This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do
not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Disrupting EV Charging Sessions and Gaining

Remote Code Execution with DoS, MITM, and
Code Injection Exploits using OCPP 1.6

David Elmo II
Department of Computer Science and Engineering
Wright State University
Dayton, USA
davidelmo2 @gmail.com

Kenneth Rohde
Idaho National Laboratory
Idaho Falls, USA
kenneth.rohde @inl.gov

Sean Salinas

Idaho National Laboratory
Idaho Falls, USA
sean.salinas @inl.gov

Abstract—Open Charge Point Protocol (OCPP) 1.6 is widely
used in the electric vehicle (EV) charging industry to communi-
cate between Charging System Management Services (CSMSs)
and Electric Vehicle Supply Equipment (EVSE). Unlike OCPP
2.0.1, OCPP 1.6 uses unencrypted websocket communications
to exchange information between EVSE devices and an on-
premise or cloud-based CSMS. In this work, we demonstrate two
machine-in-the-middle attacks on OCPP sessions to terminate
charging sessions and gain root access to the EVSE equipment
via remote code execution. Second, we demonstrate a malicious
firmware update with a code injection payload to compromise an
EVSE. Lastly, we demonstrate two methods to prevent availabil-
ity of the EVSE or CSMS. One of these, originally reported by
SaiFlow, prevents traffic to legitimate EVSE equipment using a
DoS-like attack on CSMSs by repeatedly connecting and authen-
ticating several CPs with the same identities as the legitimate CP.
These vulnerabilities were demonstrated with proof-of-concept
exploits in a virtualized Cyber Range at Wright State University
and/or with a 350 kW Direct Current Fast Charger at Idaho
National Laboratory. The team found that OCPP 1.6 could be
protected from these attacks by adding secure shell tunnels to
the protocol, if upgrading to OCPP 2.0.1 was not an option.

Index Terms—Electric vehicle charging, cybersecurity, OCPP,
cyberattack, cyber-resilience

I. INTRODUCTION

The rapid expansion of electric vehicles (EV) globally
creates a need for charging stations. In the US, the 2021
Infrastructure Investment and Jobs Act (IIJA) allocated $7.5
billion in EV charging infrastructure which is being rolled out
through the National Electric Vehicle Infrastructure, (NEVI)
Formula Program [1]. The US Inflation Reduction Act further
provides tax credits for the purchase of new and used EVs
and California plans to eliminate the sale of new internal

This research was partly funded by the Department of Energy (DOE)
Vehicle Technologies Office (VTO) EVs@SCALE Consortium and the DOE
Cybersecurity, Energy Security, and Emergency Response (CESER) “EV
Secure Architecture Laboratory Demonstrations (EV SALaD)” project.

Sandia National Laboratories

George Fragkos Jay Johnson
Sandia National Laboratories
Albuquerque, USA

jjohns2 @sandia.gov

Albuquerque, USA
gfragko@sandia.gov

Junjie Zhang
Department of Computer Science and Engineering
Wright State University
Dayton, USA
junjie.zhang @wright.edu

combustion engine-powered vehicles by 2035 [2]. In a March
2023 White House press release, the Biden administration reaf-
firmed its intent to move to 100 percent zero-carbon emissions
vehicle (ZEV) light-vehicle fleet by 2027 and medium-vehicle
fleet by 2035 [3]. Continued legislation to promote EVs is
a clear indication of political will to rapidly transition to a
zero-carbon emission transportation infrastructure. Charging
stations in the US are poised to expand to 35 million by
2035 [2]. The swift growth of charging infrastructure connects
two sectors not previously connected with fossil-fuel powered
engines: transportation and the electrical-grid [4]. This large
shift to EVs and associated charging infrastructure creates new
cybersecurity threats to the transportation and energy sectors
(3]

The attacks described in this research explore Electric
Vehicle Supply Equipment (EVSE) vulnerabilities that present
threats categorized as consumer, commercial, and strategic
risks. In the consumer category, personally identifiable in-
formation (PII) and financial information are vulnerable to
interception due to machine-in-the-middle (MITM) attacks
against the link between the EVSE and Charging System
Management Services (CSMS). These attacks can result in
credit card fraud and identity theft. Commercial impacts
include risks of energy-theft and system availability due to
MITM, Log4Shell, and denial-of-service (DoS) attacks [6],
[7]. The long term impact is loss in profits and damage to
the reputation of a company, both short- and long-term. All of
these attacks can have a strategic impact. The consequences
of adversaries achieving root access to EVSE and CSMSs
can result in disruption to power-grid configurations, delays
to federal emergency response, and disruption to EV-powered
transportation supply chains of goods and services nation-wide
(8.

There is currently no industry requirement for this com-

SAND2023-06622C

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly
owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract
DE-NA0003525.

() sancia National Laboratores
@iigisr NISA

https://orcid.org/0009-0001-4194-1101
https://orcid.org/0000-0003-0724-3366
https://orcid.org/0000-0001-9326-8011
https://orcid.org/0000-0001-7181-5790
https://orcid.org/0000-0001-7954-8877

munications link, but one protocol gaining popularity is the
Open Charge Point Protocol (OCPP). OCPP is a global open-
source protocol that controls the communication between a
Charge Point (CP), which is the EVSE, and a Central System
(CS), which is the CSMS [9]. The protocol is supported
by the Open Charge Alliance (OCA) with more than 220
member-companies active in the electric mobility area [10].
Currently OCPP is being used in 148 countries and has over
65,000 installed and operating charging stations [2]. OCPP
has two primary versions in use, i.e., OCPP 1.6 and 2.0.1,
which communicate using either SOAP (Simple Object Access
Protocol) or JSON (JavaScript Object Notation). The JSON
version is indicated with a “j” in the version string, e.g., OCPP
1.6j, and the SOAP version is indicated with an “s” in the
version. While 2.0.1 is gaining ground, OCPP 1.6; is still the
most widely used version.

