∆ν,ΓTot)

)
. (2.48)

Combining the RF response of the atoms from eqation 2.22 and 2.46, we see the

rotation angle for the probe beam becomes

β =
πnfResreγ

8
Im
(
L(∆ν,ΓTot)

)
Re
(
L(ωRF,ΓRF)

)
dBRF sin (ωRFt)

= VdBRF sin (ωRFt),

(2.49)

where V = (πnfResreγ/8)Im
(
L(∆ν,ΓTot)

)
Re
(
L(ωRF,ΓRF)

)
is the Verdet constant.

In atomic vapors, the Verdet constant is dependent on the alkali density, along with

the optical and RF frequency and the specific broadening mechanisms within the

vapor cell. Comparison of Equations 2.46 and 2.49 makes it clear that the light

undergoes oscillating Faraday rotation due its interaction with the spin-polarization

induced in the atoms by RF driving field. We could in principle measure along any

axis lying within the transverse plane of the magnetometer, as the measurement will

only differ by a phase shift in the sinusoidal term. We designate the x-axis as the

measurement axis for our experiments.

We now have a way to measure the RF field seen by the atoms by measuring the

rotation of the polarization of the light of the probe beam: hence the name “probe”.

Measuring the polarization angle is quite simple using a balanced polarimeter. This
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Figure 2.12: Balanced polarimetry for measurement of spin-rotation. (a) Optical
layout for balanced detection. A probe beam along the x-axis undergoes Faraday
rotation of its linear polarization due to the spin-polarization of the atoms as it tra-
verses the vapor cell. A half-wave (λ/2) wave plate sets the angle of the polarization
to be π/4 in the absence of the vapor cell. A polarizing beam-splitter (PBS) cube
projects the polarization state into horizontal (HP) and vertical (VP) states. The
former is parallel to the z-axis, while the latter is parallel to the y-axis. Two nom-
inally identical photo-diodes PD

(1,2)
⊥ detect the fluctuations of the light intensity in

each polarization state as they ares modulated at the RF frequency. An additional
monitor photo-diode for the pump light PDz is shown, but not utilized for RF sens-
ing. (b) Circuit diagram for balanced photo-detection. Transverse photo-diodes are
biased by voltage VBias, and opposite ends connected to get a junction output that
gives the current difference. Said current difference is then amplified by a trans-
impedance amplifier to produce a voltage output VOut = GT (I1 − I2) ∝ β

can be constructed using a half-wave plate, polarizing beam-splitter (PBS), and two

photo-detectors as illustrated in Figure 2.12. Either before or after passing through

the vapor cell, a half-wave plate is used to rotate the polarization vector of the

initially linearly polarized light to an angle of π/4 relative to the z-axis. Then, after

passing through the medium and undergoing Faraday rotation, the PBS separates
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the beam into two paths with orthogonal linear polarization states, each of which is

separately incident on one of the photo-detectors. If the vapor cell were not present,

or if it is not heated, so the alkali density n remains very small, the polarization of

the beam as it is incident on the PBS will be +π/4 due to the wave-plate. Then

the beams will have equal intensity, and the photo-detectors will produce signals of

equal amplitude. Balanced detection from subtraction these signals then gives zero

in this ideal case. However, as the Faraday effect rotates the polarization state of

the light incident on the PBS, more light will be projected into one of the linear

polarization states than the other, and the signal will become nonzero. In fact, so

long as the rotation remains small (β ≪ 1), which will be true given the small degree

of transverse spin-polarization induced by the RF field, then the angle is given by

β =
N1 −N2

2(N1 +N2)
, (2.50)

where N1(2) is the number of photons incident on the first(second) photo-detector

respectively. What we actually measure is the current difference between the output

of two photo-diodes. The current produced by the i’th photo-diode will be Ii =

qeηiNi/τ where qe is the elementary charge of the individual carriers released at a

rate ηiNi/τ by Ni incident photons per measurement time τ , and ηi is the quantum

efficiency of the diode that characterizes the faction of incident photons that free

a charge carrier. It depends on the complex details of the light-matter interaction

between the semiconductor material of the diode and the incident light-field. For

two identically manufactured photo-diodes, η1 ≈ η2 = η, and thus from equation

2.50, we see that β = (I1 − I2)/[2(I1 + I2)] as the factors of qe,η, and τ all cancel.

Thus β ∝ I1 − I2, which we can easily measure by connecting the current outputs of

the photo-diodes in series with opposite polarities which gives the current difference

as seen Figure 2.12(b). This can then be converted into a measurable voltage using

a trans-impedance amplifier with gain GT , giving a final output voltage

VOut = GT (I1 − I2) ∝ β ∝ BRF sin (ωRFt). (2.51)

The proportionality of the rotation angle to the RF field amplitude will be set by
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the quantum efficiency of our photo-diodes and the intensity and detuning from

optical resonance of the probe beam, as discussed in the next section, along with the

Verdet constant and depth of the vapor cell as discussed above. The trans-impedance

gain GT is set by the feedback network of the operational-amplifier circuit used to

implement it. Equation 2.51 is the basis for deriving the laboratory signals that we

will use.

2.2.6 Sensitivity and Fundamental Noise

In Section 2.2.5, the sensitivity of the total atomic spin F to an RF field was intro-

duced in Equation 2.22, which provides the basis for the sensitivity of the atomic

vapor to external RF fields. We then explored how this could be detected with

balanced polarimetry. On RF resonance, we saw that

Px =
Fx

F
=

γBRF

2πΓRF

sin (ωRFt), (2.52)

which shows us that magnetometer signal scales inversely with the RF linewidth.

As discussed in Section 2.2.4, RF linewidth is set by the combined effect of nu-

merous relaxation mechanisms; including spin-destruction collisions, collisions with

the cell walls, de-pumping effects from the pump and probe light-fields, and spin-

exchange collisions. Of these, spin-exchange collisions, despite not destroying the

spin coherence of the combined system, can be a dominant effect. Luckily, it can be

ameliorated via light-narrowing. Light narrowing in this context was first predicted

and subsequently demonstrated by by Appelt. et al (1998,1999) [10, 11]. It relies

on the fact that when optical pumping pushes the system into the stretched state,

then during a spin-exchange collision, the atoms have nearly full spin-polarization,

and conservation of angular momentum dictates that since nearly all the spins al-

ready lie along the same axis, they will remain the in the same state after colliding.

In principle, if the state of the ensemble was exactly in the stretched state, then

the effect of spin-exchange collisions on the linewidth would disappear entirely. But
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of course the RF field induces coherence between Zeenan levels. In particular, the

stretched state couples to the |F = Fa,mF = Fa − 1⟩ state. Therefore, the atomic

state of the ensemble has some projection along the |F = Fa,mF = Fa − 1⟩ state,

which undergoes spin-exchange collisions that switch transverse spins during colli-

sions, and thus degrades the transverse spin coherence. In practice, the decoherence

effect of spin-exchange collisions can be ameliorated up to a point by increasing the

optical pumping rate ROP, which will keep the spins nearly in the stretched state

and counter the mixing effect of spin-exchange collisions. However, eventually in-

creasing the optical pumping rate further will itself lead to broadening, as the power

broadening causes an increase in the RF line width. At a carefully selected value,

the right balance will be struck to minimize the RF linewidth and thus optimize the

sensitivity.

The basics of the aforementioned original treatment by Appelt et al. will be

summarized here. We first consider the signal from the |F,mF ⟩ ↔ |F,mF − 1⟩

transition. As discussed earlier, to first order all these Zeeman transitions will be

resonant at the RF (Larmor) frequency set by the bias field in the regime of linear

energy splitting in which we work. The strength of the signal is then proportional

to the population difference between the two coupled Zeeman levels. To calculate

this difference, let m̄ = [mF + (mF − 1)]/2 = mF − 1/2 be the average longitudinal

spin-projection of the two coupled Zeeman levels between which the spin transitions.

Then the population difference between Zeeman levels is proportional to [10]

Qm̄ =
2P (1 + P )I+m̄(1− P )I−m̄

(1 + P )2I+1 − (1− P )2I+1
. (2.53)

Note that for P = 1, Qm̄ = 0 for all m̄, since all the population is in the stretched

state, and there is no population difference between any of the states. However, if

P ≈ 1, then there is a small but finite population difference for m̄ = Fa − 1/2 = I,

while all the other population differences vanish. Exactly the regime in which we

intend to work. Appelt et al. used the formalism of the relaxation operator to obtain

the linewidths of the individual Zeeman transitions. They are given by [10, 11]
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Figure 2.13: Actual data from a 87Rb vapor cell, along with data from a density-
operator simulation, and an analytic approximation showing the light narrowing
effect. As the optical pumping rate increases, the RF linewidth sharply decreases
to a minimum as the pumping compensates spin-exchange collisions and keeps the
state approximately in the stretched state. Eventually the linewidth broadens again
due to power broadening. A large background offset of +1.5 kHz was found in these
data. Error bars in the data reflect 95% confidence for the fits used to determine
the linewidth and calibrate the optical pumping rate in terms of applied laser power
respectively.

ΓF,m̄ =
1

π

[
R′3(2I + 1)2 + 1− 4m̄2

4(2I + 1)2
− (PRSE +ROPsz)

m̄

2I + 1
(−1)Fa−F+

− (2F + 1)2 − 4m̄2

4(2I + 1)2
RSEQm̄fIso

]
,

(2.54)

where R′ = RSE +RSD +ROP, and fIso is the isotopic fraction of the alkali species in

question. Savukov et al. (2005) considered the case in a highly polarized isotopically

pure cell where P ≈ 1, RSE ≫ RSD, and sz = 1 for 87Rb with I = 3/2. They found

that the width of the end resonance with ΓFa,I = ΓRF could be expanded in powers

of the spin-destruction rate to give the following result to first order [75]

ΓRF =
1

π

(
ROP

4
+
RSERSD

ROP

G(ω0, RSE)

)
, (2.55)
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with G(ω0, RSE) = Re
(
(RSE + 8iω2

0/∆ωHF)/(5RSE + 16iω2/∆ωHF)
)
where ∆ωHF is

the ground-state hyperfine splitting. Seltzer presented a generalized version of this

result in his thesis [77]

ΓRF =
1

π

( ROP

2I + 1
+
RSERSD

ROP

G(ω0, RSE)
)
, (2.56)

with values of G(ω0, RSE) given in Table 2.1. This is the result used to provide an

analytic approximation in Figure 2.13.

I G(ω0, RSE)

3/2 Re

(
RSE + 8iω2

0/∆ωHF

5RSE + 16iω2
0/∆ωHF

)

5/2 Re

(
3RSE + 22iω2

0/∆ωHF

10RSE + 44iω2
0/∆ωHF

)

7/2 Re

(
5RSE + 36iω2

0/∆ωHF

14RSE + 72iω2
0/∆ωHF

)
Table 2.1: Values of G(ω0, RSE) for use in the approximation of the RF linewidth in
Equation 2.56 provided for various nuclear spin values I by Seltzer in his thesis [77].

