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ABSTRACT
The differential operator technique has been widely used in the particle transport community
for estimating the sensitivity of Monte Carlo estimates to problem parameters. Techniques like
stochastic calculus-based Malliavin estimators have been developed and applied to the calculation
of financial derivatives. The interest in the differential operator and Malliavin sensitivity methods
is the ability to reuse the existing Monte Carlo samples. We present comparisons between these
methods for the estimation of sensitivities on a non-scattering transport problem. Both methods
differ depending upon the tallies used for the underlying Monte Carlo approximation of the re-
sponse functional. Both methods provide accurate sensitivities approximations but differ in their
statistical uncertainties.
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1. INTRODUCTION

Local sensitivities are the impact of a problem parameter’s variation on a model response. These are useful
in performing sensitivity analysis as part of uncertainty quantification. The transport community has utilized
the differential operator method, described by Rief [1], for the calculation of sensitivities [2]. Another class
of sensitivity estimators has been developed in the financial derivatives community based upon the work
of Paul Malliavin [3]; see the books [4,5] for an introduction. These Malliavin sensitivity methods are of
minimal variance for Brownian motion [7] but to our knowledge have not been applied to linear particle
transport. See the technical report [6] for recent developments specific to particle simulations, including a
review of various sensitivity methods and their use in gradient-based optimization methods. The interest
in the differential operator and Malliavin sensitivity methods is the ability to reuse the existing Monte
Carlo samples. Both methods determine weightings that are applied to Monte Carlo samples and so can be
efficiently applied. This is in stark contrast to finite-difference approaches that require further Monte Carlo
samples to be computed.

This investigation of sensitivity methods is motivated in part by limitations with existing methods. One
specific limitation with the differential-operator method is in the calculation of sensitivities to boundary lo-
cations in the presence of scattering. One approach to this limitation has been proposed [8]. Here we inves-
tigate a non-scattering problem to facilitate comparison of the differential operator and Malliavin methods
in a problem with a boundary-location sensitivity, though there are alternative methods for non-scattering
transport problems [9].

The remainder of this paper is organized as follows. In Section 2, we define a non-scattering transport
problem with an internal boundary. For a particle transmission current, we derive the differential operator
sensitivity estimator due to variation in the position of an internal boundary in Section 3. We derive a
Malliavin sensitivity estimator for the same quantity in Section 4. In Section 5, we provide numerical
results comparing these two sensitivity estimators.
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2. TRANSPORT PROBLEM

For comparison of the sensitivity methods, we define a simplified one-dimensional slab problem with two
regions, as illustrated in Fig. 1. Each region contains a material that is a pure absorber, meaning that any
particle interaction is an absorption event. We are interested in calculating the expected number or rate of
escape of particles from the right side of the problem and the sensitivity of that quantity to the position of
the boundary between the two regions, while the external escape boundaries of the problem remain at fixed
locations.
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Figure 1: Transmitted current 𝐽 and the parameters associated with the boundary value problem (1)

More precisely, we solve

𝜇
𝜕𝜓(𝑥, 𝜇)

𝜕𝑥
+ 𝜎𝑎 (𝑥)𝜓(𝑥, 𝜇) = 𝑄(𝑥, 𝜇) , (1a)

with vacuum boundary conditions and where the cross section and source are given by

𝜎𝑎 (𝑥) = 𝜎𝑎,1 𝟙(0, 𝑥𝑖 ) (𝑥) + 𝜎𝑎,2 𝟙(𝑥𝑖 , 𝑥𝑟 ) (𝑥) , (1b)

𝑄(𝑥, 𝜇) = 𝑄0
𝑥𝑖

𝟙(0, 𝑥𝑖 ) (𝑥)𝟙(0, 1) (𝜇) . (1c)

𝟙(𝑎,𝑏) (𝑥) is an indicator function defined as equal to 1 when 𝑥 is in the interval (𝑎, 𝑏) and 0 otherwise, 𝜎𝑎,𝑘

is the absorption cross section in region 𝑘 , 𝜇 is the cosine of the angle of the particle direction with respect
to the positive 𝑥 direction, 𝑥𝑖 is the location of the interface between the two regions, and 𝑥𝑟 is the location
of the right boundary of the problem.

