

**Proceedings of the 20th International  
Symposium on the Packaging and  
Transportation of Radioactive Materials**



**11-15 June 2023, Juan-les-Pins, France**

**FIRST DO NO HARM: A WHOLISTIC APPROACH TO IDENTIFYING FEASIBLE  
COMMERCIAL CORROSION MITIGATION COATINGS FOR USE ON SPENT NUCLEAR  
FUEL STORAGE CANISTERS**

**<sup>1</sup>B.L. Nation**

**<sup>1</sup>A.W. Knight**

**<sup>1</sup>M. Maguire**

**<sup>1</sup>E.K. Karasz**

**<sup>1</sup>C.R. Bryan**

**<sup>1</sup>R. F. Schaller**

**<sup>1</sup>Sandia National Labs**

## **INTRODUCTION**

In 2020, a literature review was performed to determine coating materials that would be able to survive the harsh conditions present during interim storage [1]. The materials surveyed included a range of polymer, ceramic, conversion, and sprayed metallic coatings. The report did not find any single coating technology that had been previously demonstrated in this application but identified the most feasible candidate materials for use as corrosion mitigation on spent nuclear fuel canisters were epoxies, polyethylene, some rubber compounds, cold sprayed metallic coatings, sol-gel ceramic coatings and phosphate conversion coatings. Three application scenarios were also identified for when a possible technology may be employed for use on an SNF canister; *ex situ* mitigation, *ex situ* repair, and *in situ* repair. *Ex situ* mitigation is defined as a situation in which mitigation coatings could be applied on new canisters before loading with SNF. This application scenario results in the highest thermal, radiological, and mechanical requirements that the coating must survive. *Ex situ* repair is an application scenario in which coatings could be applied to canisters that have been removed from their overpacks after having been in interim storage for a number of years. This application scenario subjects the coating to lower thermal and radiological stresses but could require a coating with good mechanical properties to be able to survive replacement into the overpack. *In situ* repair is an application scenario in which coatings are applied robotically in the annulus between the overpack and the outer surface of the canister (~6 in). Access restrictions in the overpack make this application scenario challenging and prevents the use of complicated cleaning or application processes [1].

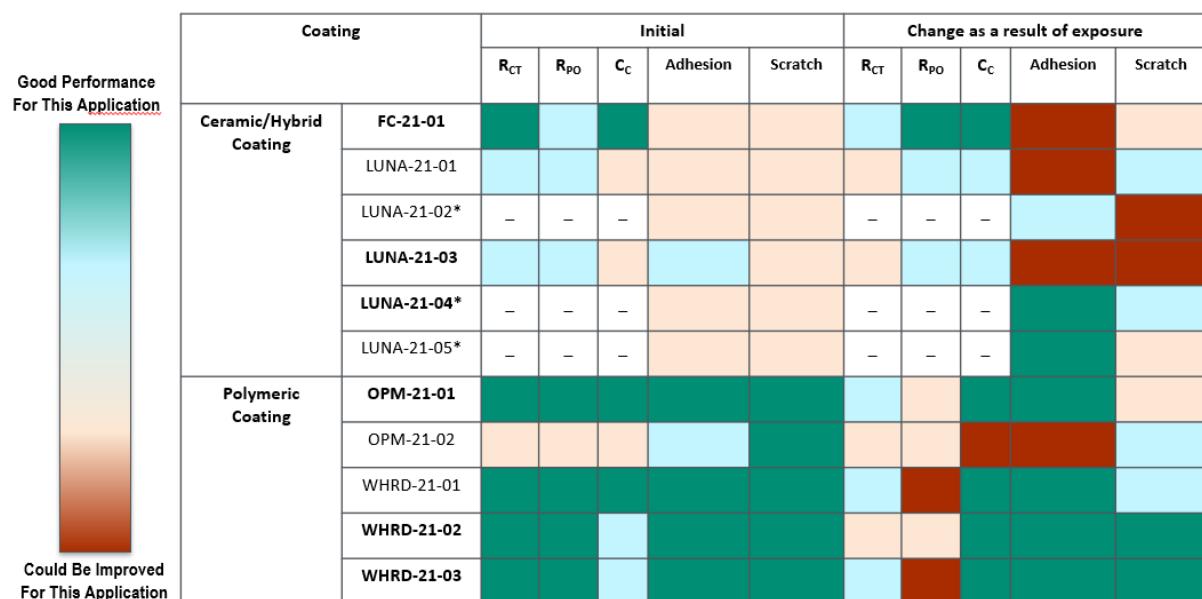
Cold spray coatings have been studied for use on spent nuclear fuel canisters and been shown to be a promising option for future mitigation and repair needs [2]. Cold spray coatings have extremely high adhesion strengths and, due to their metallic nature, are inherently mechanically, thermally, and radiologically robust [3] which could make them ideal repair and mitigation coating systems. Robotic traversal of the overpack outlet vents and *in situ* application of cold spray coatings has been previously shown to be feasible [1, 4], which may be required when performing repair activities. Cold spray coatings applied to metallic substrates may be vulnerable to galvanic corrosion at the boundary of the repair patch where the coating meets the substrate [5]. The coating surface finish and density have also been shown to impact the corrosion resistance of the coating [5]. Results to date of cold spray studies have been previously summarized in Karasz et. al(2022) [6], thus the data presented herein will focus on the other aforementioned coating technologies.