It is clear from Equation 2.56 that the approximation diverges in the limit of

vanishing optical pumping. However, as can be see in Figure 2.13, it becomes an

excellent approximation in the limit of high optical pumping rates, where the leading

term becomes dominant and the second term vanishes. The calibration for the optical

pumping rate in Figure 2.13 was extracted by fitting to the function

ΓRF ≈ a

π

ROP

4
+ b (2.57)

in the regime of high optical pumping power. Here a is the calibration for the op-

tical pumping rate in terms of measured photo-diode voltage, and b = +1.5 kHz

is an offset due to background broadening. It is clear from comparison of the ana-

lytic approximation to the points produced by a full state-operator simulation that
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the analytic simulation accurately produces the correct theoretical linewidth at the

minimum value. Thus we conclude that the analytic approximation is valid for cal-

culating the theoretical minimum linewidth at which we wish to operate. It is found

by minimizing Equation 2.56, which gives

ΓRF,Min =
1

π

√
4G(ω0, RSE)RSERSD

2I + 1
. (2.58)

Equation 2.58 holds for an isotopically pure sample. From Equation 2.54, we see

that if the isotopic fraction fIso < 1, then the linewidths of the Zeeman transitions

broaden by

∆ΓF,m̄ =
1

π

(2F + 1)2 − 4m̄2

4(2I + 1)2
Qm̄fIsoRSE. (2.59)

For the end state transition that we use, with F = Fa = I + 1/2, m̄ = I and

P ≈ 1 =⇒ Qm̄ ≈ 1 this reduces Equation 2.59 to

∆ΓRF = ∆ΓFa,I =
RSE(1− fIso)

π(2I + 1)
. (2.60)

Thus the total minimum RF linewidth becomes

ΓRF,Min =
1

π

(√
4G(ω0, RSE)RSERSD

2I + 1
+
RSE(1− fIso)

2I + 1

)
(2.61)

We know that the signal amplitude scales inversely with the linewidth. Now

we must find where the fundamental noise limit lies. The sensitivity of an OPM

must ultimately be limited by quantum noise processes. As quantum sensors, they

provide the distinct benefit of actually being able to approach this ultimate quantum

mechanical limit. Savukov et al. (2005) derived the fundamental noise limit of an RF

OPM [75], while Seltzer provided an expanded version of this treatment in his thesis

[77], both of which we will follow here. They consider the three major contributing

sources of quantum-mechanical noise:

1. Spin-Projection Noise: As angular momentum operators, the orthogonal
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components of the total spin operator F̂ do not commute, but are given by¶

[F̂i, F̂j] = iϵi,j,kF̂k, (2.62)

where i, j, k ∈ {x, y, z}. Thus there is an uncertainty relation given by the

generalized uncertainty principle

δFiδFj ≥ 1
2
|Fk|. (2.63)

This is minimized for full polarization, which we have already assumed to

be approximately true. Ensembles are not spin-squeezed in this work, so the

directions are uncorrelated, and in particular, δFx = δFy. Then the uncertainty

from N uncorrelated measurements of the transverse spin is

δFx =

√
|Fz|
2N

. (2.64)

We do not perform discrete measurements. Instead, we continuously probe

the ensemble with the probe beam and monitor the signal. Gardner (1986)

provides the uncertainty for the case of continuous measurements such as ours

[38]

δ ⟨Fx⟩ = δFx

[
2

t

∫ t

0

(
1− τ

t
K(τ)

)
dτ

]1/2

= δFx

[
2

πΓRFt
+

2
(
K(t)− 1

)
π2Γ2

RFt
2

]1/2
,

(2.65)

where K(τ) = e−πΓRFτ is the time correlation function for spin-coherence. For

measurement times t≫ T2 = 1/πΓRF, we can combine Equations 2.65 and 2.64

to find the transverse uncertainty within a measurement bandwidth BW =

1/(2t) to be

δ ⟨Fx⟩ =
√

2FzBW

πΓRFN
. (2.66)

¶Einstien summation over repeated indices is implied here.
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The noise power in this bandwidth is then

δ ⟨Fx⟩2 =
2FzBW

πΓRFN
. (2.67)

So the root-mean sqaure (RMS) noise power per unit bandwidth is

δ ⟨Fx⟩2RMS =
2Fz

πΓRFN
. (2.68)

Thus the RMS noise amplitude per unit bandwidth is simply Equation 2.66

divided by
√
BW

δ ⟨Fx⟩RMS =

√
2Fz

πΓRFN
. (2.69)

Using Equation 2.52, we can calculate the noise in the transverse polarization-

projection to be

δ ⟨Px⟩ =
δ ⟨Fx⟩
F

=
γ

2πΓRF

δBRF. (2.70)

Combing Equations 2.70 and 2.69 we can find the RMS spin-projection noise

per unit bandwidth in the RF magnetic field to be

δBSPN =
1

γ

√
8πΓRF

FzN
≈ 1

γ

√
8πΓRF

(I + 1/2)N
. (2.71)

2. Photon Shot Noise: We consider the photon-flux over the total area APR of

the probe beam, which is given by integrating the photon-flux per unit-area Φ

taken over the entire pump beam

ΦTot =

∫
APR

ΦdA. (2.72)

The photon flux is simply the incident photons photons NP per time τ , so

ΦTot = NP/τ . Thus we can combine this result with Equation 2.50 to get the

measured rotation angle of the polarimeter in terms of the photon fluxes of the

orthogonal polarization states in the arms of the polarimeter

β =
ΦV − ΦH

2(ΦV + ΦH)
, (2.73)
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where ΦV (H) is the photon flux with vertical(horizontal) polarization in the

polarimeter. The photon fluxes in each arm of the the polarimeter are nomi-

nally balanced, with β ≪ 1 a small angle, so ΦV ≈ ΦH = ΦTot/2 . Then the

quantum fluctuations of the flux in each arm of the polarimeter are�

δΦV (H) ≈
√

ΦTot

2
. (2.74)

The corresponding RMS fluctuation per unit bandwidth in the measurable

rotation angle is then

δ ⟨β⟩RMS =

√
2

[( ∂β

∂ΦV

δΦV

)2
+
( ∂β

∂ΦH

δΦH

)2]
=

√
1

2ΦTot

.

(2.75)

Accounting for the finite quantum efficiency η at which the photo-diodes con-

vert incident photons into measurable current, we can then use Equations 2.52

and 2.75 to find the RMS photon shot-shot noise per unit bandwidth in the

measurement of the magnetic field on RF resonance to be

δBPSN =
4ΓRF

γdnrecfRes

∣∣Im(L(∆ν,ΓTot)
)∣∣√2ηΦTot

. (2.76)

3. Light-Shift Noise: The AC Stark effect of the pump and probe lasers causes

a shift in the energy levels of the atoms given by Appelt et al. (1998) to be

[10]

∆EAC = 1
2
πℏrecfResΦ(1− 2s · S)Im

(
L(∆ν,ΓTot)

)
.

= 1
2
πℏrefResΦIm

(
L(∆ν,ΓTot)

)
+ ℏγeBLS · S,

(2.77)

where the second line reflects the fact that the first line can be decomposed

into a constant term common to all energy levels, and a vector term with the

�This assumes the state of the light is given by a coherent state, and thus displays
classical Poissonian statistics. Because we do not squeeze the state of the probe beam, this
is true in our case.
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same form as the Zeeman interaction. Because we measure energy differences

between Zeeman levels, the common offset in the first term of the second line

has no measurable effect. The measurable response of the atoms to this light-

shift is indistinguishable from the influence of an additional external field given

by

BLS = −πrecfResΦ

γe
Im
(
L(∆ν,ΓTot)

)
s. (2.78)

Because this effect is indistinguishable from the influence of an external mag-

netic field, the influence can be compensated by applying a control fieldBCont =

−BLS. However, there will also be quantum fluctuations in the photon polar-

ization state s, which will then be converted into amplitude noise by the PBS

within the balanced polarimeter and appear as noise within the measured mag-

netic field. We may write the linear polarization of the probe beam as an equal

superposition of σ± states. To do so, let Φ± be the total fluxes of circularly po-

larized photons with positive and negative helicities, then the polarization s of

the probe beam is an equal superposition of circularly polarized photon-fluxes

with opposite helicities given by

s =
Φ+ − Φ−

ΦTot

, (2.79)

where ΦTot = Φ++Φ− is the total photon flux. Since the superposition is equal,

the photon number and thus quantum noise in each circular polarization mode

is equal

δΦ± =

√
ΦTot

2
. (2.80)

Then the calculation of the total RMS noise per unit bandwidth in ⟨s⟩ proceeds

almost identically to the one carried out for the rotation angle noise in Equation

2.75

δ ⟨s⟩RMS =

√√√√2

[( ∂s

∂Φ+

δΦ+

)2
+
( ∂s

∂Φ−
δΦ−

)2]

=

√
1

2ΦTot

.

(2.81)
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We can then combine Equations 2.78 and 2.81 to get the RMS magnetic field

noise per unit bandwidth due to quantum fluctuation in the light polarization

state to be

δBLSN =

√
2πrecfResΦ

2(2I + 1)γ
√
ΦTot

∣∣Im(L(∆ν,ΓTot)
)∣∣. (2.82)

Note there is an extra factor of 1/2 in the RF field noise compared to the DC

field described by Equation 2.78. This is due to only the co-rotating component

of the RF field making a meaningful contribution. In general, the photon flux

per unit-area Φ depends on the exact spacial profile of the light-field of the

probe laser. To attain an average value throughout the cell, we can approximate

Φ ≈ ΦTot/A, where A is the effective cross-sectional area of the probe laser.

Then we may approximate the RMS light-shift noise per unit bandwidth over

the entire cell as

δBLSN ≈
√
2ΦTotπrecfRes

2(2I + 1)γA

∣∣Im(L(∆ν,ΓTot)
)∣∣. (2.83)

Figure 2.14 shows the contribution to the quantum noise floor from each of the

three effects, along with the total given by their quadrature sum for realistic values

measured in our magnetometer using 85Rb. Note that at the lowest noise value,

the spin-projection noise dominates, while for values near resonance or far detuned

from it, the photon shot noise becomes the dominant effect. We also see that our

magnetometer can achieve a sensitivity on the order of 1 fT Hz−1/2.

We see from Figure 2.14 that the best sensitivity is achieved several linewidths off-

resonance, where we may approximate Im
(
L(∆ν,ΓTot)

)
≈ 1/(π∆ν). In this regime,

the off-resonant pumping rate of the probe beam is given by

RPR = σ(∆ν,ΓTot)
ΦTot

A
=
recfResΓTotΦTot

2A∆ν2
, (2.84)

and resonant optical depth of the probe beam is given by

OD0 = σ(∆ν = 0,ΓTot)nd =
2ndrecfRes

ΓTot

. (2.85)
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Figure 2.14: Comparison of quantum noise sources in our RF magnetometer using
realistic values for 85Rb. Cell temperature was assumed to be 125◦C. Area was
estimated using the 1/e2 Gaussian size of the probe beam. Photon flux was estimated
from a realistic probe beam power of 20 mW as ΦTot = 20 mW/(ℏνD1). This
sensitivity assumes an approximately 1 cm3 cubic cell with a length of d = 1 cm on
each side. A quantum efficiency of 90% was used.

These results allow us to write the total magnetic field noise as the quadrature sum

of the three effects

δBRF =
√
δB2

SPN + δB2
PSN + δB2

LSN

=
1

γ
√
nV

√
16πΓRF

(2I + 1)
+

8(πΓRF)2

RPROD0η
+

RPROD0

2(2I + 1)2
,

(2.86)

where we have identified N = nV with active measurement volume V defined by the

intersection of the probe and pump beams. We can minimize Equation 2.86 to find

that the optimum value occurs where the last two terms under the radical in the

second line are equal, giving

RPROD0 =
4πΓRF(2I + 1)

√
η

. (2.87)

Using the minimized value of ΓRF provided by Equation 2.61, we see that the best
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Figure 2.15: Theoretical optimal sensitivity vs. cell temperature using our natural
abundance Rb vapor cell with 400 Torr of nitrogen. Density was calculated using the
CRC formula for Rb vapor pressure over liquid, and is likely an over-estimate. The
approximation G(ω0, RSE) ≈ 1/5, 3/10 was used for I = 3/2, 5/2 because we are in
the regime ωRF ≪ ωHF. Quantum efficiency was generously assumed to be η = 0.9.
The fundamental sensitivity limit using 85Rb is around 0.4 fT Hz−1/2. Using 87Rb
leads to worse sensitivity due to considerably less isotopic abundance.

possible sensitivity at maximum light-narrowing is given by

δBRF,Min =
1

γ
√
nV

√√√√4(4 + η−1/2)

2I + 1

(√
4G(ω0, RSE)RSERSD

2I + 1
+
RSE(1− fIso)

2I + 1

)
.

(2.88)

Values in Figure 2.15 are smaller than the minimum value seen in Figure 2.14 because

the theoretical smallest linewidth given by Equation 2.61 under these conditions is

ΓRF,Min ≈ 552 Hz, while the measured value is closer to ΓRF = 1.5 kHz. Previous

measurements of alkali density in a heated vapor cell also indicate that the CRC for-

mula tends to under-estimate the true vapor density at a given temperature, reducing

the number of interacting particles and decreasing the sensitivity [77]. Nevertheless,

Figure 2.15 shows why we prefer to operate in the 120 − 130◦C temperature range:

It puts us into the asymptotic regime of maximum achievable sensitivity while re-
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quiring the least heater power, and also without unnecessarily increasing the optical

depth so much that untenable laser powers are required for pumping and probing.

