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2 I Introduction (I)
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Fig 2. Solar power output dependence
on irradiance

Source: https://www.victronenergy.com/blog/2020/02/20/pv-panel-
output-voltage-shadow-effect/
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Introduction (ll)

Traditional voltage regulation
devices on distribution systems
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Fig 3. Voltage regulator taps schematic

Source: https://ustpower.com/comparing-automatic-voltage-regulation-
technologies/avr-guide-mechanical-type-voltage-regulator/avr-guide-tap-
changing-voltage-regulator-operation/
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Fig 4. Capacitor bank and synchronous
condenser placement schematic

Source: https://www.electrical-
technology.com/2019/05/power-factor-correction.html
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5. Volt-VAR curve control for voltage regulation

Source: Lee, Hyeong-Jin & Yoon, Kwang-Hoon & Shin, Joong-Woo & Kim, Jae-Chul & Cho, Sung-
Min. (2020). Optimal Parameters of Volt-Var Function in Smart Inverters for Improving System
Performance. Energies. 13. 2294. 10.3390/en13092294.
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Background

"Power electronics on DERs can inject or absorb reactive power Q
as long as:

Q] < VS§? —P?

=Changes 1n Q setpoint as fast as from cycle to cycle

=Solar PV inverters haye. been Wide] @esearched for voltage
regulation at both transmission and distribution levels

"Voltage regulation using Wind Turbine Generators (WTGs)
have only been researched for transmission systems
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Fig 6. Solar PV inverter PQ diagram

Source: Yang, Yongheng & Enjeti, Prasad & Blaabjerg, F. & Wang, Huai. (2015). Wide-Scale
Adoption of Photovoltaic Energy: Grid Code Modifications Are Explored in the Distribution

Grid. IEEE Industry Applications Magazine. 21.

1-10. 10.1109/MIAS.2014.2345837.
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Methodology ()

Contributions:

"Voltage regulation controller using Reinforcement
Learning (RL)

"Regulates on a tight band to avoid violations of ANSI
C84.1 standard

"Dispatch interval of 50 milliseconds for fast voltage
regulation

"Digital-twin model of a real distribution system in

MATLAB/Simulink
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Fig 7. Diagram of SWiFT test site, Lubbock, TX
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Methodology (ll)

The proposed WTG controller 1s based on a RL Deep
Deterministic Policy Gradient (DDPG) agent:

= Actor-Critic model

= The actor tries to approximate the best policy that maps an
observed state S to an optimal control action A

= The critic estimates the expectation of the long term
reward for such action

*Trained to maximize a defined reward

*NOTE: The agent has access to all system node voltages

Actor Network

Observations 10

FC1:10x 48 (Re

FC2 & 3:48x48 (

FC4: 48 x 1 (TanH)

Scaling: 1x 1

Action1x 1

x1 Observations 10 x 1 Action1x1
LU) FC1:10 x 48 (ReLU)

RelU) FC2:48x48 FC3:1x48

Add: 2 x 48 (RelLU)

Critic Network

FC 3: 48 x 48 (RelLU)

Expected Reward 1 x 1

Fig 8. DDPG model structure
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Methodology (lll)

Goal: Regulate all node voltages between [0.98, 1.02] p.u.

Reward terms:

1)
2)
3)
4)

Control action (QQ) magnitude
Number of node voltages outside range
Maximum under-voltage deviation

Exceed simulation bounds condition

Table 1. ANSI C84.1 standard Range A

Node voltage Upper bound

< 600V
> 600 V

-5%
-2.5%

+5%
+5%



Methodology (IV)

= Available data:

Table 2. Real-site data

Length (seconds)

Wind speed
Solar irradiance
Load

=Training: 520 episodes, 200 seconds each
(About ~10 days in real-time)

=Testing: 80 episodes

Episode Reward

—1000 -
—2000 1
—3000 ~
—4000 -
—5000 -
—6000 -
—7000 -

—8000 -

2844
5000
3540

100 200 300 400
Time (s)

Fig 9. Averaged reward per episode during training

500
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Results ()

Analysis A:
Controller behavior over an episode of 400 seconds

Response to:

= Significant drop on PV generation (from 7 = 100 seconds
to #= 300 seconds approx.)

" Load event (at #= 250 seconds)
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Fig 10. Load active and reactive power consumption
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Fig 11. Solar PV active and reactive power generation
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Fig 12. Wind speed profiles
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Results (Il)

Analysis A:

The RL agent on WTG 3 injects reactive power in the system
to avoid under-voltage deviations

The injected Q 1s maximum during the load event
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Fig 15. WTG 3 output
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Results (l11)

Analysis A:

The RL agent on WTG 3 injects reactive power in the system

to avoid under-voltage

deviations

A violation of the ANSI C84.1 standard is avoided on Bus 10
from # = 250 seconds to # = 300 seconds
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Fig 16. Total under-voltage deviations below 0.98 p.u.
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Fig 17. System voltages comparison with and without the proposed voltage regulation controller
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Results (1V)

Analysis B:

Performance of the proposed controller on 80 test episodes of 200 seconds each
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Table 3. Averaged performance metrics per episode

Use Case | Se (pu) WTG 3 P. (pu)  WTG 3 Qe (p.u.)

-0.033 0.102 -0.001
-0.006 '\ 0.100 0.699

Base Case
With RL Agent

0.97

Bus1 Bus2 Bus3 Bus4 Bus5 Bus6 Bus7 Bus8 Bus9 Bus 10

Node

Fig 18. Mean bus voltages over 80 episodes
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13 I Future work

=Study particle swarm optimization (use 3 WT'Gs and PV to regulate voltage simultaneously)

=Use more training data



14 I Conclusions

=Voltage regulation controller using a R DDPG model for WTG 3:
* Trained to maintain node voltages in the range of [0.98, 1.02] p.u.
* The control action is the injected/ absorbed treactive power
= Avoids voltage deviations, especially under-voltage events

"= Tast response for sudden events



