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2 ‘ Motivation

The past decades have seen tremendous investment in simulation
frameworks for coupled multi-scale and multi-physics problems.

* Frameworks rely on established mathematical theories to couple physics components.
* Most existing coupling frameworks are based on traditional discretization methods.
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Complex System Model Traditional Methods Coupled Numerical Model
» PDEs, ODEs * Mesh-based (FE, FV, FD)  « Monolithic (Lagrange multipliers)
* Nonlocal integral * Meshless (SPH, MLS) » Partitioned (loose) coupling
* Classical DFT * Implicit, explicit » |terative (Schwarz, optimization)
* Atomistic, ... * Eulerian, Lagrangian...
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frameworks for coupled multi-scale and multi-physics problems.

Motivation

e past decades have seen tremendous investment in simulation
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Complex System Model Traditional Methods Coupled Numerical Model Traditional + Data-Driven Methods
* PDEs, ODEs * Mesh-based (FE, FV, FD)  « Monolithic (Lagrange multipliers) * PINNs
* Nonlocal integral * Meshless (SPH, MLS) » Partitioned (loose) coupling * Neural ODEs
* Classical DFT * Implicit, explicit » Iterative (Schwarz, optimization) * Projection-based ROMs, ...

Atomistic, ... Eulerian, Lagrangian, ...

« There is currently a big push to integrate data-driven methods into modeling & simulation toolchains.

Unfortunately, existing algorithmic and software infrastructures are ill-equipped to
handle plug-and-play integration of non-traditional, data-driven models!
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« I Schwarz Alternating Method for Domain Decomposition {

= Proposed in 1870 by H. Schwarz for solving Laplace PDE on irregular domains.

Crux of Method: if the solution is known in regularly shaped domains, use
those as pieces to iteratively build a solution for the more complex domain.

Basic Schwarz Algorithm

Initialize:
= Solve PDE by any method on Q, w/ initial guess for transmission BCs on I}.
Iterate until convergence:

= Solve PDE by any method on Q, w/ transmission BCs on I', based on values

just obtained for Q,. non-overlapping
= Solve PDE by any method on Q, w/ transmission BCs on I’; based on values % )F o,
just obtained for Q,.

\

oY)
= Schwarz alternating method most commonly used as a preconditioner for Krylov iterative methods
to solve linear algebraic equations.

Idea behind this work: using the Schwarz alternating method as a discretization
method for solving multi-scale or multi-physics partial differential equations (PDEs).




How We Use the Schwarz Alternating Method

AS A PRECONDITIONER
FOR THE LINEARIZED
SYSTEM

AS A SOLVER FOR THE
COUPLED

FULLY NONLINEAR
PROBLEM




s I Spatial Coupling via Alternating Schwarz

Overlapping Domain Decomposition
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Non-overlapping Domain Decomposition

rN (ugnﬂj) = f, in 0
9 ué"“} =g, ondQ\I
! ugﬂﬂ) = Adn+1s on I
rFN (ugnﬂ}) =f, in
\ ugn"'l:' =g, on 90Q,\T
kFug“H) n= Fu.&nﬂ} ‘n, on I

Apy1 =8+ (1-86)A,0on Ifornz=1

O

Dirichlet-Dirichlet transmission BCs
[Schwarz 1870; Lions 1988; Mota et

al. 2017; Mota et al. 2022]

This talk: sequential subdomain solves

(multiplicative Schwarz). Parallel subdomain —

92

o2

solves (additive Schwarz) also possible.

Relevant for multi-material and multi-

physics coupling

Alternating Dirichlet-Neumann
transmission BCs [Zanolli et al. 1987]

Robin-Robin transmission BCs also lead
to convergence [Lions 1990]

0 € 0,1]: relaxation parameter (can

help convergence)



9 I Time-Advancement Within the Schwarz Framework

Step 0: Initialize i = 0 (controller time index).

Controller time stepper

Time integrator for £2,

Time integrator for (2,

u+ N(u) =f, in 2
Model PDE: ! u(x,t) = g(t), on N
u(x,0) = u,, in




0 I Time-Advancement Within the Schwarz Framework

I Ty 'T

Controller time stepper

I Integrate using Aty |

Time integrator for (2,

Interpolate|from
I TN IQZ tol, |

Q, | | Time integrator for (2,

Step 0: Initialize i = 0 (controller time index).

Step 1: Advance (1, solution from time T; to time T;,; using time-stepper in (; with time-step 4t;, using
solution in (), interpolated to I'; at times T; + nAt;.

u+ N(u) =f, in 2
Model PDE: ! u(x,t) = g(t), on N
u(x, D) = Uy, in




11 I Time-Advancement Within the Schwarz Framework

I Ty 'T

Controller time stepper
| |

| Time integrator for (2,

I\ o / | Interpolate

fromQ, to [},

Q, > Time integrator for 2,
' Integrate using At, '

Step 0: Initialize i = 0 (controller time index).

Step 1: Advance (), solution from time T; to time T;,, using time-stepper in (; with time-step 4t;, using
solution in Q, interpolated to I'; at times T; + n4t;.

Step 2: Advance (), solution from time T; to time T;,, using time-stepper in (), with time-step 4t,, using
solution in Q, interpolated to I, at times T; + n4t,.

u+ N(u) =f, in 2
Model PDE: ! u(x,t) = g(t), on N
u(x,0) = u,, in
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Time-Advancement Within the Schwarz Framework

= ' Ty T,
Controller time stepper
r, | |
= I Time integrator for (2,
|
| |
Q, | | | Time integrator for 2,

Step 0: Initialize i = 0 (controller time index).

Step 1: Advance (1, solution from time T; to time T;,, using time-stepper in (; with time-step 4t,, using
solution in Q, interpolated to I'; at times T; + n4t;.

Step 2: Advance (), solution from time T; to time T;,, using time-stepper in (), with time-step 4t,, using
solution in (), interpolated to I, at times T; + n4t,.