2.3 Conclusions

In this chapter, we have seen see the great promise in this approach to RF magne-

tometery with OPMs. We have also seen the limitation of the technique: it requires

the bias field B0 being maintained at the correct value. This has made the applica-

tion of this technique challenging outside the controlled magnetic field environment

provided by a magnetic shield, and limited the accessible applications. In the next

Section, we explore a method that provides for active control of B0, allowing us to

maintain the correct bias field in an unshielded environment.
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Chapter 3

OPM Variometry

To implement the techniques detailed in Chapter 2 within dynamic magnetic field en-

vironments outside of a magnetic shield, we must actively stabilize the low-frequency

field environment near DC so the atoms experience the correct bias field. This can

be achieved via active feedback to a set of tri-axial field control coils that produce a

control field BCont such that the low-frequency field external field is properly com-

pensated and BCont + BExt = B0. Then the question becomes, how do we produce

the correct control field?

We must measure BExt to obtain the requisite information to synthesize the

correct control field. What we need is another magnetometer that operates near DC

within Earth’s geomagnetic field. This magnetometer must sample the magnetic field

close to, or preferably within, the volume of the vapor cell containing the RF OPM in

order to minimize errors due to gradients within the external field. One approach is

to use a flux-gate magnetometer positioned as near as physically possible to minimize

the distance between the flux-gate probe and the OPM vapor cell. This approach is

used by several groups in the United Kingdom focused on electromagnetic induction

imaging applications in medicine, industry, and security [50, 72, 16, 17, 15, 29, 31,

30, 18, 58, 32, 28, 59, 60, 46]. The best sensitivity achieved via this method thus far
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is 50 fT Hz−1/2 [58]. In this work, we opted to develop a new approach using another

OPM directly within the same vapor cell. This approach provides the advantage of

sampling from within exactly the same volume occupied by the RF OPM, and thus

minimizing errors due to field gradients.

3.1 Conceptual Overview

To understand how we build this second comagnetoemter within the vapor cell, note

that because natural rubidium contains 72.15% 85Rb with I = 5/2 and 27.85% 85Rb

with I = 3/2. If we use the former to create a high-sensitivity RF OPM based on

its larger abundance, as seen in the comparison in Figure 2.15, we can then use the

latter as an a secondary OPM. This works because the gyromagnetic ratio of an

atomic species with nuclear spin I is given by

γ =
γe
q

=
γe

2I + 1
, (3.1)

where γe is the gyromagnetic ratio of a bare electron. So the ratio of gyromagetic

ratios between the two isotopes in natural Rb is

γ87
γ85

=

γe
2(3/2)+1

γe
2(5/2)+1

=
3

2
. (3.2)

Combing Equation 3.2 with Equation 1.1, we see that in a given external bias field

B0, if
85Rb is resonant at the RF frequency so f85 = fRF = γ85B0/(2π), then

87Rb is

resonant at

f87 =
3

2
fRF. (3.3)

Figure 3.1(a) shows how the amplitude of the RF atomic response from the two

isotopes splits in frequency for the two isotopes within natural Rb. It is important

to note that Equation 3.3 holds only to first order in the regime of linear Zeeman

splitting. In addition, slight differences in the AC Stark shift between the two iso-

topes can contribute to differential resonant frequency shifts that affect this result.
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Figure 3.1: Amplitude of the RF atomic response vs. frequency as given by Equation
2.5 with FWHM linewidth of ΓRF = 1.5 kHz. Relative weights of each response are
provided by the abundances of 72.15% and 27.85% for 85Rb and 87Rb respectively.
(a) The frequency separation is large in comparison to the RF linewidth. The
clear separation between the responses allows us to operate the variometer and RF
magnetometer simultaneously. (b) The same situation as in (a), but at the minimum
resolvable frequency of fRF,Min = 2ΓRF = 3 kHz, showing how the responses can only
just be individually resolved.

However, these offsets will be much smaller than the ∼ 1 kHz RF linewidth and can

be neglected for our purposes. Thus by holding 87Rb resonant at 3/2 the desired

RF sensing frequency, we can properly stabilize the external field near DC for RF

sensing with 85Rb. In addition to providing field information from directly within the

same volume as the RF OPM vapor cell, this also allows for a more compact device

and for reduction in power consumption. Details of the integration of this secondary

OPM will be discussed in Chapter 4. Here, we will discuss how an OPM variometer
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can provide the platform we need for magnetic field sensing near DC. This approach

will work so long as the responses of the two isotopes remain clearly distinguishable

in frequency. The lowest frequency at which this approach can operate at a given

FWHM RF linewidth ΓRF is

∆f = f87 − f85 ≥ ΓRF. (3.4)

The condition for resolvability in Equation 3.4 can be simplified using the ratio from

Equation 3.3 to get the minimum operating frequency and bias field in terms of the

RF linewidth and gyromagnetic ratio of 85Rb

fRF ≥ 2ΓRF (3.5a)

B0 ≥
2π

γ85
2ΓRF. (3.5b)

Figure 3.1(b) shows the situation at the minimum resolvable frequency of fRF =

3 kHz in a bias field of B0 = 642 nT with an RF linewidth of ΓRF = 3 kHz.

Now we will turn out attention to exactly how to build the secondary OPM for

active field stabilization. Our method is based on using a modified OPM variome-

ter. This discussion will closely follow the methodology for the OPM variometetry

presented by E.B. Alexandrov and colleagues at the Vavilov State Optical Institute

in St. Petersburg, RU [4, 3, 90]. It starts with a standard scalar magnetometer that

works by orienting the longitudinal axis approximately along the external field, which

we will assume is provided by Earth’s geomagnetic field, so BExt = BEarth. The total

external field may also be affected by additional fields from sources such as power

lines, industrial equipment, metal used in structures, etc. But that will not affect

the conclusions of this discussion, as they can be simply included as part of BExt.

Measuring the Larmor frequency by monitoring the transverse spin-polarization al-

lows the magnitude of the external field to be easily determined as shown in Figure

1.1 and Equation 1.1. If we wish to stabilize the field near DC, we can use the in-

formation provided by this simple scalar magnetometer to provide feedback currents
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to drive control coils with a control current ICont,z to provide a longitudinal control

field BCont,z such that

2πfRF = γ|BExt +BCont,zez| = γ|BTot|. (3.6)

Equation 3.6 assumes that BExt ≈ BExt,zez, since the device has been oriented to

approximately align the longitudinal axis along the geomagnetic field. Thus we have

a method to stabilize the longitudinal field. It can also be used to measure the

fluctuations |∆BExt(t)| in the amplitude of the geomagnetic field over time, since

∆BExt(t) ∝ BCont,z(t) ∝ ICont,z(t). Thus known calibrations ICont,z(t) provide a

record of the amplitude variation in the geomagnetic field over time. Tracking these

variations was the original intent of the OPM variometery and is the reason for its

name.

As alluded to in the previous paragraph, external geomagnetic fields are not

perfectly static. They vary over time, and these variations are not confined to a single

direction. For this reason, the longitudinal direction of the variometer can only ever

be approximately aligned along the direction of the geomagnetic field vector, even in

the ideal case. We thus need a method to track variations in the plane transverse to

the optical pumping beam. To achieve this, we can use additional magnetic field coils

oriented to drive magnetic fields along the x and y directions, which we shall denote

the x and y modulation coils. These coils are used to drive a small a rotating magnetic

field BMod,⊥ in the transverse plane of the magnetometer that rotates at transverse

modulation frequency ω⊥ ≪ ωRF, such that the modulation field is approximately

static relative to the RF oscillation. We must also avoid introducing significant

perturbation to the total field amplitude, so we require BMod,⊥ ≪ B0, such that

the total field is minimally affected by this small modulation. Then the transverse

modulation field is given by

BMod,⊥(t) = B
(x)
Mod,⊥(t)ex +B

(y)
Mod,⊥(t)ey

= BMod,⊥
(
cos (ω⊥t)ex + sin (ω⊥t)ey

)
.

(3.7)
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Equation 3.7 reflects how we achieve a rotating modulation: we drive the x and y

modulation coils with sinusoidal currents that have a π/2 = 90◦ phase offset. We

take the phase of driving-field along the x-axis to be zero, and thus drive it with an

in-phase (I) sinusoid given by the cosine term, while the y-axis is driven with an in-

quadrature (Q) sinusoid with a +π/2 (90◦) phase-shift given by the sine term. The

rotating modulation is illustrated in Figure 3.2(a). Figure 3.2 (a) and (b) show the

dynamics of the variometer when the external field is exactly along the longitudinal

direction. In this case, the transverse field is given by B⊥ = BMod,⊥. Because

BMod,⊥ ≪ B0, the overall field amplitude as a function of time is given by

|BTot(t)| =
√
B2

0 +B⊥(t)2

=

√
B2

0 +
[(
BMod,⊥ cos (ω⊥t)

)2
+
(
BMod sin (ω⊥t)

)2]
=

√
B2

0 +B2
Mod,⊥

[
cos (ω⊥t)2 + sin (ω⊥t)2

]
=
√
B2

0 +B2
Mod,⊥

≈ B0.

(3.8)

Equation 3.8 shows that if the external field is oriented completely along the lon-

gitudinal direction, the total field amplitude remains constant in time, and is well

approximated by the longitudinal field, as shown in Figure 3.2 (b). Now let us

consider what happens when a small transverse component ∆B⊥ is present in the

external field, so the external field is BExt =
(
B0 + ∆Bz

)
ez + ∆B⊥e⊥ where e⊥ is

a general unit vector in the transverse plane. We will assume any dynamics in the

behavior of ∆B(t) occur on a time-scale τ∆ ≫ 1/ω⊥, so we may treat this trans-

verse error field as a constant relative to the rotating modulation field. If we let

e⊥ = Iex +Qey where I2 +Q2 = 1, then the transverse field becomes

B⊥(t) = BMod,⊥
(
sin (ω⊥t)ex + cos (ω⊥t)ey

)
+∆B⊥e⊥

=
(
BMod,⊥ cos (ω⊥t) + ∆B⊥I

)
ex +

(
BMod,⊥ sin (ω⊥t) + ∆B⊥Q

)
ey.

(3.9)
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Figure 3.2: Dynamics of the rotating variometer modulation in the transverse plane.
(a) Rotating modulation adds a small rotation about the longitudinal magnetic field
in the transverse plane. In the absence of external transverse fields, the total field
amplitude BTot =

√
B2

0 +B2
Mod ≈ B0 remains constant over time, as illustrated by

the plot in (b) of the field amplitude vs. time. Arrows indicate sample points on
the rotation in (a) and the corresponding field amplitude in (b). In (c), an external
offset in the transverse field introduces an alternating addition and subtraction to the
rotating modulation field, leading to a modulation of the field amplitude at frequency
f⊥ = ω⊥/(2π), as illustrated in (d). Arrows again connect points in the rotation of
the modulation field in (c) to the corresponding field amplitude in (d). Values in (d)
were calculated using an offset field of ∆B⊥ = B0

10
1√
2
(ex + ey).
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So the amplitude of the transverse field is

B⊥(t) =
√
Bx(t)2 +By(t)2

=

√(
BMod,⊥ cos (ω⊥t) + ∆B⊥I

)2
+
(
BMod,⊥ sin (ω⊥t) + ∆B⊥Q

)2
=
√(

B2
Mod,⊥ +∆B2

⊥
)
+ 2BMod,⊥∆B⊥

(
I cos (ω⊥t) + Q sin (ω⊥t)

)
.

(3.10)

Thus the total field amplitude as a function of time is

|BTot(t)| =
√
(B0 +∆Bz)2 +B⊥(t)2

=
[(
(B0 +∆Bz)

2 +B2
Mod,⊥ +∆B2

⊥
)

+ 2BMod,⊥∆B⊥
(
I cos (ω⊥t) + Q sin (ω⊥t)

)]1/2
.

(3.11)

Equation 3.11 shows that in the presence of an external transverse offset field, the

total field amplitude is modulated at ω⊥. Furthermore, this modulation can be

broken into two orthogonal components with a π/2 (90◦) phase shift between them.

The in-phase (I) part of this modulation corresponds to the x-component of the

offset field, while the in-quadrature (Q) part corresponds to the y-component. Thus

by using phase-sensitive lock-in detection of this modulation of the field amplitude,

we can fully characterize the transverse components of the external field to obtain

control currents ICont,x(y) ∝ ∆Bx(y) which can be applied via additional field control

coils oriented along the x(y)-axes to produce transverse control fields BCont,x(y) that

cancel the effect of deviations in the transverse field.