Vulnerabilities for OCPP 1.6 are continuously examined
in the current literature [11]]. Friedland discussed issues in
the event of an adversary gaining OCPP 1.6 network access
[12]. Alcaraz et al. and Rubio et al. discussed
MITM vulnerabilities in OCPP, which would allow fraudulent
charging or disruption of power system operations at the
aggregate level. SaiFlow found weak authentication policies
with OCPP and connections between CPs and CSs could be
disrupted by falsifying additional connections to the CS [15]].

In this work, we show several OCPP 1.6 proof-of-concept
exploits in a virtual Cyber Range and on a 350 kW Direct
Current Fast Charger (DCFC) EVSE to gain root access to
the EVSE, lock out legitimate users, and terminate charging
sessions. Then, we demonstrate a method of preventing these
attacks by protecting OCPP 1.6 communication channels
using Secure Shell Tunnels (SSH) tunnels. The remainder of
the paper is structured as follows: Section 2 describes the test
environments; Section 3 covers the development of and results
from exploits used within the OCPP Cyber Range and 350 kW
EVSE at Idaho National Laboratory (INL); Section 4 presents
the results; and Section 5 concludes the paper.

II. TESTING ENVIRONMENTS
A. OCPP Cyber Range

The OCPP Cyber Range is a Python-based client-server
environment built from the MobilityHouse code base [16].
Both the OCPP client and server programs are operating
system (OS) agnostic. For this research, the environment was
deployed on multiple VirtualBox Ubuntu virtual machines
(VMs) that represented the CP and CS server, along with a
Kali Linux VM that represented an adversary on the same
network, as shown in Figure [I]

The OCPP Cyber Range configuration consists of four main
components that can be divided into two main subsections,
the OCPP client and OCPP server. In the current system
configuration the OCPP client’s IP address is 192.168.50.220
and the OCPP server’s IP address is 192.168.50.151. The
client and server each have two parts to their communications
process, the websocket, enabling the communication between
the OCPP client and OCPP server, and an asynchronous

Communication Network at
Idaho National Laboratory

Electric Vehicle Supply
Equipment (EVSE)/Charge Point
[Linux OS]

Charging Station Management
System (CSMS)/Central System
[Raspberry Pi]

Switch

OCPP Client
192.168.0.200 Qa7 SERer

Adversary

Wright State University

Electric Vehicle Supply
OCPP Cyber Range

Equipment (EVSE)/Charge Point
[Ubuntu OS]

Charging Station Management
System (CSMS)/Central System
[Ubuntu OS]

Switch

OCPP Client
192.168.50.63 Gy

Adversary

Fig. 1. The OCPP communication networks use within the Wright State
University OCPP Cyber Range and at located at INL.

HTTP server, i.e., aiohttp server [17], [18]], used to handle
asynchronous communication between an external system op-
eration and the OCPP entities, i.e., client and server requests
between servers and communication between the external
operator and the OCPP client or server. The aiohttp server
enables this by creating a single object that can be re-used
for multiple individual requests and by default can make
connections with up to 100 different servers at a time. Each
system (OCPP client and server) is hosted in a separate Ubuntu
VM. The adversary machine is a Kali Linux VM hosted on the
same laptop as the OCPP client and server with an IP address
of 192.168.50.63.

In the interest of testing the Log4Shell attack several ad-
ditions were added to the base system in order to provide
the infrastructure required for the attack. The Log4j version
2.14 was used in the client’s logging framework in order
to enable the Log4Shell attack. On the adversary machine,
Light-weight Directory Access Protocol (LDAP), HTTP, and
File Transfer Protocol (FTP) servers were added.

B. EV Charging Laboratory at INL

The testbed at INL Electric Vehicle Infrastructure Labora-
tory (EVIL) includes a 350 kW DCFC EVSE connected to a
Java-based SteVe OCPP 1.6j CSMS server [20] running on a
Raspberry Pi 3B. The EVSE included one Combo Charging
System (CCS) and one CHAdeMO charge port [22],
RFID card swipe, and a front panel display for EV drivers to
interact with the charger. It was possible to configure a URL
in this EVSE to connect to an OCPP server, which in this case
was the SteVe server located on the same local subnet as the
simulated adversary machine. This communication network
configuration is also shown in Figure [I]

III. EXPLOIT DESIGNS AND RESULTS

A total of five proof-of-concept (PoC) exploits were created
and tested in the OCPP environments. The environments where
each PoC was executed is shown in Table [Two types of
attacks were tested utilizing the OCPP Cyber Range:

e PoC #1: MITM used to modify firmware update process
in order to exploit Log4Shell to gain root access to the
EVSE

o PoC #4: Denial-of-service (DoS) vulnerability on the CS

Another set of PoC exploits were demonstrated on the EVSE
at INL:
o PoC #2: MITM used to terminate the charging session
o PoC #3: A malicious firmware update with code injection
to add a new user
o PoC #5: The SaiFlow Denial-of-service (DoS) vulnerabil-
ity where several falsified CPs connect to a CS to prevent
legitimate communications

A. PoC #1: MITM Malicious Firmware Update with Log4Shell

As discussed by TrendMicro [23]], there is a risk of
Log4Shell (CVE-2021-44228 [24]])) exploits reaching Java
software running in either the electric vehicle or the EVSE.
The risk is that remote code execution from this deserialization
attack would allow an adversary to install new accounts, SSH
keys, or establish a remote, persistent connection with the
EVSE equipment. To demonstrate this vulnerability, a simple
Java program processed the Update Firmware payload in the
OCPP Cyber Range to allow superuser remote code execution
on the EVSE.