Step 3: Check for convergence at time T}, . uw+ N =f, in N
Model PDE: u(x,t) = g(t), on an
u(x,0) = u,, in N
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Time-Advancement Within the Schwarz Framework

Q, I Ty ' T
r, I Integrate using At, |
T Interpolate [from
| | AT iflz tol; |
0, I |
I

Step 0: Initialize i = 0 (controller time index).

Controller time stepper

Time integrator for (2,

Time integrator for 2,

Step 1: Advance (), solution from time T; to time T;,, using time-stepper in (), with time-step At,, using

solution in , interpolated to I; at times T; + n4t,.

Step 2: Advance (), solution from time T; to time T;,, using time-stepper in (), with time-step 4t,, using

solution in £, interpolated to I, at times T; + n4t,.

Step 3: Check for convergence at time T}, ;.
» If unconverged, return to Step 1.

Model PDE:

u+ N(u) =f, in 2
u(x,t) = g(t), on afn
u(x,0) = u,, in N
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Time-Advancement Within the Schwarz Framework

Step O: Initialize i = 0 (controller time index).

Q, Tl
T Integrate using At,
T Interpolate from
Q,t6T, AN |
Q, | I

T,

Controller time stepper

Time integrator for (2,

Time integrator for 2,

Can use different integrators with

different time steps within each domain!

Step 1: Advance (, solution from time T; to time T;,, using time-stepper in (), with time-step 4t,, using

solution in (), interpolated to I'; at times T; + n4t,

Step 2: Advance (), solution from time T; to time T;,, using time-stepper in (1, with time-step 4t,, using

solution in (1, interpolated to I, at times T; + n4t,

Step 3: Check for convergence at time T, .

L

» |If unconverged, return to Step 1.
» If converged, set i = i + 1 and return to Step 1.

Model PDE:

u+ N(u) =f, in 2
u(x,t) =g(t), on an
u(x,0) = u,, in N
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Time-Advancement Within the Schwarz Framework

Step 0: Initialize i = 0 (controller time index).

Q, Tl
T Integrate using At,
T Interpolate from
Q,t6T, AN |
Q, | I

T,

Controller time stepper

Time integrator for (2,

Time integrator for 2,

Time-stepping procedure is equivalent to doing

Schwarz on space-time domain [Mota et al. 2022].

Step 1: Advance (, solution from time T; to time T;,, using time-stepper in (), with time-step 4t,, using
solution in (), interpolated to I'; at times T; + n4t,.

Step 2: Advance (), solution from time T; to time T;,, using time-stepper in (1, with time-step 4t,, using

solution in (1, interpolated to I, at times T; + n4t,

Step 3: Check for convergence at time T, .

%

» If unconverged, return to Step 1.
» If converged, set i = i + 1 and return to Step 1.

Model PDE:

u+ N(u) =f, in 2
u(x,t) =g(t), on an
u(x,0) = u,, in N




. | Schwarz for Multiscale FOM-FOM Coupling in Solid

Mechanics’

Model Solid Mechanics PDEs:

Coupling is concurrent (two-way).

Ease of implementation into existing massively-

Quasistatic:

Dynamic:

DivP +pgB =0 in

Div P + poB = po¢

@)
m QxI

parallel HPC codes.

Scalable, fast, robust (we target real engineering
problems, e.g., analyses involving failure of bolted
components!).

Coupling does not introduce nonphysical artifacts.

Theoretical convergence properties/guarantees!’.

“Plug-and-play” framework:

» Ability to couple regions with different non-conformal meshs, different element types
and different levels of refinement to simplify task of meshing complex geometries.

> Ability to use different solvers/time-integrators in different regions.

' Mota et al. 2017; Mota et al. 2022. 2 https://github.com/sandialabs/LCM.
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18 I Projection-Based Model Order Reduction via the

POD/GaIerki:rL]er%t

epRngE"l (FOM)I Mi—ztt; + fint(u) = fext

1. Acquisition

Number of
time steps
<«
== A
_— o
|/ — =
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v

Solve ODE at different

. . Save solution data
design points

2. Learning

Proper Orthogonal Decomposition (POD):

X = - U )N v’

3. Projection-Based Reduction

Reduce the
number of
unknowns

Perform
Galerkin
projection

Hyper-reduce fir(@)~ A

nonlinear

terms

=2

Hyper-reduction/sample mesh

u(t) = u(t) = @u(t)

d?u ~
d’)TMde—t;' + @Tf, (PU) = PTf o

f i11t{¢ﬂ)

ROM = projection-based Reduced Order Model

HROM = Hyper-reduced ROM

I i Em B



19 ‘ Schwarz Extensions to FOM-ROM and ROM-ROM

Enfor(c:e'%grw!)?gﬁichlet boundary conditions (DBCs) in ROM at indices ip;,
* Method | in [Gunzburger et al. 2007] is employed |

u(t) = u+ du(t), v(t) =v+edv(t), a(t) =a+ @d(t)
» POD modes made to satisfy homogeneous DBCs: @(ip;.,:) =0

Choice of domain decomposition

« Error-based indicators that help decide in what region of the domain a ROM can be viable should
drive domain decomposition [Bergmann et al. 2018] (future work) |

Snapshot collection and reduced basis construction

« POD results presented herein use snapshots obtained via FOM-FOM coupling on Q = U; (;
« Scenario |: generate snapshots/bases separately in each (); [Hoang et al. 2021, Smetana et al. 2022] :

For nonlinear solid mechanics, hyper-reduction methods need to preserve Hamiltonian structure
« We employ the Energy-Conserving Sampling & Weighting Method (ECSW) [Farhat et al. 2015]
* Boundary points must be included in sample mesh for DBC enforcement
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‘ Numerical Example: 1D Dynamic Wave Propagatlon

1DFL;EQP L@metry Q= (0,1), clamped at both ends, with
prescribed initial condition discretized using FEM + Newmark-f

Simple problem but very stringent test for discretization/
coupling methods.

Two constitutive models considered:
» Linear elastic (problem has exact analytical solution)
» Nonlinear hyperelastic Henky This talk

0.2F

0.1

1 Subdomain

2 Subdomains,

— 2 Subdomains, ¢
5'12

Figure: POD energy
decay for nonlinear
Henky problem

10°

101

102
# POD modes (M)

103

ROMs results are reproductive and predictive, and are based on the POD/Galerkin method, with

POD calculated from FOM-FOM coupled model.