Once the transverse part ∆B⊥ of the external offset field is known along with

the total field amplitude |B|, we have full information on the external field from

which we can synthsize feedback to compensate it. Figure 3.3 gives a block diagram

overview of our implementation of the variometer to stabilize the field environment

near DC and maintain the correct bias field along the longitudinal axis. The approach

outlined here could be implemented by digital or analog means. Alexandrov et al.

originally used a fully analog approach. We opted to use a mixed analog and digital

platform using a field-programmable gate array (FPGA) to implement various tasks,
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Figure 3.3: Block diagram of our implementation of the OPM variometer. Modula-
tions are applied via the modulation coils in the x and y-directions. The transverse
spin signal is demodulated twice. First, the in-quadrature part of the demodulated
signal relative to the excitation of 87Rb at 3

2
ωRF is used to derive the total error signal

to hold the bias field at the correct value via feedback to the z-direction field control
coil. It is then further demodulated at ω⊥ to obtain signals for feedback to the x
and y-direction field control coils. FB: feedback, Mod: modulation, Amp: amplifier,
I: in-phase, Q: in-quadrature.

including generating output analog output signals via high-speed output sampling

of the waveforms using digital-to-analog converters (DACs), high-speed input sam-

pling of the transverse spin signal using a analog-to-digital converter (ADC), and

implementing the cascaded lock-in demodulations and generating feedback signals

using a proportional-integral-differential (PID) algorithm. Analog electronics were

used for further filtering and buffering of the analog signals, as detailed in Chapter 4.

It is technically also possible to completely eliminate the separate modulation coils

and instead simply sum all signals to be applied along a given axis together onto the

relevant field control coils. However, as we shall also discuss in Chapter 4, separating

the modulation signals onto separate coils allows us to introduce analog filtering to
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considerably improve the noise performance of the RF OPM.

3.2 Sensitivity and Stability

The sensitivity of the variometer is limited by both the scalar magnetometer on

which it is based, and on the amplitude of the rotating modulation from which vector

information is derived. In the case of scalar sensitivity, Smullin et al. (2006) used a

similar line of reasoning to that presented in Section 2.2.6 to find the fundamental

quantum noise limit of a scaler magnetometer to be

δB =
2(πΓRF)

2

γBMod,RF

1

γ
√
nV

√
4

(2I + 1)(πΓRF)
+

RPROD

2(2I + 1)2(πΓRF)2
+

4

RPRODη
. (3.12)

The first term under the radical comes from spin-projection noise, the second from

light-shift noise, and the third from photon shot-noise. Comparison of Equations

2.86 and 3.12 shows that a scalar magnetometer shares some important similarities

with an RF magnetometer. Photon shot-noise provides the same contribution to

each magnetometer, and both share a characteristic (nV )−1/2 scaling, showing that

the sensitivity improves with increasing alkali density and sensing volume. We also

see that the sensitivity is inversely proportional to the amplitude BMod,RF of the field

BMod,RF(t) = BMod,RF cos (γB0t)ex used to drive the RF response of the variometer

species. The amplitude of this modulation is ultimately limited by the RF linewidth,

as unless γBMod,RF ≪ ΓRF, RF power broadening will begin to degrade the scalar

sensitivity. In our case, the frequency will be 87Rb, driven at 3/2ωRF = γ87B0.

Fortuitously, if we optimize Equation 3.12 with respect to the off-resonant depumping

rate RPR of the probe laser, we simply recover Equation 2.87. So the scalar part of

the variomter and the RF magnetometer are simultaneously optimized for the same

probe beam parameters, for which the optimized scalar sensitivity of the variometer

is

δB =
4(πΓRF)

3/2

γ2BMod,RF

√
2

nV (2I + 1)
. (3.13)
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If we assume a cell a temperature of 130◦C with an RF-optimized linewidth of ΓRF =

1.5 kHz, we will have a scalar sensitivity around

δB ≈ 2.76× 10−22 T2 Hz−1/2

BMod,RF

. (3.14)

We found it to be best to operate at γBMod,RF = 1%ΓRF to 6%ΓRF for reasons that

will be expanded upon in Chapter 4. This means that for for a typical test frequency

of fRF = 21.5 kHz with B0 = 4.6 µT, we have an absolute best scalar variometer

sensitivity of δB = 15 fT to 60 fT which corresponds to a stabilization in the value

of the scalar field B0 to one part in 107 to 108. Across the complete operating

frequency of fRF ∼ 1 kHz to 1 MHz, we will have a bias field amplitude on the order

of B0 ∼ 0.1 µT to 100 µT. For the lowest end of the frequency range, this allows for

scalar stabilization to at least the order of a part in 105, while on the higher end, it

can be as high a part in 109. The ressonance frequency of 85Rb is stabalized to the

order of γ85δB ∼ 100 µHz, which is more than sufficient for our purposes, as this

corresponds to a stabilization of the RF frequency within a part in 106 of the RF

linewidth.

The observable transverse signal s⊥ is given by the magnitude of the amplitude

modulation induced on the signal from the scalar magnetometer by the rotating

modulation. In the regime of small field errors, where ∆B ≪ B0 Alexandrov et al.

found it is given by

s⊥ = k⊥∆B (3.15a)

k⊥ =
B⊥√

B2
z +B2

⊥

≈ B⊥/Bz

≈ BMod,⊥

B0

,

(3.15b)

where B⊥ = |B⊥(t)| is given by Equation 3.10. Combing Equations 3.13 and 3.15a,

we see that the best possible transverse sensitivity is a factor of k⊥ smaller than the

scalar sensitivity. Unsurprisingly, Equations 3.15a and 3.15b show that the trans-

verse sensitivity increases as the amplitude of the rotating modulation is increased.
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However, all the results derived thus far hinge on the assumption that the rotating

field remains small compared to the bias field. In their original work, Alexandrov

et al. used a value of BMod,⊥ ≈ B0/10, selected to have a minimal impact on the

long-term stability of variometric measurements. However, we found that this was

far too large for our application. In the frequency domain, the rotating modulation

manifests as side-bands on the scalar magnetometer signal that are spaced at ±ω⊥

from the carrier signal at 3/2ωRF. Such side-bands are necessarily also added to

the RF magnetometer signal. Power in the RF signal is re-distributed to these side-

bands as k⊥ increases and the depth of the modulation rises. This quickly begins

to degrade the SNR of the RF signal. We found it necessary to set k⊥ < 1/100 to

maintain a high RF sensitivity. More details will be given in the discussion of the

integrated system in Chapter 4. Best transverse sensitivity is then on the order of

pT Hz−1/2.

The fractional error in the measurement of the scalar value of the magnetic field

B0 =
√
|B|2 −B2

⊥ will be

∆B0

B0

=
1

B2
0

√
(|B|∆B)2 + (B⊥∆B⊥)2

≈

√(
∆B

|B|

)2

+

(
k⊥∆B⊥

|B|

)2

.

(3.16)

The first term ∆B/|B| under the radical is the long-term stability of unadulterated

scalar magnetometer without rotating modulation. Allen and Bender (1972) mea-

sured a long-term stability of 0.04 nTRMS in a Rb magnetometer, limited by high-

frequency noise and temperature drift [6]. Brill (1975) improved the high-frequency

noise performance but had slightly worse temperature effects, leading to a similar sta-

bility [20]. Ware (1983) improved upon these results to achieve a long-term stability

of around 0.01 nTRMS [92]. As we do not go to any effort to optimize the long-term

stability, such as using a carefully temperature stabilized coil mounting system, we

should err on the higher side to estimate a long-term stability of ∆B ∼ 0.1 nTRMS,

which corresponds to a long-term frequency stability of ∆fLong ∼ 1 Hz. Fractional
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scalar stability is then ∆B0/B0 ∼ 0.1 nT/4600 nT ∼ 1 × 10−5 at our test fre-

quency. The second term describes how the stability is degraded by the presence

of the rotating modulation. With B0 ∼ 0.1 µT to 100 µT and k⊥ ∼ 10−2, we

find k⊥∆B⊥/|B| ∼ 10−5 (nT)−1∆B⊥ to 10−8 (nT)−1∆B⊥ . For the degradation

of long-term stability due to the rotating modulation to become comparable to the

original stability of the scalar magnetometer, the transverse error field needs to be

∆B⊥ ∼ 1 nT to 1 µT. Thus so long as the transverse field is stabilized to below

∆B⊥ = 1 nT, we can avoid noticeable degradation of variometric stability. This is

achievable so long as the geomagnetic field does not change fast enough relative to the

frame of the variometer to introduce such field errors, as the transverse variometric

sensitivity of δB⊥ = k⊥δBRF ∼ pT Hz−1/2 is high enough to stabilize low-frequency

fields near DC to within this range. Larger transverse field errors due to dynamic

motion of the device through geomagnetic fields can be expected to degrade the

stability. Chapter 4 discusses tests of dynamic variometer performance.

The total stabilized field intensity is

|B(t)| =
√
B2

0 +B2
⊥

≈ B0 +
B2

⊥
2B0

≈ B0 +
k⊥B⊥

2

≈ B0

(
1 + 1

2
k2⊥
)
.

(3.17)

So the rotating modulation shifts the scalar field amplitude by a relative amount

k2⊥/2. Then the deviation in the total field amplitude due to deviation in the trans-

verse field is given by
∆B

∆B⊥
≈ k⊥∆B⊥/2

∆B⊥
=
k⊥
2
. (3.18)

In our case with k⊥ ∼ 10−2, then ∆B/∆B⊥ ∼ 10−3. The shift in the scalar

amplitude measurement introduced by the rotating modulation will be on the order

of 0.1 nT. Thus the performance of the scalar part of the magnetometer is minimally
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affected by the rotating modulation of the variometer, at the cost of reduced vario-

metric sensitivity. This is more than adequate to stabilize the resonant frequency for

operation of the RF magnetometer, so long as deviations in the external field, such

as those due to motion of the device, are kept small enough to prevent ∆B from

becoming too large and moving outside of the dynamic range of the feedback. From

this we see the main limitation of the this approach: dynamic range will be limited

by a combination of the chosen values of BMod,RF, BMod,⊥, and proper optimization

of the feedback controller. No matter the situation, the feedback can only stabilize

the field in the low-frequency regime near DC where ω ≪ ω⊥ ≪ ωRF. It also cannot

handle sudden movements that cause large changes in the single-axis field compo-

nents ∆Bµ in the frame of the device that put them outside of the available dynamic

range. Nevertheless, the bandwidth and dynamic range of the device will prove quite

sufficient for unshielded application.

3.3 Conclusions

OPM variometry provides us with a technique to stabilize the low-frequency field

environment near DC. This in turn allows us to maintain the scalar value of the field

such that BTotal ≈ B0ez near DC. It thus provides a method to allow implementation

of the techniques discussed in Chapter 2 in an unshielded environment. In the

next chapter, we will discuss the synthesis of these concepts into a single integrated

device.
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Chapter 4

Experimental Synthesis

In the previous few chapters, we have seen how a high-sensitivity OPM for detection

of RF fields can be constructed within an environment with a well controlled bias

field and how we may use an OPM variometer to counter the effects of dynamic

external field environments to achieve the requisite control of the bias field near DC

to enable operation of such an RF OPM. In this chapter, we will now discuss these

ideas can be synthesized into a practical sensor. Much of the work in this chapter

has already been published [33]. However, a more comprehensive discussion will be

presented here.

4.1 Experimental Overview

The overall layout of the experiments detailed in this chapter is shown in Figure 4.1.