The Log4Shell vulnerability is caused by a flaw in the way
information is retrieved by the Java Naming and Directory
Interface (JNDI) API and logged by the Log4j library. Instead
of information being logged, the system takes the retrieved
information and attempts to execute it as a command. This
creates a situation where attackers can cause remote code
execution (RCE) or escalation or privileges by forcing the
target machine to receive messages from a malicious LDAP
server controlled by the attacker. JNDI is a an Application
Programming Interface (API) of the Log4j library, which was
added in 2013 and its purpose is to assist with data storage and
retrieval [25] in terms of producing the naming and directory
functionality to software written in Java. It is noted that in
order to use JNDI the system must have at least one service
provider such as LDAP.

As far as the LDAP is concerned, it is an open, vendor neu-
tral application for retrieving data such as printer connections,
user names, passwords, or other static data within directories
[26]. The LDAP server allows for multiple databases to be
stored in one location and gives users the ability to find
information about organizations, persons, etc.

For this attack, a MITM technique was used where the
attacker positioned themselves between two legitimate par-
ties in order to hijack the communication link between the
OCPP entities [27]. First, we assume that the attacker has
achieved access to the local network that the OCPP client
and the OCPP server belong to. Afterwards, an ARP (Address
Resolution Protocol) spoofing (or ARP cache poisoning) attack
is performed in order to intercept and modify network traffic
between the client and the server [28]. The attack involves
sending falsified ARP messages to the local network. By doing
so, the attacker associates their own MAC address with the IP

TABLE I
POC EXPLOIT DEMONSTRATION LOCATIONS

PoC Cyber Range | 350 kW EVSE
#1 MITM Log4Shell Firmware Update X

#2 MITM Stop Charging Session X

#3 Code Injection Firmware Update X

#4 DoS the CSMS X

#5 DoS with Unauthenticated CPs X

address of the OCPP client’s device, causing the OCPP server
to send traffic meant for the OCPP client to the attacker’s
machine instead. Therefore, the attacker is able to eavesdrop
on the communication, inject malicious packets, and/or modify
the content of the communication. Last, there is a Log4j-based
vulnerable Java application processing the OCPP websocket
payloads on the EVSE.

Figure |2| depicts the overall sequence for the Log4Shell
attack. At a high level, there is a “Firmware Update” request
from the OCPP client to the server. The server response is
intercepted and a new malicious file is downloaded to the
EVSE. This file includes the LDAP request that pulls down
a malicious Java class, Exploit.class, from the adversary that
establishes a Netcat connection to the adversary.

Walking through this process in more detail, here are the
individual steps:

1) The Java-based EVSE Management Software sends a
request to the OCPP client to “request firmware update”
from the OCPP server.

2) The OCPP client sends an HTTP request to the OCPP
server.

3) The OCPP server sends the FTP location and file
back to the EVSE through a websocket connection.
In this case, the location to retrieve the firmware up-
date is 192.168.50.151 and the filename is firmwareUp-
date.conf.

4) The firmware update information is intercepted by the
“mitmdump” [29] on the attack machine, which is
monitoring the websocket connection between the OCPP
server and the OCPP client. Using a websocket injection
script, “mitmdump” scans each packets for the “Up-
dateFirmware” command. When it finds this packet it
modifies the location and filename of the update file
prior to relaying the message to the OCPP client. These
modifications change the IP address of the firmware
update file to the malicious FTP server on the attacker’s
machine (IP address: 192.160.50.63) and the filename to
the name of the malicious file (malicious.conf) on the
attacker’s FTP server.

5) The OCPP client receives the “initiate firmware update”
command and sends it back to the Java management
software for processing.

6) The Java code sends a request to the FTP server
to retrieve the “firmware update” file. Utilizing
the maliciously changed address and file name,
received in the previous step, the Log4j extension
receives the “malicious.conf” file from the attacker’s

Electric Vehicle Supply Toris

192.168.50.220
EqUIpment (EVSE) Adversary
s TS 192.168.50.63
I' EVSE Management pm————_—_—_—_—_————— “
| Sﬂﬁ‘:f_‘l:: (If:":_;j"de | (6)FTP Download ! - \
| 24 | Location: 192.168.50.63:21 | [\
Nk] File: “Malicous_conf” 1 | |
1 1 1 = |
1 1 | FTP Server |
| Y | ap://192. {; 3: | . |
1 ﬁ 1 1 1389/Exploit 1 (8) Get Exploit.class 1
=

o m 1 ~| .l s -
1 R : @ B ! Legitimate Charging System

gl =&) | 0) LDAP Response | - I
I g %z (10) Java runs @ P! Marshelsec Jav: | 1 -
1 2| 2€| |Newatapplicstion | downloadsvulncrable | Marshelsec Java | Management Service (CSMS)

sl £ 8 PP 7 lass (Exploit cl Deserialization LDAP ~|
I £ &= to connect to | ava class (Exploit.class) | - | e = — -