» 50 POD modes capture ~100% snapshot energy for linear variant of this problem.
» 536 POD modes capture ~100% snapshot energy for Henky variant of this problem.

Hyper-reduced ROMs (HROMs) perform hyper-reduction using ECSW [Farhat et al., 2015]

» Ensures that Lagrangian structure of problem is preserved in HROM.

Couplings tested: overlapping, non-overlapping,|FOM-FOM, FOM-ROM, ROM-ROM, FOM-HROM,
HROM-HROM, implicit-explicit, implicit-implicit,|explicit-explicit.

This talk



Numerical Example: 1D Dynamic Wave Propagatlon

TwoPJers%mroblem with different initial conditions (ICs): ;| N
» Symmetric Gaussian IC (top right) S
» Rounded Square IC (bottom right) U S

[

Non-overlapping domain decomposition (DD) of Q = Q, U Q,, where ,

= [0, 0.6] and Q, = [0.6, 1.0] B

' ) acceleration, snapshot 1, time = 0

» DD is based on heuristics: during time-interval considered (0 <t <

1 x 10%), sharper gradient forms in Q;, suggesting FOM or larger i T
ROM is needed there. o e e w oa w e o w0 o
Reproductive problem:
» Displacement snapshots collected using FOM-FOM non-overlapping

<107 displacement, snapshot 101, time = 1e-05

Figure above: Symmetric Gaussian IC problem solution
Figure below: Rounded Square IC problem solution

coupling with Symmetric Gaussian IC l / \
» FOM-ROM, FOM-HROM, ROM-ROM and HROM-HROM run with 1
Symmetric Gaussian IC 5?’ ety s.fi..‘ls..ot 1o e 1005
Predictive problem: ’i{ ‘:L
» Displacement snapshots collected using FOM-FOM non-overlapping o oz oa 06 o8
coupling with Symmetric Gaussian IC [
» FOM-ROM, FOM-HROM, ROM-ROM and HROM-HROM run with A | ﬁ' ‘# |
Rounded Square IC :

I i Em B



23 ‘ Numerical Example: Reproductive Problem Results

_ CPU Emse(y)/ Emsr(D1)/ Emse(ar)/ ,
Model Mi/Ms | N.1/N. , - g e N
ode 1/ Mz 1/ Ne2 time (s) Enmse(ta) Enmse(U2) Enmsel(az) S
FOM -/ —/— 1.871 x 107 iy - iy - -/ —
ROM 60/ — —/—= 1.398 x 10° | 1.659 x 10~ */— 1.037 x 10~ * 4.681 x 10 ' /— -
HROM 60,/ — 155/ — 5.878 x 10" | 1.730 x 10~ /— | 1.063 x 10~ /— | 4.741 x 107" /- -
ROM 200/ — -/- 1.448 x 10° | 2287 x 10”7 /— | 4.038 x 10™°/— | 4.542 x 10~ */— -
HROM 200/ — 428/ — 9.229 x 10° | 8396 x 10" /— | 8947 x 10" °/— | 7.462 x 10"~ /— —
FOM-FOM —/- —/—- 2.345 x 10° | — — — 24,630 . . .
FOM-ROM —/30 iy 2341 x 10° 2171 x 10 °/ | 3884 x10°°/ | 2.082x 107/ | 25227 Green shading highlights
1.253 x 10~° 2.401 x 10~* 2.805 x 1073 g
FOM-HROM —/80 —/130 2.085 x 107 2.022 x 10~7/ 1.723e x 1073/ 7.421 x 1073/ 29,678 most Compet]twe
5.734 x 10~* 5.776 x 10~3 3.791 x 1072
FOM-ROM —/200 —/- 2.449 x 108 | &784x107°%/ | 1.835x 1070/ | 5.550x 10/ |, oq, coupled models
' o 7.357 x 10~ 1! 4.027 x 107° 1.401 x 1077 o
. , B B 3 1.421 x 10°°/ 1.724 x 10~%/ 9.567 x 10~ %/
FOM-HROM /200 /252 2.352 x 10 4.563 » 10—4 5943 % 10-3 L 364 x 10-2 27,156
4.861 x 10" °/ 1.219 x 1077/ 1.586 x 10~/
ROM-ROM 200/80 —/— ) 3 27,810
/ / 2778 > 10 3.093 x 10~° 4.177 x 10~* 3.936 x 10°° '
HROM-HROM | 200/80 315/130 1.769 x 10° 3.410 x 10~ 7/ 4.110 x 10~ %/ 2.485 x 1071/ 29,860
6.662 x 10~ % 6.432 x 103 4.307 x 10~2
2.580 x 10~ %/ 6.226 x 10~ °/ 9.470 x 10~ * -
ROM-ROM 300/80 -/ . 3 25,059
/ / 2.646 > 10 1.292 x 107 2.483 x 10~ * 2.906 x 1077 7
HROM-HROM | 300/80 405/130 1.938 x 10° 6.960 x 107 6.328 x 10~ 2 3.137 x 10 ° 29,896
7.230 x 10~* 7.403 x 1073 4.960 x 10~

« All coupled models evaluated converged on average in <3 Schwarz iterations per time-step
« Larger FOM-ROM coupling has same total # Schwarz iters (Ng) as FOM-FOM coupling
« Other couplings require more Schwarz iters than FOM-FOM coupling to converge
» More Schwarz iters required when coupling less accurate models
» Larger 300/80 mode ROM-ROM takes less wall-clock time than smaller 200/80 mode ROM-ROM
* FOM-HROM and HROM-HROM couplings outperform the FOM-FOM coupling in terms of CPU time by 12.5-32.6%
* All couplings involving ROMs/HROMs are at least as accurate as single-domain ROMs/HROMs

I i Em B



2« I Numerical Example: Reproductive Problem Results

Average EMSE(U)

