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2 | Talk Outline

* Brief motivation and introduction to ice sheet equations

* MALI ice sheet model

* Reduced-order model based on prescribing the vertical profile from the Shallow Ice
Approximation (SIA)

* Improvement of reduced-order model by optimally selecting the vertical modes

Supported by US DOE Office of Science projects:

» FAnSSIE: Framework for Antarctic System Science in E3SM

» FASTMath: Frameworks, Algorithms and Scalable Technologies for Mathematics
» E3SM: Energy Exascale Earth System Model



3 ‘ Goal: probabilistic predictions of sea level rise

Contributors to global sea level rise (1993-2018):
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Simulation of Antarctic ice sheet as a consequence of extreme

(unrealistic) climate forcing that induces collapse of ice shelves



4 ‘ Goal: probabilistic projections of sea level rise

Possible pathways for future sea-level rise
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Note: regional sea-level rise can significantly
exceed the global mean sea level rise in some
areas (e.g. in the Gulf of Mexico).

Simulation of Antarctic ice sheet as a consequence of extreme

(unrealistic) climate forcing that induces collapse of ice shelves



‘ Brief Motivation an basic physics

* Modeling ice sheets (Greenland and Antarctica) dynamics is essential to provide estimates for sea-
level rise in next decades to centuries.

* Ice behaves like a very viscous shear-thinning fluid (similar to lava flow) driven by gravity.

* Inference problems to calibrate the model and uncertainty quantification (UQ) to determine how
uncertainties in the data and the model affect projections of sea-level rise are major challenges and
require several evaluation of the model. This motivates the need of reduced order models.
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Model: Ice velocity equations

Modeled surface ice speed [m/y1]

Stokes equations: .
(Greenland ice sheet)

{ ~V -0 =pg

V-u=0 ™~ gravit. acceleration

™ ice velocity

Stress tensor: L /9 5
U; U;
= 2uD — pl D;i(u) == . J
Ice viscosity (dependent on temperature):
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‘ Model: Ice velocity equations

Stokes equations: Modeled surface ice speed [m/y1]

(Greenland ice sheet)
{ —V .0 =pg |

V-u=0

Sliding boundary condition at ice bed:

{ u-n =0, (impenetrablity)
(on)| = fu

Free slip: 5 =0
Noslip: =00
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First Order of approximations of Stokes equations

Stokes equations are typically simplified exploiting the shallow nature of the ice sheets.
Using scaling arguments it 1s possible to show that the pressure is almost hydrostatic
(only depend on the elevation z) and simplify the model.

We implement a simplification of Stokes equations, called First Order (or Blatter-Pattyn) model.

e membrane stress tensor
First Order (FO) model ~V- (2;5]3) — 0, (pd,u) = —pgVs
(3D elliptic PDE) 2,u]~)n — Bu, on bed

upper surface

Derived assuming:
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Us 5 (uy +vg) 5 (us +ws) U
D(u) = | 3 (uy+vy) Uy 2 (v, + wy) u = [ v } which implies:
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Software: MPAS-Albany Land Ice model (MALI)

Thickness evolution / Temperature  MPAS (Model for Prediction
Finite Volumes on Voronoi meshes Across Scales)

Velocity/ SS Enthalpy solvers: Albany
Finite Elements on prisms
Optimization ROL i
Nonlinear solver (Newton method) NOX g
= ——

Krylov linear solvers/Prec Belos/Muelu, Belos/FROSch 2 S

. ) o i Typically 7-20 vertical layers.
Automatic differentiation Sacado :

MALI relies on Trilinos for achieving performance portability through Kokkos programming model.
And for providing large-scale PDE constrained optimization capabilities.

References:

1. Watkins et al., arXiv 2022

2. Hoffman et al. GMD, 2018

3. Tuminaro, Perego, Tezaur, Salinger, Price, SISC, 2016.

4. Tezaur, Perego, Salinger, Tuminaro, Price, Hoffman, GMD, 2015

5. Perego, Price, Stadler, JGR, 2014 Model for Prediction Across Scales




Further simplifications of Stokes equations

Shallow Shelf Approx. (SSA)
(2d PDE, for floating fast-flowing ice)

-V - (QM.Hf)(ﬁ)) + pu = —pgHVs

Shallow Ice Approx. (SIA)
(for grounded slow-flowing ice)

QA(T ) p"™ g™
u:( (1)p"g
n+1

Normalized
vertical coor.
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An higher accuracy depth-integrated modal model

Normalized vertical coordinate

( = ice bed
¢€(0,1), z=s—H(1-7). { =1: ice surface
SIA and SSA Solutions:
Usia = Ugef (x,y) (1 - ()n+1 Idea [1, 2], look for solution of FO with the ansatz:

Upop = Upea (6, Y) + Uger(x,y) (1 — O™

» Leads to a system of two 2D PDEs

Ussa = Ussa(x,y)

Our approach (allows to reuse most of the code base):
Solve a 3D problem with only one layer of wedges, and use as a wedge element basis:

¢ e (&, 0) = dITHE M) HFO) " P () = (1 - O* :
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12 Model comparison for Thwaites glacier (Antarctica)

FO model MOD model MOD - FO
surface ice speed [m/s] surface ice speed [m/s] relative speed difference
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Overall, MOD i1s ~3 faster than FO with 10 layers, without a minor loss in accuracy.