E 5E adversary’s Netcat | toEVSE where the payload | Server [A
! £1 & g i a0 is executed Port: 1389 Python HTTP Server | \
[) E istener e 1 1 T Hosting Exploit class | 1 1
] % & | : 1 | Port: 8080 1 1 |
121 : L‘ / (11) Netcat TCP connection | L‘ | ! 1

= [EH
1= o - | allowing full root shell 1 _ . | | 192.168.50.151 1
| L = Outbound Netcat | access to EVSE | Netcat Listener | (3) “Initiate Firmware Update™ | \
| L Connectionto | | Port: 4444 | Lecation:19216850.151:21 | _— e
| Adversary 1 1 | File: “Firmware_Update.conf” 1 | :
| : : (4) “Initiate Firmware Update” | I | L‘_-— S 1
| OCPP Client Location: 192.168.50.63:21 | MITM Softw 1 1 - - 1
| 1 File: “Malicous.conf™ \ . A du l\are- y) 1 OCPP Server FTP Server

(Ettercap and mitmproxy) , \ Port:8082 Port: 21 !

(2) “Update Firmware™ HTTP Request

Fig. 2. Sequence diagram of the Log4Shell attack on the OCPP session using the “Update Firmware” request

FTP server. The “malicious.conf’ file consists
of a single line of code {“FirmwarePath”:
“$ {jndi:ldap://192.168.50.63:1389/Exploit”}

{“RetrieveDate”: “19 April 2023”}. The first part of
the code tells the Log4j extension to utilize the JNDI
API to contact the LDAP server. The next part of the
code is the IP address and port number to the attacker’s
LDAP server and finally the malicious Java class, i.e.,
Exploit.class, and date to retrieve the file.

Log4j in the EVSE’s Java code processes the mali-
cious.conf which causes Log4;j to contact the adversary’s
LDAP server and request the Exploit.class per the de-
scribed Log4shell vulnerability.

The LDAP server receives the request for Exploit.class
and it then forwards that request to the adversary’s HTTP
server which returns Exploit.class with the the Netcat
payload. The payload is shown in Figure [3]
Exploit.class is downloaded by the Java tool and exe-
cuted.

A Netcat session from the EVSE is initiated with the
adversary, who had previously created a Netcat listener.
The adversary has now persistent root shell access on
the EVSE equipment.

7)

8)

9)
10)

11)

The impact of this PoC exploit occurs when processing the
“Exploit.class” by Log4j. Rather than simply logging the in-
formation (e.g., the “Exploit.class” name), Log4;j facilitates the
processing of the malicious code, including the “Exploit.class”
file, as an executable command, leading to its unintended

try {
Process p = pb.start(};
Thread t = new Thread{new InputStreamConsumer{p.getInputStream()));

t.start();
int exitCode = p.waitFor(};
t.join();

Funtime.getRuntime() .execi*ncat -1 4444 -e /bin/bash®);
} catch (IDException | InterruptedException ex) {
ex.printStackTrace();
}

return null;

Fig. 3. Code snippet in the Exploit.class that opens a bash terminal and starts
the Netcat utility

execution (see Step 11 in Fig.). When the “Exploit.class”
is executed on the EVSE, it starts a Netcat utility on the
OCPP client machine with root access to the system. Once
obtaining access to the operating system, the adversary can
examine all running processes, locate credentials, establish al-
ternative persistence mechanisms, install kernel-mode rootkits,
and search for any upstream connections to the EVSE vendors
cloud services — potentially allowing the adversary to pivot to
additional EVSE equipment.

This attack will only work for EVSE devices that have
vulnerable Java-based management code, but it shows the risk
of having unencrypted OCPP communications. Any of the data
running between the OCPP client and server could be modified
to trigger these types of sophisticated cyber kill chains.

B. PoC #2: MITM Stop Charging Session

This MITM attack was performed on the websocket channel
between the EVSE and CSMS server at INL. An adversary
on a Linux machine was on the same subnet as these devices.
To carry out this PoC, the adversary first used the Ettercap
tool [30] to perform an Address Resolution Protocol (ARP)
spoofing attack on the websocket communication channel
between the EVSE and the CSMS server. Specifically, the
adversary sends fake ARP messages to associate his MAC
address with the IP address of the EVSE, redirecting all traffic
to his machine. This allows the adversary to intercept and read
all messages exchanged between the EVSE and the CSMS
server on the fly.

Once the ARP spoofing is successful, the adversary sets
up port forwarding from the Ettercap listening port to a
mitmproxy [29] port, where the mitmproxy is an open-source
HTTP(S) proxy used to inspect, decode, modify, and replay
websocket traffic. The mitmproxy server operates as a reverse
proxy between the DCFC and CSMS server. The adversary
can then use the mitmdump tool command, similarly to the
previous PoC, to intercept and manipulate websocket messages
between them in real-time.

To demonstrate the PoC, the adversary utilizes a Python
live script running on the mitmproxy server that injects pack-
ets in an automated manner. The live script waits for and
captures the StartTransaction message from the EVSE to the
CSMS server, which indicates the start of a charging session
and the associated transaction ID. Then, the adversary mali-
ciously transforms a subsequent websocket message, such as a
MeterValues message, to a RemoteStopTransaction message.
Upon successful transmission of the RemoteStopTransaction
websocket message to the targeted OCPP client, the charging
session is terminated. This termination can be sent at a time
of the adversary’s choosing.