T T L T T
x |
|
= ) % Jl’<
-4 L -
10 | :
|
2 |
107 ¢ |
5 |
|
[
[
108 | FOM :
ROM |
HROM |
_ -FOM-FOM I
o0 b FOM-ROM | ]
FOM-HROM e '
ROM-ROM |
: HROM-HROM :
10_‘12 [ ] ] ] | I
500 1000 1500 2000 2500
CPU time (s)

3000

Single-domain ROM and HROM are most
efficient

Couplings involving ROMs and HROMs
enable one to achieve smaller errors

Benefits of hyper-reduction are limited
on 1D problem



25 I Numerical Example: Reproductive Problem Results

x107 displacement, snapshot 1, time = 0
I I ] I I

10

5| i
0 01 02 03 Y 05 a5 07 08 as 1 Figure left: FOM (green) - HROM ( ) coupling
velocity, snapshot 1, time = 0 compared with single-domain FOM solution
10k ' ' ' ' ' ] (blue). HROM has 200 modes.
10k - Figure below: ECSW algorithm samples 253/400
20 - - elements
30 & | | | | | | | | | =
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
%108 ?cceleraltion, snalpshot 1 , time = q
4 . 0 50 100 150 200 250 300 350

nz = 253

-4
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

I i Em B



26 I Numerical Example: Predictive Problem Results

« Start by calculating projection error for reproductive and predictive version of the Rounded Square IC problem:

|u — @p (B, Prr) " @ ull2

|2

Eproj(u, ®ar) =

107 « Projection error suggests predictive ROM can achieve
= accuracy and convergence with basis refinement
5
S 10 i+ 0(100) modes are needed to achieve sufficiently
E ] I . ]
re) Epmj[u, ¢, ). reproductive \ ] accurate ROM
0o Epmj[v, tth}, reproductive . . . .
_ e (a, &, reprodacive _ » Larger ROMs containing O(100) modes considered
) projt ! ' : : .
0°F | _ e (a0, predictive in our coupling experiments: M,= 300, M,= 200
- — — Epmj[v, Q>M}, predictive 1
_ _Epmj[a, 'J>M}, predictive
108
10° 10" 102 10°

POD basis size (M)



27 ‘ Numerical Example: Predictive Problem Results

|
102 F |
x O | %
I x
|
CPU Emvse(@1)/ Emse(01)/ Emse(a@)/ '
Model . Ne.1/Ne, . £ . Ng [
°oe time (s) 1/Ne,2 Emse(t2) Emse(V2) Emse (@2) > 107 i
FOM 1.288 x10° —/— —/— —/— —/— - = |
ROM 1.358 x10° —/— 3.451x10~%/— | 6.750 x 10°%/— | 3.021 x 10~ /— — w |
HROM 9.759 x 107 614/— 3.463 x 10~ °/— | 6.750 x 10 %/— | 3.021 x 10~ /— - uB 10T o
FOM-FOM 2.133 x 10° —/— —/— —/— —/— 23,280 > :
FOM-ROM 2.084 x 10° -/- 1.907 x 10~%/ 1.461 x 10~/ 3.973 x 10~°/ 23,288 e . sl | FOM
1.170 x 10~° 9.882 x 1075 1.757 x 1073 < W | RoM
1.967 x10~ % 4.986 x 10~° 2.768 x 102 I
FOM-HROM ) 3 —/2 29,7 | FOM-FOM
OM-HRO 2.219 x 10 /253 1.720 x 10 ° 4.185 x10 2 2.388 x 10 9,700 o | O FOM-ROM
3 e 5.592 x 10~ 7%/ 1.575 x 10~ 7/ 9.197 x 102/ 107 F || * FOM-HROM |3
ROM-ROM 2:502 x 10 / 4.346 x 10~4 1.001 x 10~2 5.304 x 102 26,220 | e
: )
i . 4.802 x 10~* 8.500 x 10—~ 3.744 x 10~ 1 |
HROM-HROM | 2.200x10 405/253 1.960 x 1073 4.630 x10~2 2.580 x10~! 30,067 1072 : : — :
500 1000 1500 2000 2500 3000
CPU time (s)

Results indicate that predictive accuracy/robustness can be improved by coupling ROM or HROM to FOM

> FOM-ROM coupling is remarkably accurate, achieving displacement error O(1 x 10~%)
» FOM-HROM and ROM-ROM couplings are more accurate than single-domain ROMs
» HROM-HROM on par with single-domain HROM in terms of accuracy

Wall-clock times of coupled models can be improved

» FOM-HROM, ROM-ROM and HROM-HROM models are slower than FOM-FOM model as more Schwarz
iterations required to achieve convergence

» Hyper-reduction samples ~60% of total mesh points for this 1D traveling wave problem
*» Greater gains from hyper-reduction anticipated for 2D/3D problems




8 ‘ Numerical Example: Predictive Problem Results

Displ acement

<107 | Displ atl::ement

U1

0.8
Velot:|ty

s | B

0 0.1 0.7 0.8 0.9
Velomty

o—_ w\/WWWML\,MWWWW o M \— “““W / B —

-20 20 ! | |
0 [}‘9 1 0 0.1 0.2 0.8 0.9
«10° Acceleratlon <108 : : Acceleratlon | |

T
I
L 1 ot ] |
o - | \jl - NN

0 |[ h Y

2+ _ 2+ U 1

| | | | | | | | | | | [ | | |
0 0.1 0.2 0.3 0.4 0).(5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0)'(5 0.6 0.7 0.8 0.9

Predictive single-domain ROM (M,= 300)
solution at final time

Predictive FOM-HROM (M,= 200)
solution at final time

— Single-domain FOM solution

— Solution in Q, — Solution in Q,

* Predictive single-domain ROM solution exhibits spurious oscillations in velocity and acceleration

* Predictive FOM-HROM solution is smooth and oscillation-free
» Highlights coupling method’s ability to improve ROM predictive accuracy



29 ‘ Numerical Example: Predictive Problem Results

0.5
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B | | | | | | | |
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%108 Acceleration
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Predictive single-domain ROM (M;= 300)
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Predictive FOM-HROM (M,= 200)

— Single-domain FOM solution

— Solution in Q,

— Solution in Q,
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1. The Alternating Schwarz Method for FOM*-ROM# and
ROM-ROM Coupling

* Method Formulation

 ROM Construction and Implementation
* Numerical Example: Solid Mechanics 0 >r o
* Numerical Example: Fluid Mechanics \

Qo

2. Summary and Comparison of Methods
3. Future Work

: 2
gl 1 . P
Schwarz “glue K verlap ~

Q3 \
High-fidelity
-=%~ mesh-free

model _/
(Physics 3) //
(

*Full-Order Model. #Reduced Order Model.



