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Talk Outline2

• Brief  motivation and introduction to ice sheet equations

• MALI ice sheet model

• Reduced-order model based on prescribing the vertical profile from the Shallow Ice 

Approximation (SIA)

• Improvement of  reduced-order model by optimally selecting the vertical modes 

Supported by US DOE Office of  Science projects:
➢ FAnSS IE :  F ramework  for  Antarct i c  Sy s tem Sc ience  in  E3SM

➢ FASTMath :  F rameworks ,  A lgor i thms  and  Sca lab le  Technolog ies  for  Mathemat ics

➢ E3SM :  Energy  Exasca le Earth  System Model



Goal: probabilistic predictions of sea level rise3

Simulation of  Antarctic ice sheet as a consequence of  extreme 

(unrealistic) climate forcing that induces collapse of  ice shelves

Contributors to global sea level rise (1993-2018):



Goal: probabilistic projections of sea level rise4

Simulation of  Antarctic ice sheet as a consequence of  extreme 

(unrealistic) climate forcing that induces collapse of  ice shelves

Possible pathways for future sea-level rise

Note: regional sea-level rise can significantly 

exceed the global mean sea level rise in some 

areas (e.g. in the Gulf of Mexico).



from http://www.climate.be

• Modeling ice sheets (Greenland and Antarctica) dynamics is essential to provide estimates for sea-

level rise in next decades to centuries.

• Ice behaves like a very viscous shear-thinning fluid (similar to lava flow) driven by gravity. 

• Inference problems to calibrate the model and uncertainty quantification (UQ) to determine how 

uncertainties in the data and the model affect projections of  sea-level rise are major challenges and 

require several evaluation of  the model. This motivates the need of  reduced order models. 

Brief Motivation an basic physics



ice velocity

gravit. acceleration

Model: Ice velocity equations

Stokes equations:

Stress tensor:

Ice viscosity (dependent on temperature): 

Modeled surface ice speed [m/yr]

(Greenland ice sheet)



Model: Ice velocity equations

bed

Stokes equations:

Sliding boundary condition at ice bed:

Free slip:

No slip:

Modeled surface ice speed [m/yr]

(Greenland ice sheet)



First Order (FO) model  
(3D elliptic PDE) 

upper surface 

membrane stress tensor 

Stokes equations are typically simplified exploiting the shallow nature of  the ice sheets. 

Using scaling arguments it is possible to show that the pressure is almost hydrostatic 

(only depend on the elevation z) and simplify the model.

First Order of approximations of Stokes equations 

We implement a simplification of  Stokes equations, called First Order (or Blatter-Pattyn) model.

Derived assuming:

which implies:



Software: MPAS-Albany Land Ice model (MALI)9

FE mesh

(vertically extruded)

ALGORITHM SOFTWARE TOOLS

Thickness evolution / Temperature

Finite Volumes on Voronoi meshes

MPAS (Model for Prediction 

Across Scales)

Velocity/ SS Enthalpy solvers:
Finite Elements on prisms 

Albany

Optimization ROL

Nonlinear solver (Newton method) NOX

Krylov linear solvers/Prec Belos/MueLu, Belos/FROSch

Automatic differentiation Sacado

MALI relies on Trilinos for achieving performance portability through Kokkos programming model. 
And for providing large-scale PDE constrained optimization capabilities.

References:
1. Watkins et al., arXiv 2022
2. Hoffman et al. GMD, 2018
3. Tuminaro, Perego, Tezaur, Salinger, Price, SISC, 2016.
4. Tezaur, Perego, Salinger, Tuminaro, Price, Hoffman, GMD, 2015
5. Perego, Price, Stadler, JGR, 2014

Typically 7-20 vertical layers.



Further simplifications of Stokes equations 

Shallow Shelf Approx. (SSA) 

(2d PDE, for floating fast-flowing ice)

Shallow Ice Approx. (SIA)
(for grounded slow-flowing ice)

Derived assuming:

Derived assuming:

𝜁 ∈ 0,1 , z = s − H(1 − 𝜁).
Normalized 

vertical coor.



An higher accuracy depth-integrated modal model

𝜁 ∈ 0,1 , z = s − H(1 − 𝜁).

Normalized vertical coordinate
𝜁 = 0:   ice bed

𝜁 = 1:   ice surface

SIA and SSA Solutions:  

𝑢𝑆𝐼𝐴 = 𝑢𝑑𝑒𝑓 𝑥, 𝑦 1 − 𝜁 𝑛+1

𝑢𝑆𝑆𝐴 = 𝑢𝑆𝑆𝐴 𝑥, 𝑦

Idea [1, 2], look for solution of  FO with the ansatz:

𝑢𝑀𝑂𝐷 = 𝑢𝑏𝑒𝑑 𝑥, 𝑦 + 𝑢𝑑𝑒𝑓 𝑥, 𝑦 1 − 𝜁 𝑛+1

Our approach (allows to reuse most of  the code base):  

Solve a 3D problem with only one layer of  wedges, and use as a wedge element basis:     

𝜙𝑖𝑗
𝑤𝑒𝑑𝑔𝑒

(𝜉, 𝜂, 𝜁) = 𝜙𝑗
𝑡𝑟𝑖 𝜉, 𝜂 𝜙𝑖

𝑙𝑖𝑛(𝜁) 𝜙0
𝑙𝑖𝑛 𝜁 ∶= 1 − 𝜁 4

piecewise linear 

triangular basis

➢ Leads to a system of  two 2D PDEs

𝜙1
𝑙𝑖𝑛 𝜁 ∶= 1 − 1 − 𝜁 4

𝜙𝑗
𝑡𝑟𝑖

𝜙𝑖
𝑙𝑖𝑛

[1] J. Basis, J. Glaciology, 2017

[2] T. Dias dos Santos, M. Morlighem, D. Brinkerhoff, The Cryosphere, 2022 

[3] Ern, Perotto, Veneziani, Multiscale Model. Simul., 2010



12 Model comparison for Thwaites glacier (Antarctica)

FO model

surface ice speed [m/s]

MOD model

surface ice speed [m/s]

MOD - FO

relative speed difference

Overall, MOD is ~3 faster than FO with 10 layers, without a minor loss in accuracy.

