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Atomic layer etching (ALE)
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* The process beings with a semiconductor substrate that is exposed to a precursor

* Adsorbates form on the surface in a single layer

* An RF plasma produces low energy ions that remove the precursor and substrate

» True self-limiting etch of a single atomic layer across many process cycles requires better control of ions




Aleph Model

Streamer Propagation
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Particle-in-Cell direct simulation Monte Carlo (PIC-
DSMC)

 Charged species and neutrals are treated as
computational particles.

- Computational particles represent varying number of
physical particles according to their weight.

Electrostatic.
Unstructured meshes.

Merging algorithms limit the number of computational
particles with minimal disturbance of velocity
distributions.

Massively parallel.

Used to address plasmas from vacuum arcs to
atmospheric pressure streamers.

A. S. Fierro, et al., Plasma Sources Sci.
Technol. 27, 105008 (2018).

Vacuum Arc

2. 10000000

M. M. Hopkins, et al., International Conf. on Numerical
Simulation of Plasmas, Beijing, China (2013).

Slide courtesy of A. Lietz, M. Hopkins
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Typical RF plasma discharge

The focus of this particular presentation is on the Argon, RF plasma discharge. A one-
dimensional, RF discharge is simulated using particle-in-cell (PIC) and Direct Simulation
Monte Carlo (DSMC)
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Model uses Argon cross

sections with the following Numerical Parameters
collisions considered « At=1ps

« Electron elastic * AX=5pum

« Excitation « 200 charged particles per
* lonization element

« Multi-step ionization « f=13.56 MHz

« lon elastic « P=300Pa

« lon charge exchange

excitation and ionization




Typical RF plasma discharge

lon characteristics can be determined by analyzing particles reaching the boundaries

—— positive voltage peak —— positive voltage peak
10 4 —— zero crossing 0.201 —— zero crossing
—— negative voltage peak —— negative voltage peak
10714
S 87 0.15
]
-
> > £
2 6 2 o
] ) =)
[= g o 0.10
18] L s}
) 0O 1072 il
o 4 w T
1]
@
0.05

2

2 4

10-3 0.00 4 ANPS M
0 T T T T T T T T T
. . . . . 0 5 10 15 20 25 0 10 20 30 40
0 1 2 3 4 Energy (eV) Angle (degrees)
Time (s) le-6
Average lon Energy in IEDF at one of the

lon angle of impact

simulation volume surfaces




Typical RF plasma discharge

Spatio-temporal development of electron and ion densities
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Machine learning

Top Electrode

Surface
Spectroscopy

Processing

@@
3D Emission
Tomography

Retarding
Field
Analyzer

Regression, Intelligent Sampling,
Reinfcrcement Learning

Supervised learning of IEDF as a
function of processing parameters

“Hidden Field” inference as a function
of measurable parameters

Dimensionality reduction on state of
plasma

Surrogate model of system




Developing large amounts of training data

» Would like to simulate a pressure range between 0.1 Pa and 300 Pa with driving
voltages (peak to peak) of 200 V to 2000 V. These will be the only two variables that
are swept in our initial training data set.

« Each simulation takes on the order of 4 to 10 (sim time of 5 us) days to run on 144
processors and 8000 elements. Particle counts are on the order of 5 million.

» To simulate 30 pressures and 30 voltages (900 Simulations), low-order estimate of
12 million CPU hours. Data size estimate ~ 100 TB

e Must use High-Performance Computing

* Our research effort obtained priority on the Ghost Super Computer (740 Nodes, 26,640
Cores, 128 GB RAM/node) at Sandia National Laboratories to use 3000 processors for 5
months continuously.

« Simulations are run and managed through scripts to generate input decks and launch
simulations on the cluster — Have to manage system downtime !




A small subset of data (3x3 data set)
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The large data set (30x30)

 The small data set was a test of the toolchain for input decks to be generated,

submission scripts, and restart capabilities. Furthermore, it enabled development of
data visualization and processing tools.
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The large data set (30x30)

lonization rate lon density
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The large data set (30x30)

lonization rate lon density
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Increasing Voltage
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An experimental approach

An analogous experimental setup is being constructed based upon the Budapest Cell* to

not only provide validation data for the models, but also serve as an input to the machine
learning model as well.
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* B. Horvath, A. Derzsi, J. Schulze, . Korolov, P. Hartmann, and Z. Donkd. Plasma Reinforcement Learning
Sources Science and Technology 29, no. 5 (2020): 055002.




Conclusions

« Have developed a one-dimensional PIC/DSMC model of an RF plasma
operating in Argon gas to analyze plasma characteristics relevant to
atomic layer etch.

« This model is being used to generate a large amount of data for training
a machine learning model.

» This data will be published in an online database for others to use

« Simultaneous experimental development of an Argon plasma reactor is
being stood-up to provide simulation validation and further data input for
the machine learning model.
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