31 ‘ Numerical Example: 2D Inviscid Burgers Problem
t=0.0 t=06.2

ou 1 /0u?® Ouv
T 4+ 5 ( i + dy ) = 0.02 exp(u2x)

8v+1(8vu+8v2)_0
ot 2\ Ox oy
u(x=0,y,t; p) = p
ulx,y,t =0)=v(x,y,t=0)=1

t =125 t =18.8

x,y € [0,100], t € [0, T¢] 751
« Spatial discretization given by a Godunov-type 50 1
scheme with N = 250 elements in each dimension o5
« Temporal discretization given by the trapezoidal oF B0 TE
method with fixed At = 0.05 where T, = 25.0 for a '
total of 500 time steps Figure above: solution of u ° L
component at various times
* Following coupled subdomains will occupy the same Po - 0,
geometric footprint as the FOM with different solvers,
resolution, and subdomain decomposition Sl




2 I Numerical Example: 2D Inviscid Burgers Problem

« 2D makes for a more appropriate testing of potential speedups 10
from coupling subdomains to ROMs

« The inviscid Burgers’ equation is a popular analog for fluid
problems where shocks are possible, particularly difficult for
conventional projection-based ROMs

« Two parameters considered: 107
> Dirichlet BC parameterization g, L e e
» Source term parameterization u,

« ROMs results are predictive and are based on the Least Squares Petrov-Galerkin (LSPG)
method, with POD calculated from FOM coupling models.

» Greater than 200 POD modes required to capture 99% snapshot energy for when sampling 9
i = [py, 1] values

* Hyper-reduced ROMs (HROMs) perform hyper-reduction using ECSW [Farhat et al., 2015]

* Couplings tested: overlapping, FOM-FOM, FOM-ROM, ROM-ROM, FOM-HROM, HROM-HROM,
implicit-explicit, implicit-implicit, explicit-explicit.
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Figures show the mid-plane slice of the solution for u, at various times o
The right subdomain is a finer mesh, and the difference in how the shock is resolved
can be seen

Q, - Q, ordering gives 2 Schwarz iterations per global time step

(1, — ), ordering gives 3 Schwarz iterations per global time step

FOM-FOM Coupling: Differing Resolution

t = 16.50 t

I
]
E‘:t
=
=

0 20 10 60 80 100 0 20 10 60 <0 100

= U ,&x =~ |

I 20 10 60 80 100 ; 0 20 40 60 80 100
Yy Y
Figures above: Two-subdomain explicit-explicit overlapping coupling in x-axis
[0, 70] U [30, 100] where u = [4.3,0.021], At = 0.005, Ax; = 0.4, Ax, = 0.3

X

1(|)0

v

1(|)0

Order can be important!

2

12,




14 I FOM-FOM Coupling: Differing Solvers

t —16.50 t = 25.00
L;‘l'ib;l_ Li'_|) 4_ . ﬂl
0 20 10 60 80 100 T) 20 10 60 80 100
— — 5.0
S L5 =
II_ 1.0 ||. 2.5
By 20 10 60 80 100 ) 0 20 10 60 80 100
Y Y
Figures above: Two-subdomain implicit-explicit overlapping coupling in x-axis [0, 70]
U [30, 100], u = [4.3,0.021], At; = 0.05, At, = 0.005, Ax; = 0.4, Ax, = 0.3
0 x 100
Introducing a different time stepper in Q; has not introduced artifacts and produces © '
visually identical solution
Ty 12,

Choosing , — Q, still only requires 2 Schwarz iterations per global time step

1(|)0




3 1 FOM-FOM Coupling: >2 Subdomains

t = 16.50 t

|

b
5_,'_':
=
=

[y ]

l(r,y=>5
Lo W

u,(x, y = 50)
S
= =
[ ] —

0 20 10 60 80 100 0 20 10 60 80 100 — (3

T
T . ﬂ4_

S 15 =4

I Tl

I i Il

L1 Lo

;jh 05_ T T T T T T :“ T T T T T T

0 20 40 60 80 100 0 20 40 60 80 100

Y Y
Figures above: Four-subdomain implicit-explicit-implicit-explicit overlapping
coupling in x-axis [0, 60] U [40, 100] and y-axis [0,60] U [40, 100], u = [4.3,0.021],

At, = Aty = 0.05, At, = At, = 0.005, Ax, = Ax, = 0.4,Ax, = Ax; = 0.3

« Despite a heterogeneous mixture of different subdomains coupled in multiple °
dimensions with different solvers, resolutions, etc. the solution is still consistent

0 ¥ 1(.)0

v

« Choosing 2, = Q, = Q5 = Q, requires 3 Schwarz iterations per global time step

100




3 1 Single Domain ROM

« Uniform sampling of D = [4.25,5.50]%[0.015,0.03] by a 3x3 grid = 9 training parameter
points characterized by Au, = 0.625 and Au, = 0.0075

* Queried but unsampled parameter point u = [4.75,0.02] with reduced dimension of n = 95

« Reduced mesh resulting from solving non-negative least squares problem formulate by ECSW
gives n, = 5 689 elements (9.1% of N, = 62 500 elements).

0 ol 100 150 200

X

iy cell inde

x cell index

Figure above: Reduced mesh of
single domain HROM

_ \
— HDM
—— HPROM
21 | ——————

— HDM
—— HPROM

i 20 40 Gl bl 100
)

Figure above: HROM and FOM
results at various time steps
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Theoretical Foundation

Using the Schwarz alternating as a discretization method for
PDEs is natural idea with a sound theoretical foundation.

S.L. Sobolev (1936): posed Schwarz method for linear elasticity in
variational form and proved method’s convergence by proposing a
convergent sequence of energy functionals.

