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2 Motivation
The past decades have seen tremendous investment in simulation 
frameworks for coupled multi-scale and multi-physics problems.  

• Frameworks rely on established mathematical theories to couple physics components.
• Most existing coupling frameworks are based on traditional discretization methods.

• Monolithic (Lagrange multipliers)
• Partitioned (loose) coupling
• Iterative (Schwarz, optimization)
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Traditional + Data-Driven Methods

• PINNs
• Neural ODEs
• Projection-based ROMs, …

Unfortunately, existing algorithmic and software infrastructures are ill-equipped to 
handle plug-and-play integration of non-traditional, data-driven models!

• There is currently a big push to integrate data-driven methods into modeling & simulation toolchains.



4 Outline
1. The Alternating Schwarz Method for FOM*-ROM# and 

ROM-ROM Coupling
• Method Formulation
• ROM Construction and Implementation
• Numerical Example: Solid Mechanics
• Numerical Example: Fluid Mechanics

2. Summary and Comparison of Methods

3.  Future Work

*Full-Order Model.  #Reduced Order Model.
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6 Schwarz Alternating Method for Domain Decomposition
§ Proposed in 1870 by H. Schwarz for solving Laplace PDE on irregular domains.

H. Schwarz (1843–1921)

Crux of Method: if the solution is known in regularly shaped domains, use 
those as pieces to iteratively build a solution for the more complex domain.

Basic Schwarz Algorithm

2Lions, 1990. 3Zanolli et al., 1987. 

overlapping

non-overlapping

§ Schwarz alternating method most commonly used as a preconditioner for Krylov iterative methods 
to solve linear algebraic equations.

Idea behind this work: using the Schwarz alternating method as a discretization 
method for solving multi-scale or multi-physics partial differential equations (PDEs).
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AS A PRECONDITIONER 
FOR THE LINEARIZED 
SYSTEM

AS A SOLVER FOR THE 
COUPLED
FULLY NONLINEAR 
PROBLEM

How We Use the Schwarz Alternating Method



8 Spatial Coupling via Alternating Schwarz
Overlapping Domain Decomposition

Non-overlapping Domain Decomposition

• Dirichlet-Dirichlet transmission BCs 
[Schwarz 1870; Lions 1988; Mota et 
al. 2017; Mota et al. 2022]

This talk: sequential subdomain solves 
(multiplicative Schwarz).  Parallel subdomain 

solves (additive Schwarz) also possible.

Model PDE:



9 Time-Advancement Within the Schwarz Framework

Controller time stepper

Time integrator for W1

Time integrator for W2

Model PDE:
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Can use different integrators with 
different time steps within each domain!
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15 Time-Advancement Within the Schwarz Framework

Controller time stepper

Time integrator for W1

Time integrator for W2

Model PDE:

Time-stepping procedure is equivalent to doing 
Schwarz on space-time domain [Mota et al. 2022].
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• “Plug-and-play” framework:

Ø Ability to couple regions with different non-conformal meshes, different element types 
and different levels of refinement to simplify task of meshing complex geometries.

Ø Ability to use different solvers/time-integrators in different regions.

Model Solid Mechanics PDEs:

Quasistatic:

Dynamic:

Schwarz for Multiscale FOM-FOM Coupling in Solid 
Mechanics1

1 Mota et al. 2017; Mota et al. 2022.  2 https://github.com/sandialabs/LCM. 

2

https://github.com/sandialabs/LCM
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18 Projection-Based Model Order Reduction via the 
POD/Galerkin Method

18

Proper Orthogonal Decomposition (POD):

Solve ODE at different 
design points

1. Acquisition

2. Learning

3. Projection-Based ReductionNumber of 
time steps
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Save solution data

Reduce the 
number of 
unknowns

Perform 
Galerkin 
projection

Hyper-reduce 
nonlinear 
terms

Hyper-reduction/sample mesh

ROM = projection-based Reduced Order Model                                HROM = Hyper-reduced ROM    



19 Schwarz Extensions to FOM-ROM and ROM-ROM 
Couplings

19

Choice of domain decomposition
• Error-based indicators that help decide in what region of the domain a ROM can be viable should 

drive domain decomposition [Bergmann et al. 2018] (future work)