The solution 𝜓 of the boundary-value problem (1) at 𝑥𝑟 and positive 𝜇 is

𝜓(𝑥𝑟 , 𝜇) =
𝑄0
𝜇 𝑥𝑖

𝟙(0, 1) (𝜇)
∫ 𝑥𝑖

0
𝑟 (𝑥𝑠, 𝑥𝑖) 𝑑𝑥𝑠 ,

where

𝑟 (𝑥𝑠; 𝑥𝑖) = exp
(
−𝜎𝑎,1

𝑥𝑖 − 𝑥𝑠

𝜇

)
exp

(
−𝜎𝑎,2

𝑥𝑟 − 𝑥𝑖

𝜇

)
(2)

is the probability that the particle reaches at least 𝑥𝑟 before absorption with the particle source position 𝑥𝑠.

We can now estimate the transmitted current at 𝑥𝑟 , an expected value, as

𝐽 =

∫ 1

0
𝜇 𝜓(𝑥𝑟 , 𝜇)𝑑𝜇 = 𝑄0

∫ 1

0

∫ 𝑥𝑖

0

𝑟 (𝑥𝑠; 𝑥𝑖)
𝑥𝑖

𝑑𝑥𝑠 𝑑𝜇 . (3)
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If 𝜉 is a uniformly distributed random number over the interval (0, 1) then the source position can be
described via the relationship 𝑥𝑠 = 𝜉𝑥𝑖 and

𝑅(𝜉; 𝑥𝑖) = 𝑟 (𝜉𝑥𝑖; 𝑥𝑖) = exp
(
−𝜎𝑎,1

(1 − 𝜉)𝑥𝑖
𝜇

)
exp

(
−𝜎𝑎,2

𝑥𝑟 − 𝑥𝑖

𝜇

)
(4)

is the probability that a particle sampled at a location in the left interval (0, 𝑥𝑖) reaches 𝑥𝑟 before absorption.
In this problem, it is possible to directly compute 𝑅𝑛 for each sampled source particle 𝑛 because we know
the solution 𝜓 of the boundary value problem (1). However, in general the solution is cast as a Neumann
series [10].

Another expression for the probability that the particle reaches at least 𝑥𝑟 before absorption is

𝑡 (𝑥𝑠; 𝑥𝑖) =
∫ ∞

0
𝟙{𝑡>ln 𝑟 ( 𝜉 𝑥𝑖 ;𝑥𝑖 ) } (𝑡) 𝑒−𝑡 𝑑𝑡 , (5a)

which follows from the equality

𝑟 (𝑥𝑠; 𝑥𝑖) =
∫ ∞

ln 𝑟 ( 𝜉 𝑥𝑖 ;𝑥𝑖 )
𝑒−𝑡 𝑑𝑡 .

In analogy to the discussion preceding (4), we define the random variable

𝑇 (𝜉𝑥𝑖; 𝑥𝑖) = 𝟙{− 𝜇

𝜎𝑎,1
ln(1−𝜉1 )> (1−𝜉 )𝑥𝑖 }𝟙{− 𝜇

𝜎𝑎,1
ln(1−𝜉2 )>𝑥𝑟−𝑥𝑖 } , (5b)

where 𝜉1 and 𝜉2 are independent uniform random numbers on (0,1). Terms of the form − ln(1−𝜉 )
𝜎

represent
rate 𝜎 exponentially distributed numbers denoting the distance to an interaction in the 𝑥-dimension. Each
indicator function is determining whether or not the particle escapes the material region and because the
probability 𝑡 (𝑥𝑠; 𝑥𝑖) is the expected value of the random variable 𝟙{𝑡>ln 𝑟 ( 𝜉 𝑥𝑖 ;𝑥𝑖 ) } under the unit-rate expo-
nential distribution, we have

lim
𝑁→∞

1
𝑁

𝑁∑︁
𝑛=1

𝑇 (𝜉𝑛𝑥𝑖; 𝑥𝑖) = 𝑡 (𝜉𝑥𝑖; 𝑥𝑖) . (6)

