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Introduction (I)2

DER integration benefits:

 Loss reduction

 Increased reliability

 Increased flexibility

DER integration challenges:

 Voltage swings

 Protection blinding
Fig 1. Hosting capacity schematic

Fig 2. Solar power output dependence 

on irradiance

Source: https://www.victronenergy.com/blog/2020/02/20/pv-panel-

output-voltage-shadow-effect/

Source: Smith, Jeff, Rylander, Matthew, Boemer, Jens, Broderick, Robert Joseph, Reno,

Matthew J., and Mather, Barry. Analysis to Inform CA Grid Integration Rules for PV: Final

Report on Inverter Settings for Transmission and Distribution System Performance. United

States: N. p., 2016. Web. doi:10.2172/1431468.

https://www.victronenergy.com/blog/2020/02/20/pv-panel-output-voltage-shadow-effect/


Introduction (II)3

Source: https://ustpower.com/comparing-automatic-voltage-regulation-

technologies/avr-guide-mechanical-type-voltage-regulator/avr-guide-tap-

changing-voltage-regulator-operation/

Source: https://www.electrical-

technology.com/2019/05/power-factor-correction.html

Traditional voltage regulation 

devices on distribution systems

• Voltage regulators

• Capacitor banks

• Synchronous 

generator

IEEE 1547-2108 standard encourages 

using DERs for voltage regulation

Source: Lee, Hyeong-Jin & Yoon, Kwang-Hoon & Shin, Joong-Woo & Kim, Jae-Chul & Cho, Sung-

Min. (2020). Optimal Parameters of Volt–Var Function in Smart Inverters for Improving System 

Performance. Energies. 13. 2294. 10.3390/en13092294. 

Fig 3. Voltage regulator taps schematic

Fig 4. Capacitor bank and synchronous 

condenser placement schematic
Fig 5. Volt-VAR curve control for voltage regulation

https://ustpower.com/comparing-automatic-voltage-regulation-technologies/avr-guide-mechanical-type-voltage-regulator/avr-guide-tap-changing-voltage-regulator-operation/
https://www.electrical-technology.com/2019/05/power-factor-correction.html


Background4

Power electronics on DERs can inject or absorb reactive power Q
as long as:

Changes in Q setpoint as fast as from cycle to cycle

Solar PV inverters have been widely researched for voltage
regulation at both transmission and distribution levels

Voltage regulation using Wind Turbine Generators (WTGs)
have only been researched for transmission systems

Fig 6. Solar PV inverter PQ diagram

𝑄 ≤ 𝑆2 − 𝑃2

Source: Yang, Yongheng & Enjeti, Prasad & Blaabjerg, F. & Wang, Huai. (2015). Wide-Scale 

Adoption of Photovoltaic Energy: Grid Code Modifications Are Explored in the Distribution 

Grid. IEEE Industry Applications Magazine. 21. 1-10. 10.1109/MIAS.2014.2345837. 



Methodology (I)5

Contributions:

Voltage regulation controller using Reinforcement
Learning (RL)

Regulates on a tight band to avoid violations of ANSI
C84.1 standard

Dispatch interval of 50 milliseconds for fast voltage
regulation

Digital-twin model of a real distribution system in
MATLAB/Simulink

Fig 7. Diagram of SWiFT test site, Lubbock, TX



Methodology (II)6

The proposed WTG controller is based on a RL Deep 
Deterministic Policy Gradient (DDPG) agent:

Actor-Critic model

 The actor tries to approximate the best policy that maps an 
observed state S to an optimal control action A

 The critic estimates the expectation of  the long term 
reward for such action

Trained to maximize a defined reward

NOTE: The agent has access to all system node voltages

Fig 8. DDPG model structure



Methodology (III)7

Node voltage Lower bound Upper bound

≤ 600 V -5% +5%

> 600 V -2.5% +5%

Table 1. ANSI C84.1 standard Range A

Goal: Regulate all node voltages between [0.98, 1.02] p.u. 

Reward terms:

1) Control action (Q) magnitude

2) Number of  node voltages outside range 

3) Maximum under-voltage deviation

4) Exceed simulation bounds condition



Methodology (IV)8

Available data:

Training: 520 episodes, 200 seconds each 
(About ~10 days in real-time) 

Testing: 80 episodes

Resource Length (seconds)

Wind speed 2844

Solar irradiance 5000

Load 3540

Fig 9. Averaged reward per episode during training

Table 2. Real-site data



Results (I)9

Analysis A:

Controller behavior over an episode of  400 seconds

Response to:

 Significant drop on PV generation (from t = 100 seconds 
to t = 300 seconds approx.)

 Load event ( at t = 250 seconds)

Fig 10. Load active and reactive power consumption 

Fig 11. Solar PV active and reactive power generation

Fig 12. Wind speed profiles



Results (II)10

Analysis A:

The RL agent on WTG 3 injects reactive power in the system 
to avoid under-voltage deviations

The injected Q is maximum during the load event

Fig 15. WTG 3 output

Fig 13. WTG 1 output

Fig 14. WTG 2 output



Results (III)11

Analysis A:

The RL agent on WTG 3 injects reactive power in the system 
to avoid under-voltage deviations

A violation of  the ANSI C84.1 standard is avoided on Bus 10 
from t = 250 seconds to t = 300 seconds

Fig 17. System voltages comparison with and without the proposed voltage regulation controller

Fig 16. Total under-voltage deviations below 0.98 p.u.



Results (IV)12

Analysis B:

Performance of  the proposed controller on 80 test episodes of  200 seconds each

Total under-voltage below 0.98 p.u.

Fig 18. Mean bus voltages over 80 episodes

Table 3. Averaged performance metrics per episode



Future work13

Study particle swarm optimization (use 3 WTGs and PV to regulate voltage simultaneously)

Use more training data



Conclusions14

Voltage regulation controller using a RL DDPG model for WTG 3:

 Trained to maintain node voltages in the range of [0.98, 1.02] p.u.

 The control action is the injected/ absorbed reactive power

 Avoids voltage deviations, especially under-voltage events

 Fast response for sudden events