For nonlinear solid mechanics, hyper-reduction methods need to preserve Hamiltonian structure
• We employ the Energy-Conserving Sampling & Weighting Method (ECSW) [Farhat et al.  2015]
• Boundary points must be included in sample mesh for DBC enforcement 
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21 Numerical Example: 1D Dynamic Wave Propagation 
Problem

21

This talk

This talk

Figure: POD energy 
decay for nonlinear 

Henky problem



22 Numerical Example: 1D Dynamic Wave Propagation 
Problem
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Figure above: Symmetric Gaussian IC problem solution
Figure below: Rounded Square IC problem solution



23 Numerical Example: Reproductive Problem Results23

Green shading highlights 
most competitive 
coupled models



24 Numerical Example: Reproductive Problem Results24

• Single-domain ROM and HROM are most 
efficient

• Couplings involving ROMs and HROMs 
enable one to achieve smaller errors

• Benefits of hyper-reduction are limited 
on 1D problem



25 Numerical Example: Reproductive Problem Results25

Figure left: FOM (green) – HROM (cyan) coupling 
compared with single-domain FOM solution 

(blue).  HROM has 200 modes.

Figure below: ECSW algorithm samples 253/400 
elements  



26 Numerical Example: Predictive Problem Results26

• Start by calculating projection error for reproductive and predictive version of the Rounded Square IC problem:



27 Numerical Example: Predictive Problem Results27



28 Numerical Example: Predictive Problem Results28

• Predictive single-domain ROM solution exhibits spurious oscillations in velocity and acceleration
• Predictive FOM-HROM solution is smooth and oscillation-free

Ø Highlights coupling method’s ability to improve ROM predictive accuracy



29 Numerical Example: Predictive Problem Results29
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• Spatial discretization given by a Godunov-type 
scheme with N = 250 elements in each dimension 

• Temporal discretization given by the trapezoidal 
method with fixed ∆t = 0.05 where Tf = 25.0 for a 
total of 500 time steps

 
• Following coupled subdomains will occupy the same 

geometric footprint as the FOM with different solvers, 
resolution, and subdomain decomposition

0 100

10
0

0

Numerical Example: 2D Inviscid Burgers Problem



32 Numerical Example: 2D Inviscid Burgers Problem32



FOM-FOM Coupling: Differing Resolution33
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FOM-FOM Coupling: Differing Solvers34
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FOM-FOM Coupling: >2 Subdomains35
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Single Domain ROM36
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Figure above: Reduced mesh of 
single domain HROM

Figure above: HROM and FOM 
results at various time steps
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S.G. Mikhlin 
(1908 – 1990)

S.L. Sobolev (1908 – 1989)

A. Mota, I. Tezaur, C. Alleman

Using the Schwarz alternating as a discretization method for 
PDEs is natural idea with a sound theoretical foundation.

Theoretical Foundation

P.- L. Lions (1956-)

42



43 Numerical Example: Linear Elastic Wave Propagation 
Problem

43

• Linear elastic clamped beam with Gaussian initial condition.

• Simple problem with analytical exact solution but very stringent test for discretization/coupling 
methods.

• Couplings tested: FOM-FOM, FOM-ROM, ROM-ROM, implicit-explicit, implicit-implicit, explicit-
explicit.

Above: 3D rendering of clamped beam with Gaussian initial condition.  
Right: Initial condition (blue) and final solution (red).  Wave profile is 

negative of initial profile at time  T = 1.0e-3.



44
Linear Elastic Wave Propagation Problem: FOM-ROM and 
ROM-ROM Couplings

Single Domain FOM 3 overlapping subdomain     
ROM1-FOM2-ROM3

0 0.5
1

0.750.25

0 0.3

0.3 1

0 1



45 Linear Elastic Wave Propagation Problem: FOM-ROM and 
ROM-ROM Couplings

disp MSE6 velo MSE acce MSE

Overlapping ROM1-FOM2-ROM3 1.05e-4 1.40e-3 2.32e-2

Non-overlapping FOM4-ROM5 2.78e-5 2.20e-4 3.30e-3

6MSE=

Coupled models are reasonably accurate w.r.t. FOM-FOM coupled analogs and convergence 
with respect to basis refinement for FOM-ROM and ROM-ROM coupling is observed.