Note: exploiting the tensor-product structure of  the Wedge basis allows to minimize the additional 

cost of  having a on-layer 3D model instead of  two 2D models.  

At the moment we have ~5x speedup in assembly phase but only ~2x in the solve phase.

This is likely due to the fact that our preconditioner already take advantage of  the shallow structure.
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FO model

ice thickness [m]

MOD model

ice thickness [m]
MOD - FO

thickness difference [m]

Model comparison for Thwaites glacier (Antarctica)

Ice thickness after 15 years of  ice sheet evolution.



Optimal depth-integrated modal model

𝜙0 𝜁 ∶= 1 − 𝜁 4, 𝜙1 𝜁 ∶= 1 − 1 − 𝜁 4

[1] J. Basis, J. Glaciology, 2017

[2] T. Dias dos Santos, M. Morlighem, D. Brinkerhoff, The Cryosphere, 2022 

[3] Ern, Perotto, Veneziani, Multiscale Model. Simul., 2010

Can we consider polynomial  modes other than the following?

The desire of  having Lagrangian basis functions with two degrees of  freedom dictates

𝜙0 𝜁 ∶= 𝑝 1 − 𝜁 , 𝜙1 𝜁 ∶= 1 − 𝑝 1 − 𝜁 , 𝑝 0 = 0, 𝑝 1 = 1

𝑝 𝑥 = 𝑥 + 𝑥(𝑥 − 1) 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥
2 + …

If  𝑐0 = 𝑐1 = 𝑐2 = 1, we have the previous basis

If  𝑐0 = 𝑐1 = 𝑐2 = 0, we have linear basis

Now we can optimize for these coefficients minimizing

𝒥(𝒄) = 𝑢𝐹𝑂 − 𝑢𝑚𝑜𝑑 𝒄 2 𝒄 = [𝑐0, 𝑐1, 𝑐2, … ]



Optimal depth-integrated modal model

min
𝒄

𝒥(𝒄) = 𝑢𝐹𝑂 − 𝑢𝑀𝑂𝐷 𝒄 2

𝒖𝐹𝑂from FO simulation on Thwaites glacier, with vertically averaged temperature

Relative L2 errorOptimal modes

SIA mode 

Better accuracy for 

a lower degree!



Optimal depth-integrated modal model

min
𝒄

𝒥(𝒄) = 𝒖𝐹𝑂 − 𝒖𝑀𝑂𝐷 𝒄 2

𝒖𝐹𝑂from FO simulation on Thwaites glacier, with vertically varying temperature

Optimal modes

Velocity less smooth in the vertical direction 

when temperature is not constant

SIA derived with assumption of  vertically 

averaged temperature.



Optimal depth-integrated modal model

min
𝒄

𝒥 𝒄 = 𝒖𝐹𝑂 − 𝒖𝑀𝑂𝐷 𝒄 2 + 𝛼 𝜕𝜁𝜁𝜙1 𝜁, 𝑐
2

𝒖𝐹𝑂from FO simulation on Thwaites glacier, with vertically varying temperature

Optimal modes

Penalize second derivative

Relative L2 error

SIA mode 

Better accuracy for 

a lower degree!



Optimal depth-integrated modal model

min
𝒄

𝒥 𝒄 = 𝒖𝐹𝑂 − 𝒖𝑀𝑂𝐷 𝒄 2 + 𝛼 𝜕𝜁𝜁𝜙1 𝜁, 𝒄
2

𝒖𝐹𝑂from FO simulation on Thwaites glacier, with vertically varying temperature

Optimal modes

Penalize second derivative

Relative L2 error, Humboldt

Modes optimized for 

Thwaites glacier works well 

also for Humboldt glacier!
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Heat equation (for cold ice):

conductivity
dissipation

heating

geothermal 

heat flux
melting

rate

frictional 

heating

temperature 

flux

heat capacity

Boundary condition at the ice bed 

(includes melting and refreezing):

MALI implements a enthalpy formulation that accounts for temperate ice as well.

Can we use the same discretization for modeling temperature?

[1] A. Aschwanden, E. Bueler, C. Khroulev, and H. Blatter, Journal of Glaciology, 2012

[2] J. Hewitt and C. Schoof, The Cryosphere, 2017

modeled temperature [K]

(Greenland ice sheet)



Optimal depth-integrated modal model

min
𝒄

𝒥 𝒄 = 𝑇 − 𝑇𝑀𝑂𝐷 𝒄 2

𝑇from 3D simulation on Thwaites glacier, with vertically varying temperature

Optimal modes, Thwaites

Penalize second derivative

Relative L2 error, Thwaites Relative L2 error, Humboldt

Modes optimized for 

Thwaites glacier works well 

also for Humboldt glacier!



Final Remarks21

• Implemented fast reduced-order model based on a well-known modal discretization based 

on the SIA approximation. 

• Simulations of  Thwaites and Humboldt glaciers show good agreement with high fidelity 

model

• Derived optimal vertical mode that has slightly better accuracy than SIA-based model at a 

lower degree, which allow using lower-order quadrature rule.

• TODO: Validate the model over several glaciers, possibly adjusting the optimal coefficients

• TODO: use reduced-order model for accelerating inference and UQ problems

• TODO: go high-order (e.g. P3, P4) in the vertical direction.