Putting all of this together, we can approximate the transmission current response

𝐽 = 𝑄0

∫ 1

0

∫ 1

0
𝑟 (𝜉𝑥𝑖; 𝑥𝑖) 𝑑𝜉 𝑑𝜇 (7a)

= lim
𝑁→∞

𝑄0
𝑁

𝑁∑︁
𝑛=1

𝑅(𝜉𝑛𝑥𝑖; 𝑥𝑖) (7b)

or

𝐽 = 𝑄0

∫ 1

0

∫ 1

0
𝑡 (𝜉𝑥𝑖; 𝑥𝑖) 𝑑𝜉 𝑑𝜇 (8a)

= lim
𝑁→∞

𝑄0
𝑁

𝑁∑︁
𝑛=1

𝑇 (𝜉𝑛𝑥𝑖; 𝑥𝑖) . (8b)

The distinction between the two estimators is that the former tallies random numbers in the unit interval
determined by an analytical form of the solution 𝜓 and the latter tallies exponentially distributed binary
random variables representing an analog Monte Carlo method. The nature of the resulting Monte Carlo
approximations is also distinct. In the former tally, the integrand is deterministic and the Monte Carlo
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approximation is for the double integral. In contrast, the latter tally has the Monte Carlo approximation
given by (6) for the integrand 𝑡 (𝜉𝑥𝑖; 𝑥𝑖) representing an expected value.

Recall that the interest in the differential operator and Malliavin sensitivity methods is the ability to reuse
the existing Monte Carlo samples. The goal is to determine weightings 𝜌(𝜉𝑛, 𝜇𝑛) or 𝜏(𝜉𝑛, 𝜇𝑛) so that

d𝐽
d𝑥𝑖

= lim
𝑁→∞

𝑄0
𝑁

𝑁∑︁
𝑛=1

𝑅(𝜉𝑛𝑥𝑖; 𝑥𝑖) 𝜌(𝜉𝑛, 𝜇𝑛) (9a)

= lim
𝑁→∞

𝑄0
𝑁

𝑁∑︁
𝑛=1

𝑇 (𝜉𝑛𝑥𝑖; 𝑥𝑖) 𝜏(𝜉𝑛, 𝜇𝑛) . (9b)

We remark that the weightings 𝜌(𝜉𝑛, 𝜇𝑛) or 𝜏(𝜉𝑛, 𝜇𝑛) are likely to be distinct because the nature of the
Monte Carlo approximations are distinct as discussed following (8).

3. DIFFERENTIAL OPERATOR SENSITIVITY

The two different tallies (7) and (8) lead to distinct differential operator sensitivities. The differential oper-
ator sensitivity using (7) is

d𝐽
d𝑥𝑖

= 𝑄0

∫ 1

0

∫ 1

0

𝜕

𝜕𝑥𝑖
𝑟 (𝜉𝑥𝑖; 𝑥𝑖) 𝑑𝜉 𝑑𝜇

= 𝑄0

∫ 1

0

∫ 1

0
𝑟 (𝜉𝑥𝑖; 𝑥𝑖)

(𝜎𝑎,2 − 𝜎𝑎,1

𝜇
+ 𝜉

𝜎𝑎,1

𝜇

)
𝑑𝜉 𝑑𝜇 (10)

which can be approximated as

𝑆𝑁
DO =

𝑄0
𝑁

𝑁∑︁
𝑛=1

𝑅(𝜉𝑛𝑥𝑖; 𝑥𝑖)
(𝜎𝑎,2 − 𝜎𝑎,1

𝜇𝑛
+ 𝜉𝑛

𝜎𝑎,1

𝜇𝑛

)
. (11)