46 Linear Elastic Wave Propagation Problem: ROM-ROM 
Couplings

MSE in displacement for 2 
subdomain ROM-ROM coupling

Average # Schwarz iterations for 2 
subdomain ROM-ROM coupling

CPU times for 2 subdomain ROM-ROM 
coupling normalized by FOM-FOM CPU time



47 Linear Elastic Wave Propagation Problem: FOM-ROM 
CouplingsFOM-ROM coupling shows convergence with basis refinement.  FOM-ROM couplings are 10-
15% slower than comparable FOM-FOM coupling due to increased # Schwarz iterations.

MSE for 2 subdomain 
FOM-ROM coupling
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WIP: 
understanding & 
improving FOM-
ROM coupling 
performance.



Single Domain, 10 mode POD

10 mode POD – 50 mode POD 10 mode POD – FOM 20 mode POD – FOM

10 mode POD – 10 mode POD

Accuracy can be improved by “gluing” 
several smaller, spatially-local models

Single Domain, FOM (truth)

Linear Elastic Wave Propagation Problem: FOM-ROM and 
ROM-ROM Couplings

Observation suggests need for 
“smart” domain decomposition.



Roadmap49

• Demonstrate FOM-FOM coupling with varying 
time-steps, domain resolutions, and time-
stepping schemes

• Try out splitting domain into four sections
• Develop FOM-ROM, ROM-ROM, HROM-HROM 

coupling
• Time permitting

• Adaptive time-stepping based on local CFL 
number in given domain

• OR adaptively switch to implicit time 
stepping after shock has left domain

• Nonlinear approximation manifolds



2D Burgers: Verifying Implicit Implementation50



2D Burgers: LSPG PROM51

• Predictive case where μ = [4.7, 0.026]

• Train bases using 9 total runs of the FOM 
with all combinations of μ1 = 
[(4.25),(4.875),(5.5)] with μ2 = 
[(0.015),(0.0225),(0.03)] 

• Using 113 POD modes

• Relative error of 0.61%

• 321 s wall clock time



Energy-Conserving Sampling and Weighting (ECSW)52



ECSW: Generating the Reduced Mesh and Weights53



54 Numerical Example: 1D Dynamic Wave Propagation 
Problem

54

Min # 
Schwarz 

Iters

Max # 
Schwarz 

Iters

Total # 
Schwarz 

Iters

1.10 3 9 59,258

1.00 1 4 24,630

0.99 1 5 35,384

0.95 3 6 45,302

0.90 3 8 56,114

• Model accuracy evaluated w.r.t. analogous FOM-
FOM coupling using mean square error (MSE): 



Overlapping Coupling, Nonlinear Henky MM, 2 Subdomains

Multiplicative Schwarz Additive Schwarz



Overlapping Coupling, Nonlinear Henky MM, 2 Subdomains

Additive Multiplicative

Total # Schwarz iters 24495 24211

CPU time 2.03e3s 2.16e3

MS difference in disp 6.34e-13/6.12e-13

MS difference in velo 1.35e-11/1.86e-11

MS difference in acce 5.92e-10/1.07e-9



Overlapping Coupling, Nonlinear Henky MM, 3 Subdomains

Additive Multiplicative

Total # Schwarz iters 26231 25459

CPU time 1.89e3s 2.05e3s

MS difference in disp 5.3052e-13/9.3724e-13/6.1911e-13

MS difference in velo 7.2166e-12/2.2937e-11/2.4975e-11

MS difference in acce 2.8962e-10/1.1042e-09/1.6994e-09



Non-overlapping Coupling, Nonlinear Henky MM, 2 Subdomains

Multiplicative Schwarz Additive Schwarz



Non-overlapping Coupling, Nonlinear Henky MM, 2 Subdomains

Additive Multiplicativ
e

Total # Schwarz iters 44895 24744

CPU time 1.87e3s 982.5s

MS difference in disp 4.26e-5/2.74e-5

MS difference in velo 1.02e-5/5.91e-6

MS difference in acce 5.84e-5/1.21e-5



Non-overlapping Coupling, Nonlinear Henky MM, 3 Subdomains

Additive Multiplicative

Total # Schwarz iters 53413 27509

CPU time 5.91e3s 2.87e3s

MS difference in disp 2.8036e-05/3.1142e-05/ 8.8395e-06

MS difference in velo 1.4077e-05/1.2104e-05/6.5771e-06

MS difference in acce 8.7885e-05/3.2707e-05/1.3778e-05