Some aspects have been already alluded to throughout this work. At the heart of

the experiment is a vapor cell provided by Precision Glassblowing Inc (Englewood,

CO, US), filled with a small drop of natural abundance Rb metal and nominally

filled with 400 Torr of nitrogen gas. A fit to the spectroscopic signal from the D1

optical transition within the cell was used to determine the real density of nitrogen
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Figure 4.1: High-level diagram of the apparatus used in the experiments detailed
in this chapter. Some beam conditioning optics are omitted. DDS: direct digital
synthesizer. PBS: polarizing beam-splitter cube. QWP: quarter-wave plate. HWP:
half-wave plate. PDz: z-direction photo-diode. PD

1(2)
⊥ : transverse photo-diodes 1

and 2.

gas within the cell to be nN2 = 0.471 amg, which corresponds to a fill pressure of

384 Torr at a temperature of 20◦C. See Appendix B.1 for details. Figure 4.2(a)

shows a view of a vapor cell manufactured to the same specifications as the one

used in the experiment. To heat the vapor cell in order to achieve sufficient vapor

density nRb, 36 AWG twisted-pair phosphor-bronze filament wire of high resistivity

from LakeShore Cryotronics (Westerville, OH, US) is wrapped around areas of the

cell not required for optical access, and affixed with polyimide (Kapton®) tape. The

vapor cell is then placed into a nonmagnetic oven 3D printed from UltemTM1010
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filament to withstand high-temperature operation. Between the 3D printed oven and

the vapor cell, 3.2 mm thick sheets of polyimide insulation are inserted to increase

heat retention and improve thermal efficiency. The four vertical (paralell y) faces of

the oven have 8 mm circular apertures with corresponding cutouts in the insulation

to allow for optical access to the vapor cell. On the exterior of the oven, there are

depressions in the plastic sized to slot in 12.7 mm circular windows. The windows

mounts are intentionally tilted by 2◦ relative to the external faces of the oven to avoid

potential negative effects due to unwanted optical feedback from back-reflected light

into the laser diodes. Windows from Edmund Optics (Barrington, NJ, US) made

from NBK7 at 3 mm thickness and anti-reflection coated on both sides are used

within the mounts. The vapor cell mount was also rotated by 3◦ about the vertical

(y)-axis to avoid effects due to back reflections. Figure 4.2 (b) shows how the surfaces

are tilted, while Figure 4.2 (c) shows the actual vapor cell mounted within the 3D-

printed oven mounted with the PCBs that provide the field control and modulation

coils, as detailed in Section 4.4. DC heating would be unsuitable, as despite using

twisted-pair heater wire, a residual field magnetic field due to currents through the

heater wire is unavoidable. Instead, we use AC heating, provided by driving the

heater wire with an amplified sinusoidal signal at 1 MHz, which was determined to

be sufficiently large compared to RF frequencies of interest. The entire cell, oven,

and control coil assembly is placed within a four layer MS-1L magnetic shield from

Twinleaf (Plainsboro, NJ, US) to provide a controlled magnetic field environment

for evaluation. Upon initial heating of the cell and oven apparatus, a noticeable

film formed on the inside surface of the windows. We attribute this to volatile

hydrocarbons in the adhesive of the tape used to affix the heater wire to the vapor

cell. To address this issue, the windows were removed and the heater was run at high

power over a weekend to drive off any further volatile compounds within the adhesive

before the windows were cleaned and re-installed. No visible film was deposited on

the interior surface of the windows subsequent to implementing these measures.
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Figure 4.2: The vapor cell and surrounding oven used in these experiments. (a)
An example cell manufactured to identical specifications as the one used in our
experiments. Reference scale in inches. (b) Shaded image from SolidWorks of a top-
down cross-sectional view through the vertical (y-direction) mid-plane of the vapor
cell and 3D printed oven used to insulate it. Thin heater wires are on the outer
surface of the cell are omitted. (c) Fully assembled cell and oven with PCB field
coils (see Section 4.4) affixed to the exterior.

Once the cell and heater are assembled into the oven, a type E thermocouple

affixed to the fill stem at the top of the vapor cell is used to measure the cell tem-

perature. This should be a good estimate of the effective coldest point in the cell,

as a hole in the top of the oven leaves this part of the cell uninsulated; it is exposed

directly to the surrounding air. As discussed in Section 2.2.6, the coldest point in

the cell sets the alkali density and is the temperature that must be used to determine
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the best available sensitivity from Equation 2.88. The amplitude of the sinusoid used

to drive the heater is then adjusted to produce an equilibrium cell temperature of

125− 130◦C, which corresponds to an optical depth of 25− 30. Slight temperature

drifts do occur over time, but the temperature remains within a ±3◦C range for our

experiments in the laboratory.

4.2 Optics

Figure 4.1 gives an overview of the optical layout. The pump beam is supplied by

a laser diode utilizing distributed feedback (DFB) from Eagleyard Photonics (now

Toptica-Eagleyard, Berlin, DE). The probe beam is provided by a diode using a

distributed Bragg-reflector (DBR) from Vescent Photonics (Golden, CO, USA). Both

are collimated to a small 1/e2 diameter of 2 to 3 mm by the optics integrated into

the respective laser modules. To increase the size the beams to more fully utilize the

available volume of the vapor cell, telescopes expand the collimated pump and probe

beams to a 1/e2 diameter of about 10 mm and 8 mm respectively. A smaller size for

the latter was selected to reduce unwanted distortion of the probe beam within the

vapor cell due to diffraction from the beam clipping the apertures of the wave plates

and cell oven. In addition, the elliptical pump beam is passed through an anamorphic

prism pair to render the beam nearly circular before telescopic expansion. To set

optical powers within the vapor cell, the beams are passed through half-wave plates

(HWP) from Tower Optical (Boyton Beach, FL, US) and a polarizing beam-splitter

cube (PBS) from ThorLabs (Newton, NJ, US). Light transmitted through the PBS

has a linear P polarization parallel to the x-direction, while extra power in the beam

is “dumped” into the S polarized reflected direction (parallel to the y-direction) that

we do not utilize. In the transmitted direction, the extinction ratio of transmitted

power TS(P) in each polarization component is TP : TS > 1000 : 1 [85], leading

to a good polarization purity. An additional quarter-wave plate (QWP) also from
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Tower Optical is used on the pump beam to rotate it into a circular polarization

that combines with the bias field within the vapor cell to drive σ+ transitions that

optically pump the atoms to the stretched as described in Section 2.2.2. The probe

beam retains a linear polarization which undergoes Faraday rotation as it passes

through the vapor cell as described in Section 2.2.5. An additional HWP and PBS

are used to form a balanced polarimeter along with a Newport (Andover, MA, US)

2107 balanced photo-detector (BPD) for the transverse photo-diodes and associated

trans-impedance amplification. The pump beam is tuned to resonance by scanning

the temperature of the diode and setting its driving current to place the signal from

the z-direction photo-diode at the center of the absorption dip due to D1 resonance.

Power in the pump beam is optimized by scanning the RF driving frequency over

resonance at a fixed bias field, or scanning the bias field over resonance at a fixed

RF frequency, and using the RF resonance signal from the BPD to minimize the RF

linewidth to ensure we are in the regime of optimal light-narrowing, as described in

Section 2.2.6. Power and detuing of the probe beam are optimized in accordance with

Equation 2.52 by driving the RF resonance using the x-direction field coil included

within the magnetic shield and optimizing the SNR in the frequency domain using a

fast Fourier transform (FFT) spectrum analyzer. Probe beam detuing was found to

be optimal at ∆ν ∼ 1.5 to 3 ΓTot, in agreement with the predictions shown in Figure

2.14.

4.3 Electronics

In addition to the optical layout, Figure 4.1 gives an overview of the electronics in

our experiment, shown by dark blue connections, used to measure the optical signal,

and to implement feedback control variometry using 87Rb as detailed in Chapter 3.

As mentioned previously, this experiment contrasts with the original work on OPM

variometers by Alexandrov et al. [4, 3] in using a mixed analog and digital approach,
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rather than a fully analog implementation. This allows for more flexibility in the

design of the control architecture. In this section, both analog and digital aspects of

the electronics will be described in detail.

4.3.1 Digital Electronics

Figure 4.3: Diagram of the digital control structure showing loops executing in par-
allel on the FPGA. Loops shown in the left column generate various outputs. Loops
shown in the center column handle data acquisition and processing. The final loop
shown in the right column provides feedback control signals to drive the field con-
trol coils. AO: analog output. DS: down-sampled. FB: feedback. I: in-phase. Q:
in-quadrature
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Data acquisition is performed with a Measurement Computing (Pullman, WA,

US) USB 1602HS data acquisition (DAQ) device powered by a 16 bit analog-to-digital

converter (ADC). An FFT spectrum analyzer is implemented using this device via

a program in LabVIEW to gather data in the frequency domain.

At the heart of the digital side of our control platform is an NI (formerly Na-

tional Instruments, Austin, TX, US) PXIe-7857 re-configurable input/output (I/O)

module. It is powered by a Kintex-7 160T field-programmable gate array (FPGA)

providing eight analog input (AI) channels via dedicated 16 bit ADCs, and eight ana-

log output (AO) channels via dedicated 16 bit digital-to-analog converters (DAC)s.

The FPGA runs on a 100 MHz clock integrated into the PXIe system [26]. Each

analog I/O channel has a range of ±10 V and can sample at a rate of up to

1 MHz = 106 Samples s−1. The FPGA is programmed via NI’s LabVIEW FPGA

software. Our PXIe system consists of the FPGA module slotted into a PXIe-1062Q

chassis that is controlled remotely via a PC using a Thunderbolt link through a

PXIe-8301 remote control module that is also connected to the chassis. This system

allows the I/O module to be fully controlled via the control computer. A slower

“host” program runs on the control computer to provide a graphical user interface

(GUI) for the operator to set various experimental parameters such as the sensing

frequency, and the amplitude of the rotating modulation. These parameters are

passed to a program executing much more quickly on the FPGA, which samples the

analog input data from the magnetometer, and implements the variometer control

structure discussed in Chapter 3.

Figure 4.3 shows a diagram of the structure of the program as it executes on the

FPGA. Four loops, shown in the left column of Figure 4.3, generate analog outputs

to drive various aspects of the magnetometer. The first supplies a voltage to create a

constant bias field along the z-direction, holding a constant value unless the desired

sensing frequency is altered by the user. It assumes a linear dependence of bias

field (and thus RF frequency) on driving voltage and uses a calibration value found
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from optimizing the RF resonance signal from 85Rb at 21.5 kHz. The second output

loop produces the RF signal to drive the resonance of 87Rb at 3
2
fRF. Because we

did not anticipate operating at an RF frequency above f
(Max)
RF = 50 kHz in these

experiments, this loop executes at a sampling rate of 500 kHz to over-sample the

RF output by at least a factor of five. Amplitude of the RF sinusoid is controlled

by via the GUI on the control laptop. The third loop generates the in-phase (cos)

and in-quadrature (sin) sinusoids that drive the rotating modulation variometric

modulation in the transverse plane. In these experiments, we operate at a maximum

rotating modulation frequency of f
(Max)
⊥ = 1 kHz ≪ fRF, so we operate this loop

at a sampling rate of 10 kHz to ensure at least a factor of five over-sampling for

these signals as well. The fourth loop optionally generates a user-selectable output

waveform (sinusoid, triangle, or square wave) with user controlled frequency (up to

1 kHz), amplitude (up to 10 V), and phase. This signal is summed in the digital

domain with the aforementioned RF and/or rotating modulation signals applied to

the field modulation coil of the selected channel. This is useful for fine tuning various

aspects of the experiment, such as the bias field, and optimizing feedback parameters.

Because this loop is synced to the output of the field modulation coils, it is sampled at

1/50 the data input sampling rate to match the rate of feedback output as discussed

below.

Another set of three loops, shown in the center column in Figure 4.3 handles

analog data input sampling and processing. The first uses a 16 bit ADC to sample

analog data from the balanced polarimeter. This DAQ loop samples at 500 kHz to

ensure at least a factor of five over-sampling of frequency components up to 50 kHz.

These data are then passed to the second loop, which implements the cascaded lock-

in demodulations required for variometry. A distinct benefit of the FPGA manifests

here: because the modulations are generated from the same clock, no external phase

reference is required; phase references from the modulation generation loops are

simply available within the FPGA. The first stage lock-in is phase-locked with a user
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controlled phase offset to the RF modulation that excites 87Rb. Output from this first

stage is then split into two channels. The first is low-pass filtered with user controlled

cut-off frequency to obtain the total error signal, with amplitude modulations at f⊥

removed. This provides the scalar variometer error signal, which is used to provide

feedback control for the z-direction field control coil. The second is high-pass filtered

to isolate the amplitude modulations at f⊥ due to the rotating modulation combined

with external field changes. This signal is passed into the second-stage lock-in that

is phase-locked to the rotating modulation at f⊥, again with a user controlled phase

offset. The in-phase and in-quadrature output of this second stage lock-in provide

the signals used to provide feedback control for the x and y-direction field control

coil respectively. The third loop down-samples by a factor of fifty to match the rate

of incoming data to the execution speed of the final loop.

The final loop, shown in the right column of Figure 4.3 implements a proportional-

integral-differential (PID) feedback servo control algorithm using the error signals

derived in the preceding steps to produce feedback control signals to drive the tri-

axial field control coils and cancel the effects of external fields and enable high-

sensitivity operation of the RF magnetometer. Proportional (P), integral (I), and

differential (D) feedback gains are set individually by the user for each channel. This

loop executes a factor of fifty more slowly than data acquisition, meaning a rate of

10 kHz. Because this is still a factor of ten larger than f
(Max)
⊥ , and feedback can only

act at frequencies ≪ f⊥, this does not degrade the usable feedback bandwidth.