S.G. Mikhlin (1951): proved convergence of Schwarz method for general
linear elliptic PDEs.

P.-L. Lions (1988): studied convergence of Schwarz for nonlinear monotone

* Lo . " . S.G. Mikhlin
elliptic problems using max principle. (1908 - 1890)
A. Mota, |. Tezaur, C. Alleman (2017): proved convergence of the
alternating Schwarz method for finite deformation quasi-static nonlinear
PDEs (with energy functional @[¢]) with a geometric convergence rate. P- L. Lions (1956-)

?[p)] = f A(F,Z)dV—f B-@dv
B B
V-P+B=0

A. Mota, I. Tezaur, C. Alleman




s I Numerical Example: Linear Elastic Wave Propagation

Problem
» Linear elastic clamped beam with Gaussian initial condition.

« Simple problem with analytical exact solution but very stringent test for discretization/coupling
methods.

* Couplings tested: FOM-FOM, FOM-ROM, ROM-ROM, implicit-explicit, implicit-implicit, explicit-
explicit.

* ROMs are reproductive and based on the 0.01 displecement, ssnpshot 1 time = 0
POD/Galerkin method. ki
» 50 POD modes capture ~100% snapshot 0.006
energy 0.004 |

0.002

-0.002 |
-0.004
-0.006

-0.008

Above: 3D rendering of clamped beam with Gaussian initial condition. | |
Right: Initial condition (blue) and final solution (red). Wave profile is 00 0.2 0.4 0.6 0.8 1
negative of initial profile at time T = 1.0e-3.




Linear Elastic Wave Propagation Problem: FOM-ROM and
“ T ROM-ROM Couplings

Coupling delivers accurate solution if each subdomain model is reasonably accurate,
can couple different discretizations with different Ax, At and basis sizes.

0.01 displacement, snaishot 1, time=0

-0.01

0 0.2 0.4 0.6 0.8 1
velocity, snapshot 1, time =0

1 1 1 1
0 0.2 0.4 0.6 0.8 1
<107 acceleration, snapshot 1, time = 0

Single Domain FOM

-0.01

0 0.2 0.4 056 08 0.0, 0.2 0.4 06 0.8 1
__velocity, snapshot 1, time =0 _ velocity, snapshot 1, time = 0
200} 200} ' ' I I
O — e b
-200} . . . . -200}
o 0.2 0.4 0.6 0.8 0 0.2 0'.4 0.6 0.8 1
, <107 acceleration, snapshot 1, time = 0 <107 acceleration, snapshot 1, time = 0
L 2F T T T T

0.01 displacement, snapshot 1, time = 0 displacement, snapshot 1, time = 0
a : ) ! L 0.01 T T N T T

o 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 1

3 overlapping subdomain
ROM'-FOMZ-ROM3

2 non-overlapping subdomain
FOM*-ROM> (68 = 1)

OI 'H 1|
' ' 0 f, 05 0 03
R 03 1 SImplicit FOM, At =2.25e-7,
"Implicit 40 mode POD ROM, At=1e-6, Ax=1.25e-3 0.25 {13 0.75 Ax =1e-6

Zimplicit FOM, At =1e-6, Ax =8.33e-4
3Explicit 50 mode POD ROM, At =1e-7, Ax =1e-3

“Explicit 50 mode POD ROM,
At =2.25e-7, Ax =1e-6




s | Linear Elastic Wave Propagation Problem: FOM-ROM and
ROM-ROM Couplings

Coupled models are reasonably accurate w.r.t. FOM-FOM coupled analogs and convergence
with respect to basis refinement for FOM-ROM and ROM-ROM coupling is observed.

| disp MSE°| velo MSE | acce MSE_

Overlapping ROM'-FOM2-ROM3  1.05e-4 1.40e-3 2.32e-2
Non-overlapping FOM*-ROM> 2.78e-5 2.20e-4  3.30e-3

'Implicit 40 mode POD ROM, At =1e-6, Ax =1.25e-3
Iimplicit FOM, At =1e-6, Ax =8.33e-4

3Explicit 50 mode POD ROM, At =1e-7, Ax =1e-3
“Implicit FOM, At =2.25e-7, Ax =1e-6

SExplicit 50 mode POD ROM, At =2.25e-7, Ax =1e-6

N N
6MSE= mean squared error = \J Z |a"(p) — u" (#)”3/\] Z HUR(F’)HE
n=1 n=1



ROM-W:%MQQ?gives errors < 0(1e-6) & speedups over FOM-FOM coupling for basis sizes > 40.

MSE in displacement for 2 CPU times for 2 subdomain ROM-ROM Average # Schwarz iterations for 2
| subdomain ROM-ROM coupling coupling normalized by FOM-FOM CPU time | subdomain ROM-ROM coupling

s | Linear Elastic Wave Propagation Problem: ROM-ROM E

» 100 100
| a0 | ) | B
. 90
| &0 '80 ‘80 - * I
' . ‘ 70 ’ 70 1s
| ) | i
&l _ 60 60
1" \ |
| M 0 Mso ﬂ50 128
40 40 40
30 30 ’
20
. N - e - h 8
N 10 B e 10
—— e . :
( 4 | 1N 0 0 1
i 0 20 40 60 80 100 0 20 40 60 80 100
# POD modes in # POD modes in # POD modes in ©, :

Smaller ROMs are not the fastest: less accurate & require more Schwarz iterations to converge.

All couplings converge in < 4 Schwarz iterations on average Overlapping implicit-implicit cguhling
(FOM-FOM coupling requires average of 2.4 Schwarz iterations). with Q; = [0,0.75], Q,= [0.25,1]




« | Linear Elastic Wave Propagation Problem: FOM-ROM

F%ﬂ-"kgurc!%ling shows convergence with basis refinement. FOM-ROM couplings are 10-
15% slower than comparable FOM-FOM coupling due to increased # Schwarz iterations.