In contrast, the differential operator sensitivity using (8) is

d𝐽
d𝑥𝑖

= 𝑄0

∫ 1

0

∫ 1

0

𝜕

𝜕𝑥𝑖
𝑡 (𝜉𝑥𝑖; 𝑥𝑖) 𝑑𝜉 𝑑𝜇

= 𝑄0

∫ 1

0

∫ 1

0

𝜕

𝜕𝑥𝑖

(
lim
𝑁→∞

1
𝑁

𝑁∑︁
𝑛=1

𝑇 (𝜉𝑛𝑥𝑖; 𝑥𝑖)
)
𝑑𝜉 𝑑𝜇

= 𝑄0

∫ 1

0

∫ 1

0

(
lim
𝑁→∞

1
𝑁

𝑁∑︁
𝑛=1

𝜕

𝜕𝑥𝑖
𝑇 (𝜉𝑛𝑥𝑖; 𝑥𝑖)

)
𝑑𝜉 𝑑𝜇 (12)

where we formally replaced the differentiation of a limit of a sum with the limit of the sum differentiation
terms. In practice, the approximation

𝜕

𝜕𝑥𝑖
𝑇 (𝜉𝑛𝑥𝑖; 𝑥𝑖) ≈ 𝑇 (𝜉𝑛𝑥𝑖; 𝑥𝑖)

(𝜎𝑎,2 − 𝜎𝑎,1

𝜇𝑛
+ 𝜉𝑛

𝜎𝑎,1

𝜇𝑛

)
(13)

is assumed to hold to obtain

𝑆𝑁
DO =

𝑄0
𝑁

𝑁∑︁
𝑛=1

𝑇 (𝜉𝑛; 𝑥𝑖)
(𝜎𝑎,2 − 𝜎𝑎,1

𝜇𝑛
+ 𝜉𝑛

𝜎𝑎,1

𝜇𝑛

)
. (14)
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4. MALLIAVIN WEIGHTINGS

The two different tallies (7) and (8) lead to the distinct Malliavin sensitivities. To arrive at a weighting
consistent with the Malliavin approach using (7), the derivative on the transmission current (3) can also be
evaluated using the Leibniz rule, i.e.,

d𝐽
d𝑥𝑖

= 𝑄0
d

d𝑥𝑖

∫ 1

0

∫ 𝑥𝑖

0

𝑟 (𝑥𝑠; 𝑥𝑖)
𝑥𝑖

𝑑𝑥𝑠 𝑑𝜇

= 𝑄0

∫ 1

0

𝑟 (𝑥𝑖; 𝑥𝑖)
𝑥𝑖

𝑑𝜇 +𝑄0

∫ 1

0

∫ 𝑥𝑖

0
𝑟 (𝑥𝑠; 𝑥𝑖)

𝜕

𝜕𝑥𝑖

1
𝑥𝑖

𝑑𝑥𝑠 𝑑𝜇 +𝑄0

∫ 1

0

∫ 𝑥𝑖

0

1
𝑥𝑖

𝜕

𝜕𝑥𝑖
𝑟 (𝑥𝑠; 𝑥𝑖) 𝑑𝑥𝑠 𝑑𝜇

=
1
𝑥𝑖

𝑄0

∫ 1

0

∫ 𝑥𝑖

0
𝑟 (𝑥𝑖; 𝑥𝑖)

1
𝑥𝑖

𝑑𝑥𝑠 𝑑𝜇 − 1
𝑥𝑖

𝐽 +𝑄0

∫ 1

0

∫ 𝑥𝑖

0

𝑟 (𝑥𝑠; 𝑥𝑖)
𝑥𝑖

(𝜎𝑎,2 − 𝜎𝑎,1

𝜇

)
𝑑𝑥𝑠 𝑑𝜇 (15)

where we used the equality∫ 1

0
𝑟 (𝑥𝑖; 𝑥𝑖)

1
𝑥𝑖

𝑑𝜇 =
1
𝑥𝑖

∫ 1

0

∫ 𝑥𝑖

0
𝑟 (𝑥𝑖; 𝑥𝑖)

1
𝑥𝑖

𝑑𝑥𝑠 𝑑𝜇 .