4.3.2 Analog Electronics

The FPGA platform provides a fast and versatile platform to handle data I/O oper-

ations. However, it cannot provide sufficient current to drive the field control coils,

and the finite sampling rate of its inputs and outputs can lead to signal artifacts

above the Nyquist frequency. For these experiments, we set the BPD to a trans-
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Figure 4.4: High-level Layout of the analog output electronics. Operational amplifiers
provide current buffering between the analog FPGA outputs and field control coils
and provide reconstruction filtering. Fourth-order passive low-pass filters bandwidth
limit noise noise above 1 kHz. Triangles indicate operational amplifiers. AO: analog
output. FB: feedback. Mod: modulation. LPF: low-pass filter. BPF: band-pass
filter. +: analog summation.
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impedence gain of 630 × 102 V A−1 in order to bring the optical noise to a level

above the electronic noise floor of our sampling electronics, allowing us to resolve

the quantum noise limit. The BPD has a built in low-pass filter, which we set to

a cut-off frequency of 100 kHz to remove unwanted higher frequency noise, such as

the effects from the 1 MHz heater. It also has a high-pass filter, which we set to a

cut-off frequency of 1 kHz to remove low frequency content near DC, including any

DC offset.

Figure 4.4 provides a diagram of the analog electronics that interface analog

outputs from FPGA to the magnetic field coils implemented on printed circuit boards

(PCBs) as detailed in Section 4.4. The purpose of these electronics is fourfold: as

mentioned, the DAC outputs from the FPGA cannot naively drive sufficient currents

for field control coil operation. To address this, operational amplifiers (op-amps) are

used to provide buffers that allow for sufficient current drive. Secondly, the op-amps

allow a convenient method to sum together multiple signals simultaneously on a

single channel. This is used on the Bz field control coil to sum together the bias

field and feedback control, as well as on the x-direction field modulation coil, to

sum together the signal to drive 87Rb for the scaler part of the variometer with the

in-phase part of the rotating variometric modulation. Thirdly, the op-amps provide

a convenient avenue for reconstruction filtering to remove digitization artifacts on

the DAC outputs from the FPGA due to the finite output sampling rate.

Finally, we must address noise from the FPGA and relatively high current drive

op-amps. Voltage noise density δV that is present across the field control coils with

impedance ZC will be converted to a current noise density δI = δV/ZC. This current

noise will then couple with the magnetic field gain GB of the field control coils to

produce a magnetic noise density due to the coil of δBC = GBδI. Our field control

coils have a relatively high gain of G
(Control)
B = 269 nT mA−1 as discussed in Section

4.4. A current noise density of δI ∼ 10 pA Hz−1/2 through this gain will then

produce a magnetic field noise density on the order of fT Hz−1/2,the same order as
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the quantum limit seen in Equation 2.52 and Figure 2.14. For the measured coil

impedance of ZC ∼ 10 Ω, this corresponds to a voltage noise density on the order of

102 pV Hz−1/2, which is well below the typical output noise for even the lowest noise

op-amps, which is on the order of 1 to 10 nV Hz−1/2. To address this and prevent

amplifier noise from dominating, we use fourth-order passive low-pass ladder filters

with a cut-off frequency of 1 kHz between the output of the buffer op-amps and the

control coils. In this configuration, the output voltage noise spectrum of the op-

amp will experience a much higher impedance at the RF frequencies of interest, and

current noise densities across the field-control coils are brought to a level comparable

to the quantum noise floor within our sensing bandwidth. Output resistors denoted

by RControl &RMod combine with the resistance of the field control and modulation

coils to set the voltage-to-current conversion of the field coils. Because the requisite

modulation fields are much smaller than those needed for field control, RMod =

4.7 kΩ ≫ RControl = 12 Ω which combined with the much lower modulation coil

gain of GMod = 46 nT mA−1 prevents op-amp voltage noise coupled in through the

modulation coils from becoming a concern. The much greater impedance and smaller

gain lead to magnetic field noise density on the order of δB ∼ 10−2 fT Hz−1/2 orders

of magnitude below the quantum noise limit.

4.4 Magnetic Field Coils

The feedback scheme outlined in Chapter 3 and the proceeding sections in this chap-

ter requires a set of tri-axial magnetic field control coils. In the worse case, where

the geomagnetic field is opposite the desired bias field, these field control coils must

be able to produce field amplitudes on the order of the geomagnetic field of Earth,

plus the requisite bias field, which for operating frequencies on the order of 100 kHz

corresponds to a control field amplitude on the order of 100 µT. We also wish for the

coils to produce a highly uniform field distribution to avoid broadening of the RF res-
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Figure 4.5: Details of the current distributions produced by the magnetic field coils
used in our apparatus. (a) Surface current distribution over all six cubic faces to
produce optimized field strength and uniformity in the indicated direction. Colors
code indicate the handedness of current flow, with blue for clockwise about the out-
ward surface normal, and red for counterclockwise. (b) Histograms from bfieldtools
showing the uniformity of the magnetic field produced by the y direction (vertical)
field control coil along each of the independent axes. Values in each bin are the
number of counts of field intensity relative to the field generated at the center of
the cube as a function of position within the discretized volume. This uniformity is
predicted to be similar for all three directions.
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Figure 4.6: (a) and (b) Front and back views of the four-layer PCBs affixed to
each face of cubic cell oven to implement the surface current distribution shown in
(a) along each axis, along with an additional circular trace to generate modulation
fields. Reference scale in inches. The oven assembly with PCBs affixed and connected
is shown in Figure 4.2 (c)

onance line due to magnetic field inhomogeneity that would degrade the sensitivity.

A set of Helmholtz coils that meets these requirements would have a large diameter

of around 1 m on each side, leading to a cumbersomely large device. To avoid this,

we opted to use the open source bfieldtools package [66, 97] to design compact coils

that fit onto the six exterior faces of our 3D printed cubic cell oven. bfieldtools was

used to compute a surface current distribution over the six available faces of the cube

that maximizes resultant magnetic field amplitude along a given direction within the

cube volume while maintaining high field uniformity and leaving a space for optical

apertures as shown in Figure 4.5 (a). Current distributions designed in bfieldtools

in this manner were realized on six-layer printed circuit boards (PCB)s. All six

faces of the cube produce currents for generating control fields along each direction.

Four layers contain conductive traces to implement the requisite surface currents. Of

these, three are used to implement the control fields, while one is a smaller roughly
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circular trace used to provide the dedicated modulation coils. Control field coils are

assembled by connecting the proper PCB layer for the required current distributions

in series using 32 AWG twisted-pair wire. Care was taken in the design of the solder

pads that interface to the wires to ensure stray magnetic fields from the connection

traces were at least partially canceled by the field of the connected wire above it.

The completed cell oven, with field control coil PCBs affixed, is shown in Figure

4.2(c).

As designed, bfieldtools predicts the the gain of the main direction control coils to

be 271 nT mA−1 with a field norm and field vector homogeneity of 0.35%. The field

modulation coils were predicted to have a gain of 47 nT mA−1 when two opposite

faces on the cube are connected in series. We tested the completed coils by driving a

DC current through the coils using a precision current source from DM Technologies

(Liszki, PL, EU) and measuring the shift in the Larmor resonance frequency as

described in Appendix B. Using this method, we find a field control coil gain of

269±0.5 nT mA−1*.This 0.74% decrease can likely be attributed to imperfections in

the geometry due to manufacturing errors in the 3D printed oven and field coil PCBs.

Gain of the modulation coils was likewise found to be GMod = 46±0.9 nT mA−1, 2%

below the predicted value, but with a slightly higher uncertianty due to the smaller

field amplitudes used in the test.

4.5 System Evaluation

For evaluation, “external” fields were applied using the tertiary set of tri-axial field

coils built into the magnetic shield. Such external fields include an a calibrated RF

field at known strength BTest
� to evaluate the system sensitivity, along with low-

frequency fields near DC to test the ability of the servo the respond to fields fields

*Uncertainty from 95% fit confidence
�See Appendix B for details of the calibration procedure.
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along each direction. For these tests, an RF test frequency of fRF = 21.5 kHz was

selected. Frequency spectra were gathered by sampling at a rate of 500 kHz in

the time domain to gather 500 k samples per shot using a Hanning window. This

produces an FFT frequency spectrum with 1 Hz resolution over a DC to 250 kHz

bandwidth.

4.5.1 Servo Performance

Servo performance was manually optimized by applying a square wave modulation

sequentially to each channel and observing the feedback response. First, the pro-

portional (P) term was increased until the feedback began to oscillate. Then the

integral (I) term was increased to make the response as fast as possible without in-

troducing further oscillation. Both terms were then iteratively adjusted to minimize

both the rise time and oscillation amplitude to find the best approximation of a

critically damped response. Finally, the differential (D) term was used to minimize

any residual overshoot and oscillation.

After optimizing the servo parameters for each channel, we tested that the servo

could successfully cancel external fields by applying magnetic fields along each of

the three orthogonal directions. The directions of the PCB field control coils were

nominally aligned with the axes of the coils included within the magnetic shield, but

due to small mounting errors there may have been slight misalignment between them.

The coils included in the shield have a gain of 130 nT mA−1 in the longitudinal (z)-

direction, and 69 nT mA−1 along the transverse (x and y)-directions [89]. We drove

these coils with the maximum current available from our precision current source,

which can provide up to 40 mA per channel from eight total channels to produce a

total of 320 mA of current. Thus we can produce DC fields of up to 41.6 µT in the

longitudinal direction and 22 µT in the transverse directions. Currents were slowly

ramped from 0 to the full 320 mA to keep the test fields in the near DC regime.
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During this test, the variometer servo was able to successfully cancel the effect of the

external field and maintain the desired bias field. This confirms our feedback can

successfully compensate for DC fields on the order of geomagnetic field at ∼ 10 µTs

along all three independent axes. Dynamic performance was evaluated by introducing

a small amplitude square wave generated on the FPGA and applied successively to

each channel through its dedicated modulation coil. The normalized step response

of the error signal was then measured to determine the feedback bandwidth for that

channel by fitting it to the function

F (t) = A
(
1− e−2πBWn∆t

)
, (4.1)

where A is the amplitude, BWn is the feedback bandwidth for channel n ∈ {x, y, z},

and ∆t = t−t0 is the elapsed time. Feedback bandwidths for each channel determined

using this method are shown in Table 4.1. Figure 4.7 shows the normalized step

response of the error signals, along with the fit from Equation 4.1 used to extract the

feedback bandwidths. Because the step response of the system can be used to easily

extract the transfer function in the Laplace domain [47], this method serves as a

good characterization of the frequency response of the servo system. Another useful

metric of system performance is provided by the slew rate of the system, defined

as the maximum magnetic field change per unit time that can be sustained before

the servo fails. We evaluated this by applying an external field which was linearly

ramped in amplitude over 1 s along each axis, and gradually increasing the ramp

amplitude until the servo could could no longer track the rate of field change, causing

failure of the feedback servo. Results were double checked by increasing to a ramp

over 2 s and doubling the amplitude. Both tests were in agreement. Slew rates

determined using this method are also shown in Table 4.1.
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Figure 4.7: The step response of each channel of the servo to the rising edge of a
20 Hz square wave. Fits used to determine the feedback bandwidths are also shown.
Data are averages over 100 individual shots.

4.5.2 Magnetometer Sensitivity

To evaluate the variometric sensitivity, a 1 Hz sinusoidal test signal of known ampli-

tude BTest,V was applied via each of the modulation coils. The level ∆En(1 Hz) of the

open-loop error signal above background at 1 Hz was then measured and compared

to the noise level in the low-frequency error signal near DC δEn(10 Hz). Both the

signal and noise levels were averaged over 100 shots using power spectral densities.

The variometric sensitivity sV,n along each axis is then calculated by dividing the

noise density δEn(10 Hz) near DC by the measured response of the system to the



Chapter 4. Experimental Synthesis 90

Direction Feedback Feedback Variometer
(n) Bandwidth Slew Rate Sensitivity

BWn (Hz) (µT s−1) sV,n (pT Hz−1/2)
z 96 33 5.8
x 67 8 1000
y 60 8 1300

Table 4.1: Experimentally determined bandwidth, slew rate, and sensitivity for each
direction of the variometer. These values are heavily dependent on optimization of
the PID parameters, the amplitude of 87Rb excitation, and the variometer sensitivity
s⊥ (see Chapter 3). In general, increasing variometer sensitivity to improve response
rates also degrades the SNR of the RF magnetometer due to signal power being lost
to sidebands of increasing relative amplitude.

calibrated field ∆En(1 Hz)/BTest,V:

sV,n =
δEn(10 Hz)

∆En(1 Hz)/BTest,V

. (4.2)

Results are shown in Table 4.1. Sensitivity is considerably better along the longi-

tudinal direction, limited primarily by the amplitude of the RF drive used to excite

87Rb for the scalar part of the variometer, which we kept at BRF,Mod = 18.4 nT or

γ85BRF,Mod ≈ 6%ΓRF for this experiment. Sensitivity in the transverse plane is lim-

ited by both the aforementioned RF drive amplitude and the amplitude of the rotat-

ing variometer modulation, which was set at B0/100, corresponding to s⊥ ≈ 1/100.