Notably, with this level of access the adversary could also
change all other parameters being exchanged between the
EVSE and CSMS. For instance, meter data could be modified
to defraud the CSMS company. The EVSE availability could
be falsified to indicate an inoperative charger as a means to
redirect potential customers and financially impact the CSMS
company. The charging profile could be modified to reduce
the EV charge rate, potentially disrupting the transportation
plans of the customer. Reservations could be modified or the
EV user could have their authorization status blocked using a
SendLocalListRequest message. This is just a start of potential
impacts from a compromised OCPP session. Several other
adversarial objectives could be achieved with full access to
the OCPP exchanges.

The MITM attack resulted in the immediate termination
of the charging session between the DCFC and EV. The
DCEFC trusts the websocket RemoteStopTransaction message
that appears to originate from the CSMS server. The successful
execution of the RemoteStopTransaction highlights the criti-
cal importance of integrating robust cybersecurity measures
into OCPP 1.6j, in order to effectively mitigate the dangers

associated with the MITM attacks.

C. PoC #3: Malicious Firmware Update with Code Injection

OCPP provides several commands that are issued from the
CSMS (SteVe) to configure and control the connected EVSE.
One of those commands is an UpdateFirmware request. This
message is usually sent to an EVSE to notify the station that
an updated software package is available for download and
the location of the firmware with an FTP Uniform Resource
Identifier. The update is then downloaded via FTP and installed
by the EVSE. The implementation and security of the software
update process is directly handled by the vendor of the EVSE,
which means that the OCPP protocol does not define how the
update is processed by the EVSE. In the case of the 350 kW
DCFC EVSE, there was a cybersecurity vulnerability in the
handling of the firmware update package. The EVSE did not
properly verify firmware updates before execution and there
was no sanitation of untrusted firmware data. Therefore, once
an adversary gained access to the OCPP network or could
issue a Firmware Update Request from the CSMS, the EVSE
would download this package and, if packaged correctly,
would execute arbitrary code contained in this file. This is
a form of code injection via firmware file that enabled remote
arbitrary code execution. From this point, the adversary could
establish remote shells as described in PoC #1, create new
users, or disrupt the operations of the EVSE with a shutdown
or other command. In the case of experiments at INL, the
team created a firmware update to generate a new user and
then connected directly to the equipment via SSH.

This vulnerability was reported to the EVSE vendor and it
has since been patched with a firmware update.

D. PoC #4: Denial-of-Service (DoS) on the CSMS Server

DoS attacks are caused by the flooding of traffic to the
target machine or network to such a degree that legitimate
traffic is impeded causing the target network or system access
and usage to be degraded or denied [31]. In this case, the
adversary performed a SYN flood attack [32], which exploits
the three-way handshake process used in the Transmission
Control Protocol (TCP) to establish a connection between
the EVSE and CSMS server in the Cyber Range. During the
handshake process, the EVSE sends a SYN packet to initiate
the connection, the CSMS server responds with a SYN-ACK
packet to acknowledge the request, and the client sends an
ACK packet to confirm the connection.

Our simulated adversary quickly sent thousands of SYN
packets to the CSMS server without responding to the latter’s
SYN-ACK packets, effectively leaving half-open connections.
The CSMS server keeps these connections open in its mem-
ory until the connection is established or times out, which
causes the server to become overwhelmed and eventually stop
responding to legitimate requests from the EVSE.

The SYN DoS attack to the CSMS server was performed
using the hping3 software [33]. It produced heavy resource
utilization on the CSMS server. In particular, the target CSMS
server was a VM equipped with a dual core 2.3 GHz processor

T min 50sec 05ecs
I cPu1 78.4%
> Memory and Swap

~ Network

Sending 4.7 MiB/s
TotalSent 432.8MiB

9.3 MiB/s
1.4GiB

Receiving
Total Received

Fig. 4. Resource utilization during DoS attack

and 2 GB of RAM, whereas the attack machine was a 2.3 GHz
dual core processor with 8 GB of RAM. Resource monitoring
on the target machine identified resource utilization before,
during, and after the DoS attack (see FigEI). We observed the
CPU utilization loads of the CSMS server CPU and network
traffic to determine if the system was vulnerable to a DoS
attack. During the attack a single OCPP client was connected
to the CSMS server. We observed initially the utilization in
both CPUs is approximately 15%-20% and the network traffic
never exceeds 15 kB/s.

At the start of the SYN DoS attack the CSMS server’s
CPU 1 utilization increased to 78%-85%, CPU 2 utilization
increases to 20%-40%, and network traffic flow is increased
to approximately 10 MiB/s. Figure |4 depicts the spike in
resource utilization during the attack. When the attack was
terminated all resource utilization levels returned to normal
operating ranges.

This DoS PoC is not enough to crash the server — however
a noticeable degradation in server response was noticed. Im-
portant to note, the attack machine is a VM that is hosted on
the same laptop as the server VM. The increase in resource
utilization demonstrates that switching to a distributed denial-
of-service attack would crash the server or deny legitimate
traffic. A good mitigation to this DoS attack would be to create
firewall rules that reject unknown connections to the CSMS.

E. PoC #5: SaiFlow Denial-of-Service (DoS)

OCPP suffers from another vulnerability that exposes the
system to a form of DoS attacks [15]. The weakness stems
from the fact that the standard does not specify how to
handle multiple websocket connections from a single CP to
the CS/CSMS. Adversaries can exploit this ambiguity by
establishing additional “new” connections to the CSMS on
behalf of the CP, resulting in potential DoS attacks that could
compromise the integrity of the EVSE network. According
to Saposnik and Porat, the response of the CSMS depends
on the manufacturer: some close the original session while

others direct their traffic to the CP that most recently authen-
ticated/communicated with the server.