MSE for 2 subdomain
FOM-ROM coupling

10

=== (isplacement

= velocity

10° |

acceleration | |

Average MSE over 2 subdomains

0 10 20 30 40

# POD modes in Q,

Online normalized CPU time

CPU times for 2 subdomain
FOM-ROM coupling normalized
by FOM-FOM CPU time

[
T

—
[
Ln

[a—
—
T

1.05

0

10

# POD modes in Q,

20

30

40

Average # Schwarz iterations for 2

Average # Schwarz iters

e

subdomain couplings

L
=]
T

( = FOM-ROM | ]
w— FOM-FOM | |

!_f-'l
oy
T

(5]
[ ]
I-——-—-_I___

WIP:
understanding &
improving FOM-

ROM coupling
performance.

[P ]

]
joa]
T

[
o
T

0 10 20 30 40

# POD modes in Q,

Overlapping
implicit-
implicit

coupling with

Q, =1[0,0.75],
Q,=1[0.25,1]



Linear Elastic Wave Propagation Problem: FOM-ROM and

ROM-ROM Couplings

Inaccurate model + accurate model #

IMPLICIT FOM EXPLICIT ROM
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Figures above: Q, = [0,0.75], Q,=[0.25, 1]

20 mode POD - FOM

Observation suggests need for
“smart” domain decomposition.

Accuracy can be improved by “gluing”
several smaller, spatially-local models
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20 mode POD - FOM
Figure below: Q,; = [0,0.26], Q, =

[0.25,0.75],Q5 = [0.74, 1], 15 mode POD -
30 mode POD - 15 mode POD
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s 1 Roadmap

 Demonstrate FOM-FOM coupling with varying
time-steps, domain resolutions, and time-
stepping schemes
* Try out splitting domain into four sections
* Develop FOM-ROM, ROM-ROM, HROM-HROM
coupling
* Time permitting
» Adaptive time-stepping based on local CFL
number in given domain
* OR adaptively switch to implicit time
stepping after shock has left domain
* Nonlinear approximation manifolds



so I 2D Burgers: Verifying Implicit Implementation

* The plot to the right shows the
solution of the u component at
various times along mid-axis
slices of the 2D domain

« FOM and ROM solutions are the
same

x-axis y-midpoint slice

—.0.0

R \/

%}2i3-  ——

S I S , , , ,
0 20 40 60 80 100

X

y-axis Xx-midpoint slice

D

50.2,y)

DO
1

w(x

0 20 40 60 30 100



51 1 2D Burgers: LSPG PROM

x-axis y-midpoint slice

—~ 9.0 1
* Predictive case where p = [4.7, 0.026] = | |
Lﬁ — HDM
» Train bases using 9 total runs of the FOM ~ 72.57 —— PROM //
with all combinations of p, = =Y \ L = —
[(4.25),(4.875),(5.5)] with p, = 0 20 40 60 30 100
[(0.015),(0.0225),(0.03)] <
« Using 113 POD modes y-axis x-midpoint slice
—~ 5 ]
G -
* Relative error of 0.61% = HDM
o —— PROM
» 321 s wall clock time \;,
O - T T T T T T
0 20 40 60 80 100



52 ‘ Energy-Conserving Sampling and Weighting (ECSW)

* Project-then-approximate paradigm (as opposed to approximate-then-project)

re(qr,t) = WTr(i, t)
_ WTLTr, (L,+1, t)

ees

« L, €{0,1}%*N where d, is the number of degrees of freedom associated with each mesh element (this is
in the context of meshes used in first-order hyperbolic problems where there are N, mesh elements)

« L.+ € {0,1}%*N selects degrees of freedom necessary for flux reconstruction

« Equality can be relaxed

Augmented reduced mesh: © represents a
selected node attached to a selected
element; and & represents an added node to
enable the full representation of the
computational stencil at the selected
node/element
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ECSW: Generating the Reduced Mesh and Weights

Using a subset of the same snhapshots u;,i € 1, ..., n;, used to generate the state basis I/, we can train the
reduced mesh

Snapshots are first projected onto their associated basis and then reconstructed
Cse = WTLETE (Le+ (uref +V VT(HS - uref)) ) t) e R"
d, =n(i,t) € R", s=1,..,ny

We can then form the system
611 pew ClNe dl

Cnp1 = Cpn, dnh
Where €& = d, & € RNe, & = 1 must be the solution
Further relax the equality to yield non-negative least-squares problem:
§ = arg minyecgn||Cx — d||, subjecttox = 0

Solve the above optimization problem using a non-negative least squares solver with an early
termination condition to promote sparsity of the vector ¢



Numerical Example: 1D Dynamic Wave Propagation

« Altern %ng%urlchlet Neumann Schwarz BCs with no relaxation (6 = 1) on Schwarz boundary I’

(. (n41) . Min # Max # Total #
Div P, +pB(t;)) =0, in{, Schwarz Schwarz Schwarz
) ‘pgnﬂ} = ¥, on a0\ Iters Iters Iters
1.10 3 9 59,258
\ 7Y = A on I o T Qs
1.00 1 4 24,630
)
DivP""Y 4+ pB(t) =0, inQ, \ 0.99 1 5 35,384
0
] (pg’”” = x, on aQ,\T 0.95 3 6 45,302
pfz”””n = pg”‘“)n} on T A,y =0+ (1 =04, on Nforn=1 0.90 3 8 56,114

» A parameter sweep study revealed 8 = 0 gave best performance (min # Schwarz iterations)

« All couplings were implicit-implicit with At; = At, = AT = 1077 and Ax; = Ax, = 1073
» Time-step and spatial resolution chosen to be small enough to resolve the propagating wave

« All reproductive cases run on the same RHEL8 machine and all predictive cases run on the same RHEL7
machine, in MATLAB

* Model accuracy evaluated w.r.t. analogous FOM-
FOM coupling using mean square error (MSE):

(el = w3
N

EMSE (ﬁi) —

I i Em B



‘ Overlapping Coupling, Nonlinear Henky MM, 2 Subdomains

« 0 =10,0.7]U[0.3,1], implicit-implicit FOM-FOM coupling, dt = 1e-7, dx=1e-3.