Measured longitudinal sensitivity is sufficient to stabilize the bias field to one part in

106, or on the order of 10 mHz resonance frequency stability. Transverse sensitivity

is sufficient to stabilize the bias field to one part in 103, or on the order of 1 Hz fre-

quency stability. Since both are far below the measured linewidth of around 1.5 kHz,

this is quite sufficient for our purposes, but it is worse then the fundamental limits

on variometric discussed in Section 3.2 for undetermined reasons.

RF sensitivity at a given test RF test frequency fRF is determined similarly by

applying a calibrated sinusoid of amplitude BTest,RF at the RF test frequency and

calculating the ratio of RF voltage noise density of the signal δV (f ≈ fRF) to the

voltage response ∆V (fRF)/BTest,RF of the system to the calibrated field. Thus the
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RF sensitivity of the OPM is:

δBRF =
δV (f ≈ fRF)

∆V (fRF)/BTest,RF

. (4.3)

RF OPM sensitivity was first tested in an open-loop configuration; the variometer

was not utilized, so the only fields present were the longitudinal bias field and RF

test signal. Bias field strength was tuned to center the RF resonance peak at the RF

test frequency. Results of this test are shown if Figure 4.8 (a). In this ideal situation,

experimental sensitivity is around δBRF ≈ 8 fT Hz−1/2. This is above the predicted

quantum noise limit seen in Figure 2.14 using the measured value of ΓRF. It worth

noting that this is very near the thermal noise density limit for the magnetic shield

used in this experiment at our test frequency [89]. Thus thermal noise from the shield

may be limiting the noise floor. There also remains an unexplained offset in ΓRF that

brings the quantum noise above the fundamental limits predicted by Equation 2.88,

and shown in Figure 2.15. In the second test of RF sensitivity, variometric feedback

was activated, and the servo loop was closed to remove any residual fields within the

magnetic shield. Results are shown in Figure 4.8 (b). Sensitivity decreases slightly

to around 9 fT Hz−1/2 compared to the idealized conditions. We attribute this to

current noise introduced by the field control coils in the transverse directions. Some

residual thermal noise is present at RF frequencies, despite the aforementioned efforts

to filter it. Because the thermal current noise density of an impedance Z has the

form
√
4kBTRe(Z)/Z where kB is the Boltzmann constant and T is the absolute

temperature, this noise will not depend on the magnitude of the currents applied

through the coils. Noise contributions from the active electronics of the op-amps

are likewise independent of applied currents. Only the current shot noise density,

which is given by δIShot =
√

2qe|IC| depends on the current IC applied through the

coil [27]. However, even for the maximum currents of I
(Max)
C = 300 mA designed

to be applied through the coils, this amounts to a current noise density on the

order of 10−7 mA Hz−1/2 which produces magnetic noise densities on the order of

10 fT Hz−1/2. These noise currents are then attenuated at RF frequencies by the
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Figure 4.8: Data showing the performance of our test system. Blue solid lines show
the magnetic noise floor. Orange dashed lines show an estimate of the photon shot
noise limit based on the DC levels measured on the BPD and converted into magnetic
field units. Because a calibrated field is used for calculation of spectral magnetic
values, only values near the calibration frequency are an accurate representation of
RF sensitivity. (a) Operation in the magnetic shield with only a static bias field
applied. (b) Performance with the full optimized servo system engaged to cancel
out residual fields inside the shield. Current noise from the transverse field control
coils slightly increases the magnetic noise, but shield noise is still dominant. Small
spurs occur at multiples of 60 Hz and f⊥ , along with their sums and differences.
Spectra shown are averages over 500 shots

passive filtering to a level far below the quantum noise limit. Thus we conclude that

noise contribution from the field control coils will remain small, and similarly high

RF OPM sensitivity can be achieved even when the field control coils are engaged
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outside of a magnetic shield. As expected, the RF signal seen in the spectrum in

Figure 4.8 also contains side-bands on either side of the scalar variometer drive at

f87 = 3
2
fRF = 32.25 kHz due to the rotating modulation at frequency f⊥. They

would be present on the RF OPM signal as well, but are too small to be seen

above the noise floor. In addition, there are various “spurs” on either side of both

resonances at frequencies of the form fSpur = fCenter + n × 60 Hz + mf⊥ where n

and m are integers. These spurs can be minimized by reducing the amplitudes of

the scalar variometer drive and rotating modulation, at the expense of reduced servo

performance. Variometer parameters are ultimately selected by maximizing these

drive amplitudes to the greatest extent possible before RF SNR begins to quickly

decrease.

4.6 Conclusions

In this chapter, we have develped an experimental platform to implement an RF

OPM as described in Chapter 2 based on 85Rb using variometric feedback derived

from87Rb within the same vapor cell to actively stabilize the field environment near

DC. The servo system based on this comagnetometer has been shown to be able

to compensate fields on the order of the geomagnetic field of Earth, and provide

sufficient dynamic performance compensate low-frequency fields from DC to around

60 kHz. We have also seen that even with the servo engaged, high RF sensitivity can

be maintained. This provides us with a direct path toward completely unshielded

operation of our OPM while maintaining high RF sensitivity.
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Chapter 6

Conclusion

A great many discoveries and ideas in physics come with the promise of eventual

application. The vast majority never realize such lofty dreams. Development of a

physically possible idea into a useful technology takes many years, commitment of

sufficient resources, and a great deal of effort by dedicated researchers and engineers.

Technologies that utilize quantum physics seem poised to offer great technological

potential. Few have thus far left the laboratory. Atomic clocks, the original quantum

sensors, have become robust enough for deployment in space to power the GPS

technology that has become a staple of the modern world [93] and are also available as

rack mounted laboratory units [81]. Several companies have begun to offer quantum

sensors commercially for gravimetry [9, 12]. Commercial laser-based OPMS have

also begun to be offered [68, 34, 88], but they are not sensitive at RF frequencies,

focusing instead on field sensing from from DC to 100 Hz.

The maturity of a technology can be characterized by its technology readiness

level (TRL), a number ranging from 1 for exploration of basic physical principles,

to 9 for a robust, proven product [44, 48]. Figure 6.1 shows a graphic from NASA

describing the TRL scale. At the start of this project, RF OPMs were at a TRL

between 3 and 4. In this project, we have advanced them to a TRL between 5 and 6.
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Figure 6.1: Illustrated scale from NASA describing technology readiness level (TRL)
categories.

This places it solidly in the realm where commercial research and development may

become the primary factor driving development of this concept into a highly robust

technology. Many promising technologies languish in the space between TRL 3 and

5, as purely academic interest wanes, while commercial funding is not yet committed.

Much of the research at a National Laboratory is conducted to bridge this critical

gap. In this work, we believe this has been achieved for RF OPMs.
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Many challenges remain. Additional evaluation of the trade-off between RF sen-

sitivity and dynamic servo performance and testing of the system in more varied

environments would help more completely characterize the device. Conversion of the

system electronics to run directly on DC would help both to eliminate noise at har-

monics of 60 Hz and to greatly improve overall system efficiency while vastly reducing

the size, weight, and power of the electronics. Development of a more user friendly

interface, with software automation of many tasks that have thus far been performed

manually, could create a more robust device. From a fundamental physics perspec-

tive, there remains an explained broadening of the RF line-width, with around a

factor of three additional sensitivity to be gained by addressing it. These challenges

all appear tractable. The approach developed in this work synthesizes several OPM

techniques that have heretofore been confined to laboratory demonstrations, and

leverages them to lay the foundation of the RF OPM concept as a viable quantum

sensor outside the laboratory, opening a path forward for commercialization to re-

alize the societal and economic potential of an additional application for quantum

sensing technology.
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Appendix A

Relevant Alkali Properties

This work is based on the physics of alkali atoms moving within a heated vapor

cell. Many properties and interactions discussed in Chapter 2 ultimately require

empirically determined values to calculate. Relevant formulae and values will be

provided here.

The density of an alkali metal within a heated vapor cell at temperature T can

be modeled using formulae derived from fits to empirical data. Singh, Dolph, and

Tobias [80] compared formulae from the CRC Handbook of Chemistry and Physics

[55], along with the work of Nesmeyanov [67] and Killian [53]. They found them

all to be quite close, with especially good agreement between the results from the

CRC and Nesmeyanov. The Killian formula for potassium diverges from the others

at higher temperatures. For the purposes of this work, we use the CRC formula for

alkali number density n at absolute temperature T in units of cm−3 given by [55, 80]

n =

[(
101325 Pa

1 atm

)(
10A−B/T atm

)] [ 1

kBT

(
1 m

100 cm

)3
]

= n0

(
T0
T

)
exp

(
b

[
1− T0

T

]) (A.1)

where A and B are parameters depending on the alkali atom. The additional pa-

rameters n0, T0 and b are derived from them. Different values for these parameters
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Alkali Li Na K Rb Cs

A 5.055 4.704 4.404 4.312 4.165

B (K) 8023 5377 4453 4040 3830

T0 (K) 800.94 546.90 463.79 422.98 406.51

n0 1014

b 23.065 22.638 22.108 21.993 21.694

Table A.1: Parameters from the CRC [55] for use in Equation A.1 for calculating
the saturated vapor density of various alkali species over their liquid phase.

also apply for computing the saturated vapor pressure of an alkali species over solid

or liquid alkali phases. For modeling the pressure within a vapor cell, we use the

parameters for computing the density over a liquid, as we operate above the melting

temperature of the alkali species typically used for OPMs. Values of these parameters

are given in Table A.1.

Equation A.1 ignores the density of alkali dimers-diatomic alkali molecules that

can form very briefly during collisions. They do not constitute a significant fraction

of the alkali atoms, as they break apart very quickly after formation. However, this

brief formation of a dimer during an alkali-alkali collision and the resultant splitting

between singlet and triplet potentials of the dual electron bound state is actually the

physical origin of spin-exchange collisions. Figure A.1 shows the density predicted

by the CRC formula for various alkali species versus temperature. Because Alkali

species lighter than potassium must be heated to very high temperatures to achieve

appreciable vapor pressures, they are vary rarely used in vapor cell experiments.

Also, as the alkali species become lighter, the transition wavelengths of the D1 and

D2 transitions becomes shorter as summarized in table A.2, making compact high

efficiency laser diodes capable of addressing them more difficult or impossible to
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Figure A.1: Densities of alkali species over liquid predicted by Equation A.1

source.

Table A.2 summarizes some basic physical properties of various alkali isotopes

In addition to basic properties, calculation of the effects of various interactions

of the alkalki atoms with their environment within the vapor cell are required for

the density operator approach explored in Section 2.2.4. Here we will review sources

of values to calculate these dynamic interactions between the typically used alkali

species for OPMs (K,Rb, and Cs) when used within an N2 buffer/quenching gas.

Ressler, Sands, and Stark (1969) [69] and Alexandrov et al. [1] measured the

cross-sections σ
(Self)
SE for spin-exchange collisions between alkali of the same species.

They did not measure any diffrence between isotopes of the same element. Walker

and Happer (1997) [91], Kadlecek, Anderson, and Walker (1998) [51], and Allred et

al. (2002) [7] measured the cross-sections for spin-destruction collisions between like

alkali species σ
(Self)
SD as well as the cross-sections σ

(N2)
SD for alkali species colliding with

nitrogen gas. McGillis and Krause (1967,1968) [63, 62] and Hrycyshyn and Krause

(1970) [45] measured the cross-sections σ
(N2)
Q,D1(2)

for quenching by nitrogen gas on both
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Isotope 39K 41K 85Rb 87Rb 133Cs

Natural isotopic fraction, fIso 0.933 0.067 0.722 0.278 1.000

Nuclear Spin, I 3/2 3/2 5/2 3/2 7/2

D1 Transition in Vacuum (nm) 770.1 770.1 795.0 795.0 894.6

D2 Transition in Vacuum (nm) 766.7 766.7 780.2 780.2 852.3

D1 Oscillator strength, fD1 0.324 0.324 0.332 0.332 0.347

D2 Oscillator strength, fD2 0.652 0.652 0.668 0.668 0.721

D1 Natural linewidth (FWHM, MHz) 5.94 5.94 5.75 5.75 4.57

D2 Natural linewidth (FWHM, MHz) 6.01 6.01 6.07 6.07 5.24

Ground Hyperfine splitting (MHz) 461.7 254.0 3036 6835 9193

Table A.2: Basic properties of alkali species commonly used in hot vapor cells. Infor-
mation for potassium is complied by Tiecke [86], while Steck has compiled references
for both rubidium and cesium [83, 84, 82].