A Monte Carlo approximation for (15) results in

𝑆𝑁
Mall =

𝑄0
𝑁

𝑁∑︁
𝑛=1

exp
(
− 𝜎𝑎,2

𝑥𝑟 − 𝑥𝑖

𝜇𝑛

) 1
𝑥𝑖

+ 𝑄0
𝑁

𝑁∑︁
𝑛=1

𝑅(𝜉𝑛𝑥𝑖; 𝑥𝑖)
(𝜎𝑎,2 − 𝜎𝑎,1

𝜇𝑛
− 1
𝑥𝑖

)
(16)

where the third term of (15) exploits the approximation of (10) by (11). Note that both terms in the latter
parentheses have units of reciprocal length and the exponential in the first term is the probability that the
particle survives to 𝑥𝑟 given that it starts at 𝑥𝑖. We also remark that the approximation is a naı̈ve Monte
Carlo approach for the Malliavin sensitivity.

In contrast, a weighting consistent with the Malliavin approach using (8), i.e.,

d𝐽
d𝑥𝑖

= 𝑄0
d

d𝑥𝑖

∫ 1

0

∫ 𝑥𝑖

0

𝑡 (𝑥𝑠; 𝑥𝑖)
𝑥𝑖

𝑑𝑥𝑠 𝑑𝜇

stumbles into difficulties similar to those encountered by the differential operator approach; see (12). The
Malliavin counterpart to (14) is

𝑆𝑁
Mall =

𝑄0
𝑁

𝑁∑︁
𝑛=1

exp
(
− 𝜎𝑎,2

𝑥𝑟 − 𝑥𝑖

𝜇𝑛

) 1
𝑥𝑖

+ 𝑄0
𝑁

𝑁∑︁
𝑛=1

𝑇 (𝜉𝑛𝑥𝑖; 𝑥𝑖)
(𝜎𝑎,2 − 𝜎𝑎,1

𝜇𝑛
− 1
𝑥𝑖

)
(17)

where we assume the approximation (13) holds.

5. NUMERICAL RESULTS

To assess the accuracy and performance of these sensitivity methods, we consider a set of test problems.
Source particles are isotropic and uniformly distributed in the left region, which has a cross section of 𝜎𝑎,1.
The boundary between the two regions is at 𝑥𝑖. The right region has cross section 𝜎𝑎,2 and extends from the
boundary at 𝑥𝑖 to 𝑥𝑟 . The transmitted particle current is tallied at the 𝑥𝑟 boundary of the problem. Results
are normalized to a source strength of 𝑄0 = 1.

All test problems have a total slab width of 𝑥𝑟 = 2. The values examined for the material interface location,
𝑥𝑖, and the cross sections, 𝜎𝑎,1 and 𝜎𝑎,2, are given in Table 1. The first three test problems, with the same
cross section in both regions, are only testing sensitivity to the extent of the source region. The other six
test problems also test sensitivity due to the change in the cross section at the material interface.

5



B.C. Franke, R.B. Lehoucq, S.A. McKinley

Table 1: Parameter values for test problems.