This vulnerability affects OCPP 1.6 and could also impact
the newer OCPP 2.0.1 version if the necessary authentication
measures are not implemented. Because the CP requires a
continuous connection with the CSMS for charging authoriza-
tions, charging sessions, payments, and others, a malicious
actor can disrupt this connection and lead to rejected charging
transactions. This situation can result in severe financial and
reputation damages, as well as the dangerous exposure of the
CSMS infrastructure.

Our research team designed an experiment to test this
vulnerability in the OCPP standard for managing EVSE.
Specifically, the experiment involved mimicking the CP al-
ready connected to the CSMS server and creating a new
Python-based CP instance connected to the same server. The
server’s insufficient OCPP 1.6j authorization measures allowed
the incoming websocket connection from the new CP instance,
leading the CSMS server to assume this new session was the
legitimate CP. This design enabled us to bypass the original
connection and establish a new communication channel, re-
sulting in a potential DoS attack.

To test the vulnerability, we created and connected an
identical CP instance to the SteVe CSMS server during a
charging session between the original CP and CSMS server.
We observed that even if the new CP instance was a simple
Python-based script mimicking the original CP based on the
MobilityHouse client [[16], the new websocket communication
channel was successfully created because of the insufficient
authorization measures of the OCPP 1.6j protocol. To simulate
a DoS attack, we configured the new ‘“fake” CP to send
heartbeats to the CSMS server every millisecond. During
testing in a real environment, we observed that the CSMS
server was “confused” by the new CP instance and considered
it a new safe connection originating from the 350 kW charger.
As a result, the CSMS server kept both connections open but
accepted the flooding heartbeat messages from the new CP
instance.

Consequently, it rejected all the messages/requests that came
from the original CP, e.g., MeterValues messages from a
charging session with an EV. Furthermore, another important
observation is that when the CSMS server sent a RemoteStop-
Transaction request to the original CP, this message was never
received by the latter because of the DoS attack and the
charging session did not stop. Only when we disabled the
DoS attack and disconnected the new CP, was the server able
to communicate with the original CP normally again and re-
motely stop the charging session. The above results reveal the
urgent need for identifying countermeasures for the mitigation
of the multiple connections handling DoS vulnerability in the
OCPP protocol.

IV. MITIGATION

In the situation where the EVSE equipment or CSMS
server does not support OCPP 2.0.1, there are still options
for preventing MITM attacks on the OCPP network. One

Electric Vehicle Supply
Equipment (EVSE)/Charge Point
[Linux OS]

192.168.0.100

Encrypted SSH traffic

OCPP SSH
Client Client

I

cleartext websocket
connection

Secured OCPP Communication Network
at Idaho National Laboratory

Switch

192.168.0.200

Adversary

Charging Station Management
System (CSMS)/Central System
[Raspberry Pi]

192.168.0.250:8000

Encrypted SSH traffic

SSH
Server

L |

cleartext websocket
connection

OCPP
Server

Fig. 5. Routing OCPP 1.6 through SSH session.

way this can be done is using SSH tunneling. This was
implemented in an INL laboratory to successfully prevent
the MITM PoCs presented above. To implement the solution,
SSH public-private keys were generated on the EVSE and
CSMS. The public keys were saved when the SSH tunnel was
first connected and the keys were authenticated to the saved
versions when establishing a new connection. This provided
mutual authentication of both the EVSE and CSMS. Once
authenticated, the hosts generate and exchange a session key
that is used for future encrypted traffic. After initial tunnel
setup, the EVSE connected to a locally-bound TCP port that
automatically encapsulates the traffic and transmits it over the
SSH tunnel. The CSMS was set up to regenerate the SSH-
encapsulated traffic on its local interface. This encrypts the
traffic and provides confidentiality and integrity of the encap-
sulated payload, effectively preventing MITM attacks as well
as payload inspection. A representation of this configuration
is shown in Figure [3]

The additional authentication provided by the SSH tunnel
also eliminates the risk of the SaiFlow DoS attack because
the adversary does not have the CP/EVSE SSH private key.
Without this cryptographic material, the CSMS knows the new
CP attempting to connect is not legitimate. The SYN DoS
attack on the other hand is best prevented by creating an allow
list at the CSMS firewall to prevent unknown devices from
reaching the OCPP CS server.

V. CONCLUSION

OCPP 1.6 is vulnerable to several cybersecurity attacks
because it lacks appropriate confidentiality and CP authentica-
tion. In this work, we demonstrate the use of machine-in-the-
middle, malicious firmware updates, and DoS PoC exploits to
remotely terminate charging sessions, prevent charging visibil-
ity and control, and gain remote access to EVSE equipment.
In order to prevent these attacks in production environments,
OCPP sessions need to be protected with encrypted channels
by either upgrading to OCPP 2.0.1 or wrapping the protocol
in an encrypted tunnel with SSH, IPSec, or some other

technique. One mechanism for directing OCPP traffic through
an encrypted SSH tunnel is presented in this paper based on
experimental results at INL.

ACKNOWLEDGMENT

Sandia National Laboratories is a multimission laboratory
operated by National Technology and Engineering Solutions
of Sandia LLC, a wholly owned subsidiary of Honeywell In-
ternational Inc., for the U.S. Department of Energy’s National
Nuclear Security Administration.