D line transitions. Franz and Volk (1976,1982) [36, 37] along with Silver (1984) [79]

measured the diffusion constants D
(N2)
0 at 273 K and 1 amg density for diffusion

of various alkali species through nitrogen gas. The pressure broadenings ∆Γ
(N2)
D1(2)

and optical resonance shifts ∆ν
(N2)
0,D1(2)

of the D lines of potassium in the presence of

nitrogen was reported by Lwin and McCartan (1978) [56], while Romalis, Miron, and

Cates (1997) [71] provide these data for rubidium, and Andalkar and Warrington

(2002) [8] provide them for cesium. These data are given in Table A.3. Number

densities are reported in amagats, which are defined by the relation [87]

1 amg = 2.687× 1019 cm−3 (A.2)

This is also called the Loschmidt number (or constant). It is the number of ideal gas

particles per unit volume.



Appendix A. Relevant Alkali Properties 102

Alkali K Rb Cs

σ
(Self)
SE (cm2) 1.8× 10−14 1.9× 10−14 2.1× 10−14

σ
(Self)
SD (cm2) 1.0× 10−18 1.6× 10−17 2.0× 10−16

σ
(N2)
SD (cm2) 7.9× 10−23 1× 10−22 5.5× 10−22

σ
(N2)
Q,D1

(cm2) 3.5× 10−15 5.8× 10−15 5.5× 10−15

σ
(N2)
Q,D2

(cm2) 3.9× 10−15 4.3× 10−15 6.4× 10−15

D
(N2)
0 (cm2 s−1) 0.20 0.19 0.10

∆Γ
(N2)
D1

(GHz amg−1,FWHM) 21.0 17.8 14.83

∆ν
(N2)
0,D1

(GHz amg−1) −15.7 −8.25 −6.25

∆Γ
(N2)
D2

(GHz amg−1,FWHM) 21.0 18.1 17.24

∆ν
(N2)
0,D2

(GHz amg−1) −11.3 −5.9 −5.11

Table A.3: Empirical parameters for calculating the interactions of alkali atoms
with their environment within a vapor cell filled with nitrogen buffer/quenching gas.
References for these values are provided in the text.
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Calibration Details

In this appendix, the methods used to extract the true nitrogen buffer gas pressure

and calibrate the magnetic field coils will be detailed.

B.1 Extraction of the Buffer Gas Density

As unpolarized light travels through a vapor cell, energy is absorbed in proportion to

the alkali vapor density n and local light local intensity I, leading to an exponential

attenuation of intensity with distance known as the Beer-Lambert law. In addition,

the D line transitions have a absorption cross-section σ(∆ν,ΓTot) given by Equation

2.9, leading to the following relation for the light intensity as a function of the

distance z traveled through the vapor

I(z) = I(0) exp [−nσ(∆ν,ΓTot)z]

= I(0) exp

(
−πrecfResnz

ΓTot/(2π)

∆ν2 + (ΓTot/2)2

)
.

(B.1)

For light traveling all the way through a cell of depth d, we may write the transmitted

light intensity in terms of the optical depth OD as

I(d) = I(0) exp [−OD(∆ν,ΓTot)] , (B.2)
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where optical depth OD(∆ν,ΓTot) is defined by

OD(∆ν,ΓTot) = πrecfResnd
ΓTot/(2π)

∆ν2 + (ΓTot/2)2

= π
ΓTot

2
OD0Re

(
L(∆ν,ΓTot)

)
,

(B.3)

using the resonant optical depth OD0 where L(∆ν,ΓTot) is a Lorentzian distribution

as defined by Equation 2.5 .

As discussed in Chapter 2, there is sufficient buffer gas to broaden the line to

a great enough extent that the hyperfine splitting of the optical resonance cannot

be resolved. Thus we can fit the total absorption spectrum to a single Lorentzian

response within an exponential a profile of the form

I(d) = I(0) exp

[
−OD0

ΓTot

2

(
ΓTot/2

(ν − ν0)2 + (ΓTot/2)2

)]
(B.4)

where ν0 is the optical resonance frequency.

To scan the optical frequency of our DBR laser, we slowly ramp the temperature

of our laser diode, which allows for a wide scan over a range on the order of 100 GHz.

The vapor cell was heated to a relatively low temperature to keep optical depth low

and prevent over saturation in the absorption data. A separate data set was taken

using a Moglabs (Carlton,VIC, AUS) economical wavelength meter to calibrate the

change in optical frequency δν of the laser from the start of the scan as a function of

time δν(t). Combing this with V (t), we find the transmitted voltage as a function

of optical frequency shift from the start of the scan V (δν). The resultant data were

then fit to the following function derived from the form of Equation B.4:

V (ν) = (aν + b) exp

[
−OD0

(
ΓTot

2

)2(
1

(ν − ν0)2 + (ΓTot/2)2

)]
+ c, (B.5)

where the pre-factor (aν+b) accounts for a weak linear dependence of laser power on

temperature, and we have allowed for a constant offset c to the signal. Fit parameters

were a, b, c, the resonant optical depth OD0, the resonance frequency ν0 and of course
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Figure B.1: Optical transmission data and a fit of the function given by Equation
B.5 to them. The resultant fit has R2 = 0.9909 giving a value of ΓTot = 8.39 GHz
with 95% confidence in [6.95, 9.83] GHz

the linewidth ΓTot. Fitting was performed in MatLab. The resultant fit shown Figure

B.1 has R2 = 0.9909 and gives a value for the optical linewidth of ΓTot = 8.39 GHz

with 95% confidence in the interval [6.95, 9.83] GHz. Because the linewidth is heavily

dominated by pressure broadening, we can approximate the total linewidth by the

pressure broadened linewidth ΓP , so ΓTot ≈ ΓP and combine this result with the

literature value for broadening of the D1 line by nitrogen buffer gas in rubidium from

Table A.3 of ∆ΓTot = 17.8 GHz amg−1 to find the density of nitrogen within the

vapor cell to be

nN2 =
8.39 GHz

17.8 GHz amg−1
= 0.471 amg. (B.6)

B.2 Magnetic Field Coil Calibration

The PCBs discussed in Section 4.4 were calibrated to extract their magnetic field

gains GC using two methods: measuring shift in the Larmor resonance frequency
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caused by application of DC currents, and RF measurements at a test frequency

of fRF = 21.5 kHz. Both methods provide similar results, with the latter giving

slightly higher values. This can likely be attributed to additional impedance due to

the inductive reactance of the coils themselves becoming relevant at RF frequencies.

The procedure for calibration using both methods will be detailed in this section. All

calibrations were carried out within our magnetic shield to eliminate the influence of

external magnetic fields on the results.

B.2.1 DC Calibration by Measurement of Resonance Shift

Equation 1.1 details how Larmor precession results from a magnetic field of given

amplitude |B| =
√
B2

z +B2
x +B2

y . Thus by measuring the Larmor resonance fre-

quency directly, we can find the strength of the magnetic field. For this calibration,

a small (BRF < 1 nT) RF excitation field was applied at fRF,0 = 21.5 kHz through

either the x, or y-direction modulation coils to drive resonant Larmor precession,

and a bias current applied through the z-direction control coil was scanned over the

Larmor resonance. Using lock-in detection, the RF resonance of 85Rb was centered

at fRF,0. From the known gyromagnetic ratio of 85Rb γ85 = 2π×4.671 Hz nT−1, this

gives a bias field of 4.603 µT.

Within the magnetic shield, we know that |B| = Bz under these conditions. Thus

the magnetic field gain of the z-direction coils at DC can be simply calculated from

the DC current IDC applied through the coils as

G
(z)
C =

4.603 µT

IDC

. (B.7)

The result of calibration for the z-direction are given in Table B.1. To find the gain

of the transverses coils, we add a small transverse component Bx(y) ≪ 4.608 µT to

the field, so the Larmor precession frequency shifts to

2πfRF = γ85
√

(4.608 µT)2 +B2
x(y). (B.8)
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Figure B.2: Example of a nonlinear fit to Equation B.9 used extract the field coil
gains.

We scan the applied RF frequency and use lock-in detection to find the new Larmor

resonance frequency. Larmor frequencies were recorded for eleven different applied

currents and a nonlinear fit to the data was used to extract the gains for the transverse

direction field coils. Specifically, resonance frequency vs. applied current data were

fit to the function

2πfRF = γ85

√
(4.608 µT)2 + (GCIx(y))2 + c (B.9)

to determine the transverse coil gains GC. Results are listed in Table B.1.

B.2.2 RF Calibration by Free Induction Decay

To calibrate the coils directly at RF frequencies, a function generator with 50 Ω

output impedance was connected to the coil to be tested through a current divider

formed from a 50 Ω resistor and additional resistor of resistance RIn as shown in Fig-

ure B.3. For our test frequency, inductive reactance from the coils was not expected



Appendix B. Calibration Details 108

Figure B.3: Current divider circuit used in RF calibrations. A 50 Ω resistor is used
to impedance match to the function generator. Current through the test coil is then
approximately VRF/RIn.

make a significant contribution to the total impedance. The coils themselves have

a measured resistance of 12 to 13 Ω for the control coils and around 0.5 Ω for the

modulation coils. By selecting an input resistor RIn ≫ 50 Ω, the impedance of the

devider circuit is ZD = (RIn × 50 Ω)/(50 Ω + RIn) ≈ 50 Ω, which properly matches

the output impedance of the function generator. The current through the coil at RF

frequencies provided from the function generator output voltage VRF is then simply

IRF ≈ VRF/RIn.

To find the RF calibration of the field coils at our test frequency, an optical

chopper (a rotating slotted disc) was put in the path of the pump laser to periodically

block the optical pumping beam. This effective introduces an on/off (square wave)

modulation of optical the pumping rate. As the spins begin to decay freely in the

absence of pumping light, the ensemble will still be subject to the influence of the

RF magnetic field. In the RWA, this appears as a DC field of magnitude BRF/2

in the rotating frame, about which the atoms will begin to precess with a decaying

amplitude as the spins relax. The frequency of this decaying oscillation will be

2πf ′ = γ85(
1
2
BRF)

= 1
2
γ85GCIRF,

(B.10)
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Figure B.4: Free induction decay data from a field control coil with an RF current
amplitude of IRF = 1.3 mA. Signal from the rotating frame of the atomic spins is
obtained via lock-in demodulation at fRF showing the characteristic decaying oscil-
lation. A fit to Equation B.11 is also shown. Early data for t < 1.5 ms are excluded
because the decay is super-exponential for short times.

thus by measuring the frequency of this precession in the rotating frame, we can

extract the RF coil calibration. To do so, we use lock-in detection at fRF = 21.5 kHz

to get the decaying oscillation signal in the rotating frame, and then fit the resultant

signal to the function

S(t) = ae−t/τ sin
(
1
2

1
2π
γ85GCICt+ ϕ

)
+ c (B.11)

where a, τ, ϕ, c and GC are free fit parameters. An example data set and fit from a

field control coil calibration with RF current amplitude of IRF = 1.3 mA is shown in

Figure B.4.

Resistors with values ranging from RIn = 1 kΩ to 10 kΩ corresponding to RF

current amplitudes of 5 mA to 500 µA were used to test the response at decreasing

RF signal amplitudes. Table B.1 summarizes the measured coil calibrations using

both methods.
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Coil Gain (nT mA−1) Method Uncertainty (nT mA−1)

z Control 270 DC Set

x Control 269 DC Offset ±0.5

x Modulation 46 DC Offset ±0.9
44.5 RF FID ±1

y Control 258 RF FID ±4.6

y Modulation 44.3 DC Offset ±0.9
45.2 RF FID ±1.6

Table B.1: Calibrated values of magnetic field gain for the various PCB field control
coils found using the methods in this section. Uncertainties for DC offset method
results are from 95% fit confidence. Uncertainties for the RF FID method are stan-
dard deviations over tests at ten RF current amplitudes from 5 mA to 500 µA.
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