10

x10* Idisplacemell'lt, sshoil: 1, time=0 displacement, snapshot 1, time = 0

O 0-2 0-4 0.6 0.8 l 0 0.2 0.4 0.6 0.8 1
velocity, Isnapshot 1,I time =0 velocity, snapshot 1, time = 0
T T

T
10 ~ T 10 L
() 1 = ——

(0 o

-101 | .10t
-20F i 20}
-30E ! L L ! = -30 1 1 1 )
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
6 H H —_
6 x10 Iacceleratloln, snapshotll, time = o. - . %105 acceleration, snapshot 1, time =0
4 - B 4t
2r ] 2
0 04
:421 ! ! | | | -2
_ -4

Multiplicative Schwarz Additive Schwarz



# Schwarz iters
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Overlapping Coupling, Nonlinear Henky MM, 2 Subdomains

Impl-lmpl FOM-FOM, Overlapping, Henky MM

Additive

— — — Multiplicative |7

=

0.2

0.4

time

0.6

0.8

1

%1073

coupling, dt = 1e-7, dx=1e-3.

« Additive Schwarz requires slightly more Schwarz
iterations but is actually faster.

« Solutions agree effectively to machine precision

« (0 =10,0.7]U[0.3,1], implicit-implicit FOM-FOM I
[
in mean square (MS) sense. I

| Additive | Multiplicative

Total # Schwarz iters 24495 24211

CPU time 2.03e3s 2.16e3
6.34e-13/6.12e-13
1.35e-11/1.86e-11
5.92e-10/1.07e-9

MS difference in disp
MS difference in velo
MS difference in acce

I i Em B



3Im|:|I-Im|:|I-EJI:|:||I FOM-FOM-FOM, Overlapping, Henky MM

2.871

2.6

# Schwarz iters
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Overlapping Coupling, Nonlinear Henky MM, 3 Subdomains
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« 0 =10,0.3]U[0.25,0.75]U[0.7,1], implicit-implicit-explicit
FOM-FOM-FOM coupling, dt = 1e-7, dx = 0.001.

« Solutions agree effectively to machine precision in
mean square (MS) sense.

« Additive Schwarz has slightly more Schwarz iterations
but is slightly faster than multiplicative.

| Additive | Multiplicative

Total # Schwarz iters 26231 25459

CPU time 1.89e3s 2.05e3s
MS difference in disp 5.3052e-13/9.3724e-13/6.1911e-13
MS difference in velo 7.2166e-12/2.2937e-11/2.4975e-11
MS difference in acce 2.8962e-10/1.1042e-09/1.6994e-09



‘ Non-overlapping Coupling, Nonlinear Henky MM, 2 Subdomains

« 0 =10,0.3]U[0.3,1], implicit-implicit FOM-FOM coupling, dt = 1e-7, dx = 1le-3.

10 %107 displacement, snapshot 1, time = 0
T T _,/1},\ T T
I 7\ I
/
(O i == =" ) -
0 0.2 0.4 0.6 0.8 1
velocity, snapshot 1, time =0
T T T T
10+ -
O mm - —
10| i
20+ i
,,30 1 1 1 1
0 0.2 0.4 0.6 0.8 1
6 %10° acceleration, snapshot 1, time =0
a4+ i
2 . ’ -
e ———————— | ;'i R — .
2t \Vi ;
_4 1 1 1 1
0 0.2 0.4 0.6 0.8 1

Multiplicative Schwarz

10 x104 displacement, snapshot 1, time =0
I /\
/
O = = = S
0 0.2 0.4 0.6 0.8 1
velocity, snapshot 1, time =0
T T T T
10}
(mm = =
-10 -
_20 L
_30 1 1 1 |
0 0.2 0.4 0.6 0.8 1
6 %108 acceleration, snapshot 1, time =0
4 L
2 .
0 e m— = "\ f’ R — .
2| v/
_4 1 1 1 1
0 0.2 0.4 0.6 0.8 1

Additive Schwarz



# Schwarz iters

Non-overlapping Coupling, Nonlinear Henky MM, 2 Subdomains

Impl-lmpl FOM-FOM, Non-Overlapping, Henky MM

Additive
— — — Multiplicative

o
T
|

Ln
T

i
T

W
T
|
|

Fd

—

coupling, dt = 1e-7, dx = 1e-3.

Additive Schwarz requires 1.81x Schwarz
iterations (and 1.9x CPU time) to converge.
CPU time could be reduced through added
parallelism of additive Schwarz.

« 0 =10,0.3]U[0.3,1], implicit-implicit FOM-FOM i
I
» Note blue square for additive Schwarz... I

« Additive and multiplicative solutions differ in
mean square (MS) sense by O(1e-5).

_ Additive Multlpllcatlv |

Total # Schwarz iters 44895 24744
CPU time 1.87e3s 982.5s

MS difference in disp 4.26e-5/2.74e-5

MS difference in velo 1.02e-5/5.91e-6

MS difference in acce 5.84e-5/1.21e-5 !



# Schwarz iters

« Q0 =10,0.3]U[0.3,0.7]U[0.7,1], implicit-implicit-
Impl-impl-Expl FOM-FOM-FOM, Non-overlapping, Henky MM explicit FOM-FOM-FOM coupling, dt = 1e-7, dx =
0.001.

Additive _ « Additive Schwarz has about 1.94x number Schwarz

— — — Multiplicative

Non-overlapping Coupling, Nonlinear Henky MM, 3 Subdomains E

iterations and is about 2.06x slower - similar to 2 s
subdomain variant of this problem. No “blue |
square”.
» Results suggest you could win with additive ]
Schwarz if you parallelize and use enough

1 domains.

A TR  Additive/multiplicative solutions differ by O(1e- |

| :'{ {: ¥ : ] 5), like for 2 subdomain variant of this problem.

. T dditive | Multiplicative
0 0.2 0.4 0.6 0.8 1

time %107 Total # Schwarz iters 53413 27509 r
CPU time 5.91e3s 2.87e3s I
MS difference in disp 2.8036e-05/3.1142e-05/ 8.8395e-06 ‘

MS difference in velo 1.4077e-05/1.2104e-05/6.5771e-06
MS difference in acce 8.7885e-05/3.2707e-05/1.3778e-05