APPENDIX A: NOMENCLATURE

Acronym | Meaning

ARP Address Resolution Protocol

CP Charge Point

CS Central System

CSMS Charging System Management Service
DCEC Direct Current Fast Charger

DoS Denial-Of-Service

EV Electric Vehicle

EVSE Electric Vehicle Supply Equipment
FTP File Transfer Protocol

HTTP Hypertext Transfer Protocol

JNDI Java Naming and Directory Interface
LDAP Light-weight Directory Access Protocol
MITM Machine-in-the-middle

OCPP Open Charge Point Protocol

PoC Proof-Of-Concept

RCE Remote Code Execution

SSH Secure Shell

VM Virtual Machine

REFERENCES

[1] “Bipartisan Infrastructure Law - National Electric Vehicle Infrastructure
(NEVI) Formula Program Fact Sheet — Federal Highway
Administration.” [Online]. Available: https://www.thwa.dot.gov/bip
artisan-infrastructure-law/nevi_formula_program.cfm

[2] S. Acharya, Y. Dvorkin, H. PandZi¢, and R. Karri, “Cybersecurity of
smart electric vehicle charging: A power grid perspective,” IEEE Access,
vol. 8, pp. 214434-214 453, 2020.

https://www.fhwa.dot.gov/bipartisan-infrastructure-law/nevi_formula_program.cfm
https://www.fhwa.dot.gov/bipartisan-infrastructure-law/nevi_formula_program.cfm

[3]

[4]

[5]

[6]

[7]

[9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

(171

[18]

(19]

[20]

[21]

[22]

[23]

“FACT SHEET: Biden-Harris Administration Announces New Private
and Public Sector Investments for Affordable Electric Vehicles — The
White House.” [Online]. Available: https://www.whitehouse.gov/briefin
g-room/statements-releases/2023/03/30/fact-sheet-biden- harris-adminis
tration-announces-new-private-and- public-sector-investments- for-affo
rdable-electric-vehicles/

S. Lightman and T. Brewer, Symposium on federally funded research
on cybersecurity of electric vehicle supply equipment (evse). US De-
partment of Commerce, National Institute of Standards and Technology,
2020.

J. Johnson, B. Anderson, B. Wright, J. Quiroz, T. Berg, R. Graves, J. Da-
ley, K. Phan, M. Kunz, R. Pratt et al., “Cybersecurity for electric vehicle
charging infrastructure.” Sandia National Lab.(SNL-NM), Albuquerque,
NM (United States), Tech. Rep., 2022.

Z. Pourmirza and S. Walker, “Electric vehicle charging station: cyber
security challenges and perspective,” in 2021 IEEE 9th International
Conference on Smart Energy Grid Engineering (SEGE). 1EEE, 2021,
pp. 111-116.

J. Johnson, T. Berg, B. Anderson, and B. Wright, “Review of electric
vehicle charger cybersecurity vulnerabilities, potential impacts, and
defenses,” Energies, vol. 15, no. 11, p. 3931, 2022.

Z. Garofalaki, D. Kosmanos, S. Moschoyiannis, D. Kallergis, and
C. Douligeris, “Electric vehicle charging: A survey on the security
issues and challenges of the open charge point protocol (ocpp),” IEEE
Communications Surveys & Tutorials, 2022.

T. Chen, X.-P. Zhang, J. Wang, J. Li, C. Wu, M. Hu, and H. Bian, “A
review on electric vehicle charging infrastructure development in the
uk,” Journal of Modern Power Systems and Clean Energy, vol. §, no. 2,
pp. 193-205, 2020.

P. B. Andersen, S. H. Toghroljerdi, T. M. Sgrensen, B. E. Christensen,
J. C. Morell, L. Hgj, A. Zecchino, O. J. Olesen, and A. Due,
“The Parker Project Final Report Type: Project final report,” 1 2019.
[Online]. Available: https://parker-project.com/wp-content/uploads/201
9/03/Parker_Final-report_v1.1_2019.pdf

A. Sanghvi and T. Markel, “Cybersecurity for electric vehicle fast-
charging infrastructure,” in 2021 IEEE Transportation Electrification
Conference & Expo (ITEC). 1EEE, 2021, pp. 573-576.

A. Friedland, “Security and privacy in the current e-mobility charging
infrastructure,” Proceedings of the DeepSec, Vienna, Austria, vol. 31,
2016.

C. Alcaraz, J. Lopez, and S. Wolthusen, “Ocpp protocol: Security threats
and challenges,” IEEE Transactions on Smart Grid, vol. 8, no. 5, pp.
2452-2459, 2017.

J. E. Rubio, C. Alcaraz, and J. Lopez, “Addressing security in ocpp:
Protection against man-in-the-middle attacks,” in 2018 9th IFIP Interna-
tional Conference on New Technologies, Mobility and Security (NTMS).
IEEE, 2018, pp. 1-5.

L. R. Saposnik and D. Porat, “Hijacking ev charge points to cause
DOS,” Feb 2023. [Online]. Available: https://www.saiflow.com/hijackin
g-chargers-1identifier-to-cause-dos/

“mobilityhouse/ocpp: Python implementation of the Open Charge Point
Protocol (OCPP).” 2019. [Online]. Available: https://github.com/mobil
ityhouse/ocpp

C. Hattingh, Using Asyncio in Python: understanding Python’s asyn-
chronous programming features. * O’Reilly Media, Inc.”, 2020.
“Web Server Quickstart — aiohttp 3.8.4 documentation.” [Online].
Available: https://docs.aiohttp.org/en/stable/web_quickstart.html#webso
ckets

“Log4j — Apache Log4j™ 2. [Online]. Available: https://logging.apac
he.org/log4)/2.x/

Steve-Community, ‘“Steve-community/steve: Steve - ocpp server
implementation in java.” [Online]. Available: https://github.com/s
teve-community/steve

G. R. C. Mouli, J. Kaptein, P. Bauer, and M. Zeman, “Implementation of
dynamic charging and v2g using chademo and ccs/combo dc charging
standard,” in 2016 IEEE Transportation Electrification Conference and
Expo (ITEC). IEEE, 2016, pp. 1-6.