Note: exploiting the tensor-product structure of the Wedge basis allows to minimize the additional
cost of having a on-layer 3D model instead of two 2D models.

At the moment we have ~5x speedup in assembly phase but only ~2x in the solve phase.

This 1s likely due to the fact that our preconditioner already take advantage of the shallow structure.

relative difference
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Model comparison for Thwaites glacier (Antarctica)

FO model MOD model MOD - FO
ice thickness [m] ice thickness [m] thickness difference [m]
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Ice thickness after 15 years of ice sheet evolution.

5.0e+01
40
30
20
— 10

-10
-20
-30
-40
-5.0e+01

H difference




Optimal depth-integrated modal model

Can we consider polynomial modes other than the following?

$o(0) := (1—()4; $1() ‘=1—(1—O4

The desire of having Lagrangian basis functions with two degrees of freedom dictates

$o():=p(1—=0), (D :=1-p(1 -], p(0) = 0, p(1) =1

p(x) =x+x(x —1)(co + c1x + cx2 + ...)

If ¢y = ¢; = ¢; = 1, we have the previous basis
If ¢g = ¢1 = ¢; = 0, we have linear basis

Now we can optimize for these coefficients minimizing

J(c) = lugg — umod(C)|2 ¢ = [cg, €1, Ca, -]

[1] J. Basis, J. Glaciology, 2017
[2] T. Dias dos Santos, M. Morlighem, D. Brinkerhoff, The Cryosphere, 2022
[3] Ern, Perotto, Veneziani, Multiscale Model. Simul., 2010



Optimal depth-integrated modal model

mcin J(€) = lugo — upop (©)|?

Upofrom FO simulation on Thwaites glacier, with vertically averaged temperature
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Optimal depth-integrated modal model

mcin J(€) = lupp — upop(c)|?

Upofrom FO simulation on Thwaites glacier, with vertically varying temperature

Optimal modes

Velocity less smooth in the vertical direction
when temperature 1s not constant

SIA derived with assumption of vertically
averaged temperature.



Optimal depth-integrated modal model

mcirl J(€) = lugo — upop(©)|* + a |aZZ¢1(<' C)|2

Penalize second derivative

Upofrom FO simulation on Thwaites glacier, with vertically varying temperature
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Optimal depth-integrated modal model

. 2
mc}n J(€) = lupo — uyop(0)* + @ |a(( $1(¢, C)| Penalize second derivative

Upofrom FO simulation on Thwaites glacier, with vertically varying temperature
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Can we use the same discretization for modeling temperature?

modeled temperature [K]
(Greenland ice sheet)

Heat equation (for cold ice):

peOi T+ N - (kVT) + peu- VT = 4u| D(u)|?

dissipation
conductivity heat capacity heating
Boundary condition at the ice bed
(includes melting and refreezing):
frictional i
heating
m =G + Blu|* —kVT -n
/ X temperature
i th 1
melting  geotherma fux 2400 245 250 255 260 265 2731 |
rate heat flux D Seeeeee——

MALI implements a enthalpy formulation that accounts for temperate ice as well.

[1] A. Aschwanden, E. Bueler, C. Khroulev, and H. Blatter, Journal of Glaciology, 2012
[2] J. Hewitt and C. Schoof, The Cryosphere, 2017
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Optimal depth-integrated modal model

mcin J(©) = |T — Tyop(0)|?

T from 3D simulation on Thwaites glacier, with vertically varying temperature

Optimal modes, Thwaites
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Final Remarks

Implemented fast reduced-order model based on a well-known modal discretization based
on the SIA approximation.

Simulations of Thwaites and Humboldt glaciers show good agreement with high fidelity
model

Derived optimal vertical mode that has slightly better accuracy than SIA-based model at a
lower degree, which allow using lower-order quadrature rule.

TODO: Validate the model over several glaciers, possibly adjusting the optimal coefficients
TODO: use reduced-order model for accelerating inference and UQQ problems

TODO: go high-order (e.g. P3, P4) in the vertical direction.