1 2 3 4 5 6 7 8 9

𝑥𝑖 0.5 1.0 1.5 0.5 1.0 1.5 0.5 1.0 1.5

𝜎𝑎,1 1.0 1.0 1.0 0.5 0.5 0.5 2.0 2.0 2.0

𝜎𝑎,2 1.0 1.0 1.0 2.0 2.0 2.0 0.5 0.5 0.5

In Table 2 we provide semi-analytical solutions for the current, 𝐽, and sensitivity to the interface position, 𝑆,
for the test problems. The results shown in Table 3 are the senstivities calculated using the differential op-
erator method, 𝑆DO, and the Malliavin method, 𝑆Mall. The standard deviations of the mean for the estimated
sensitivities are provided as 𝜎𝑆DO and 𝜎𝑆Mall . These estimated statistical errors indicate that both methods
provide estimates of the sensitivity that are in statistical agreement with the solutions in Table 2. Further, we
observe that the two methods provide different levels of statistical uncertainty, indicating that for different
problems one of the methods will have an advantage over the other in terms of computational efficiency.
That is, one method will reach a specific level of statistical uncertainty with fewer particles simulated and
less computational expense than the other.

The results shown in Table 4 are the senstivities calculated using the 𝑇𝑛 simulation method instead of the 𝑅𝑛

method. Again, results are given for both the differential operator method, 𝑆DO, and the Malliavin method,
𝑆Mall. As expected, the additional random sampling increases the statistical variance in both the estimation
of the current (not shown) and of the sensitivities. Despite the inconsistency between the derivation method
and the tally method, we still observe that the results are in statistical agreement with the benchmark results
and that the two sensitivity methods provide different levels of statistical uncertainty.

Table 2: Benchmark results for test problems.

1 2 3 4 5 6 7 8 9

𝐽 0.05321 0.07956 0.12765 0.00917 0.02768 0.09127 0.11353 0.10265 0.10602

𝑆 0.03977 0.06894 0.13266 0.01972 0.06307 0.23080 -0.04025 -0.00615 0.01953

Table 3: Results for test problems using 𝑅𝑛 tally estimators.

1 2 3 4 5 6 7 8 9

𝑆DO 0.03977 0.06875 0.13242 0.01972 0.06306 0.23056 -0.04017 -0.00599 0.01946

𝑆Mall 0.03982 0.06900 0.13279 0.01969 0.06324 0.23093 -0.04004 -0.00608 0.01981

𝜎𝑆DO 0.00005 0.00009 0.00017 0.00002 0.00007 0.00020 0.00010 0.00009 0.00011

𝜎𝑆Mall 0.00004 0.00006 0.00009 0.00002 0.00006 0.00018 0.00024 0.00032 0.00045
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Table 4: Results for test problems using 𝑇𝑛 tally estimators.

1 2 3 4 5 6 7 8 9

𝑆DO 0.03925 0.06867 0.13248 0.01965 0.06310 0.23039 -0.04181 -0.00686 0.01871

𝑆Mall 0.03954 0.06882 0.13199 0.01956 0.06348 0.23214 -0.04029 -0.00597 0.01934

𝜎𝑆̃DO
0.00044 0.00026 0.00022 0.00004 0.00018 0.00049 0.00131 0.00100 0.00101

𝜎𝑆̃Mall
0.00020 0.00028 0.00042 0.00021 0.00039 0.00078 0.00030 0.00023 0.00023

6. CONCLUSIONS

We have compared the differential operator method, which has been widely used within the transport com-
munity, with the Malliavin sensitivity method on a non-scattering transport problem, Numerical results
demonstrated that the two methods provided estimates of the sensitivity that were in statistical agreement
with analytical results. In some cases the Malliavin sensitivity calculations provided improved computa-
tional efficiency. These efficiency gains indicate that the method warrants further investigation. Future
work that extends these sensitivity evaluations to more general transport problems that include scattering is
desirable as is investigation of the consequence of applying Monte Carlo approximation to fundamentally
distinct tallies; see the discussion following (8). In general, conditions for the convergence of the sensitivity
estimators to the derivative of the expectations, and whether the same weightings can be used given the
distinct tallies would benefit from a further analyses.
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