“Chademo protocolthe ev fast charging standard that is the same
wherever you go.” [Online]. Available: https://www.chademo.com/

S. Dudek, “Examining Log4j Vulnerabilities in Connected Cars and
Charging Stations,” 12 2021. [Online]. Available: https://www.trendmic
ro.com/en_us/research/21/l/examining-log4j- vulnerabilities-in-connect
ed-cars.html

[24]

[25]

[26]

(271

(28]

[29]

(30]

[31]

[32]

[33]

H. Gupta, A. Chaudhary, and A. Kumar, “Identification and analysis of
log4j vulnerability,” in 2022 11th International Conference on System
Modeling & Advancement in Research Trends (SMART). 1EEE, 2022,
pp. 1580-1583.

O. Tunde-Onadele, Y. Lin, X. Gu, and J. He, “Understanding software
security vulnerabilities in cloud server systems,” in 2022 IEEE Inter-
national Conference on Cloud Engineering (IC2E). 1EEE, 2022, pp.
245-252.

E. Daniel and N. Vasanthi, “Ldap: a lightweight deduplication and
auditing protocol for secure data storage in cloud environment,” Cluster
Computing, vol. 22, pp. 1247-1258, 2019.

J. Antoun, M. E. Kabir, B. Moussa, R. Atallah, and C. Assi, “A detailed
security assessment of the ev charging ecosystem,” IEEE Network,
vol. 34, no. 3, pp. 200-207, 2020.

S. Hijazi and M. S. Obaidat, “Address resolution protocol spoofing
attacks and security approaches: A survey,” Security and Privacy, vol. 2,
no. 1, p. e49, 2019.

“Mitmproxy is a free and open source interactive https proxy.” [Online].
Available: https://mitmproxy.org/

[Online]. Available: https://www.ettercap-project.org/

A. Cetinkaya, H. Ishii, and T. Hayakawa, “An overview on denial-of-
service attacks in control systems: Attack models and security analyses,”
Entropy, vol. 21, no. 2, p. 210, 2019.

M. Bogdanoski, T. Suminoski, and A. Risteski, “Analysis of the syn
flood dos attack,” International Journal of Computer Network and
Information Security (IJCNIS), vol. 5, no. 8, pp. 1-11, 2013.

D. Adams, Jun 1969. [Online]. Available: https://linuxhint.com/hping3/

https://www.whitehouse.gov/briefing-room/statements-releases/2023/03/30/fact-sheet-biden-harris-administration-announces-new-private-and-public-sector-investments-for-affordable-electric-vehicles/
https://www.whitehouse.gov/briefing-room/statements-releases/2023/03/30/fact-sheet-biden-harris-administration-announces-new-private-and-public-sector-investments-for-affordable-electric-vehicles/
https://www.whitehouse.gov/briefing-room/statements-releases/2023/03/30/fact-sheet-biden-harris-administration-announces-new-private-and-public-sector-investments-for-affordable-electric-vehicles/
https://www.whitehouse.gov/briefing-room/statements-releases/2023/03/30/fact-sheet-biden-harris-administration-announces-new-private-and-public-sector-investments-for-affordable-electric-vehicles/
https://parker-project.com/wp-content/uploads/2019/03/Parker_Final-report_v1.1_2019.pdf
https://parker-project.com/wp-content/uploads/2019/03/Parker_Final-report_v1.1_2019.pdf
https://www.saiflow.com/hijacking-chargers-identifier-to-cause-dos/
https://www.saiflow.com/hijacking-chargers-identifier-to-cause-dos/
https://github.com/mobilityhouse/ocpp
https://github.com/mobilityhouse/ocpp
https://docs.aiohttp.org/en/stable/web_quickstart.html#websockets
https://docs.aiohttp.org/en/stable/web_quickstart.html#websockets
https://logging.apache.org/log4j/2.x/
https://logging.apache.org/log4j/2.x/
https://github.com/steve-community/steve
https://github.com/steve-community/steve
https://www.chademo.com/
https://www.trendmicro.com/en_us/research/21/l/examining-log4j-vulnerabilities-in-connected-cars.html
https://www.trendmicro.com/en_us/research/21/l/examining-log4j-vulnerabilities-in-connected-cars.html
https://www.trendmicro.com/en_us/research/21/l/examining-log4j-vulnerabilities-in-connected-cars.html
https://mitmproxy.org/
https://www.ettercap-project.org/
https://linuxhint.com/hping3/

	Introduction
	Testing Environments
	OCPP Cyber Range
	EV Charging Laboratory at INL

	Exploit Designs and Results
	PoC #1: MITM Malicious Firmware Update with Log4Shell
	PoC #2: MITM Stop Charging Session
	PoC #3: Malicious Firmware Update with Code Injection
	PoC #4: Denial-of-Service (DoS) on the CSMS Server
	PoC #5: SaiFlow Denial-of-Service (DoS)

	Mitigation
	Conclusion
	References