11-15 June 2023, Juan-les-Pins, France

## RESULTS

### Phase 1: Electrochemical and Mechanical Tests

In 2021, a collaborative working agreement between US commercial coatings vendors and Sandia National Labs was established to identify existing commercial coatings that were potential candidates for use in this application. The criteria for selection included ease of applicability (such as spray or roll-on coatings), curing temperatures, outgassing behavior, and the industrial maturity of the coating system. A multi-year, phased testing approach was developed in which more elaborate, expensive, or time-consuming tests would be performed on coatings that showed promise and were down selected into later test phases, thereby allowing concentration of experimental resources towards variants that had a high likelihood of performing well in the interim storage environment.


Four vendors were initially identified for Phase 1 tests including Luna Labs, Flora Coatings, White Horse R&D, and Oxford Performance Materials. These four vendors provided 11 candidate coating variants for initial evaluation (see Table 1).

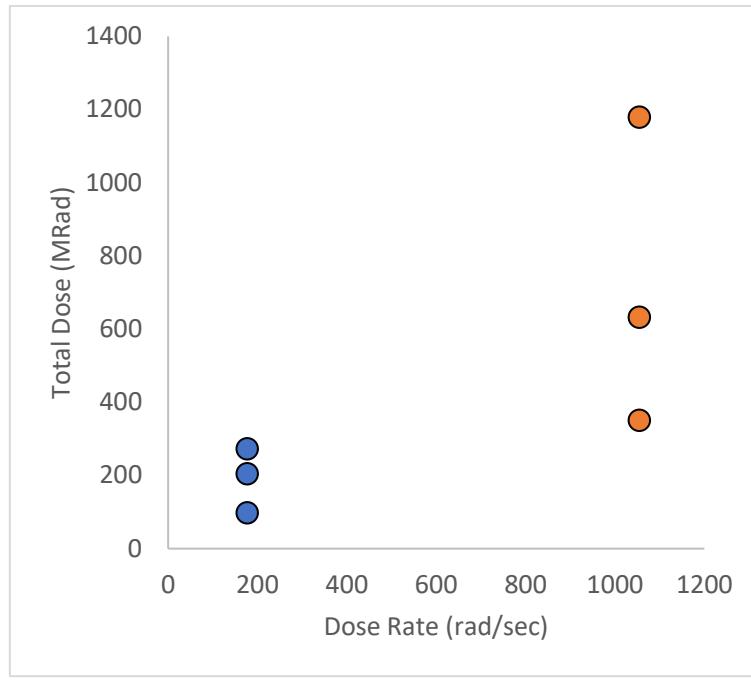
**Table 1. Coating variants provided by vendors and their alphanumeric nomenclature.**

| Vendor                       | Coating                                                                                | Phase 1 Nomenclature        | Phase 2 Nomenclature        |
|------------------------------|----------------------------------------------------------------------------------------|-----------------------------|-----------------------------|
| EXAMPLE                      | EXAMPLE                                                                                | VENDOR-YEAR-VARIANT-COUPON# | VENDOR-YEAR-VARIANT-COUPON# |
| Oxford Performance Materials | Polyetherketoneketone (dip cast)                                                       | OPM-21-01-XX                | OPM-23-01-XX                |
| Oxford Performance Materials | Polyetherketoneketone (solution cast)                                                  | OPM-21-02-XX                | n/a                         |
| White Horse R&D              | Modified Polyimide-Polyurea-Phenolic Resin (no filler)                                 | WHRD-21-01-XX               | n/a                         |
| White Horse R&D              | Modified Polyimide-Polyurea-Phenolic Resin (filler)                                    | WHRD-21-02-XX               | WHRD-21-02-XX               |
| White Horse R&D              | Modified Polyimide-Polyurea-Phenolic Resin (most filler)                               | WHRD-21-03-XX               | WHRD-21-03-XX               |
| Luna Labs                    | Hybrid Ceramic V1                                                                      | LUNA-21-01-XX               | n/a                         |
| Luna Labs                    | Hybrid Ceramic V1 + Zn-Rich Primer                                                     | LUNA-21-02-XX               | n/a                         |
| Luna Labs                    | Hybrid Ceramic V2                                                                      | LUNA-21-03-XX               | LUNA-23-03-XX               |
| Luna Labs                    | Hybrid Ceramic V1 + Zn-Rich Primer                                                     | LUNA-21-04-XX               | LUNA-23-04-XX               |
| Luna Labs                    | Bare Zn-Rich Primer                                                                    | LUNA-21-05-XX               | n/a                         |
| Flora Coatings               | Hybrid single-component inorganic/modified polyurethane with a quasi-ceramic structure | FC-21-01-XX                 | FC-23-01-XX                 |
| TDA Research                 | S-W Macropoxy 646N (polyamide epoxy) with an inhibitor package                         | N/A                         | TDA-23-01-XX                |
| TDA Research                 | S-W Zinc Clad II with an inhibitor package                                             | N/A                         | TDA-23-02-XX                |

11-15 June 2023, Juan-les-Pins, France

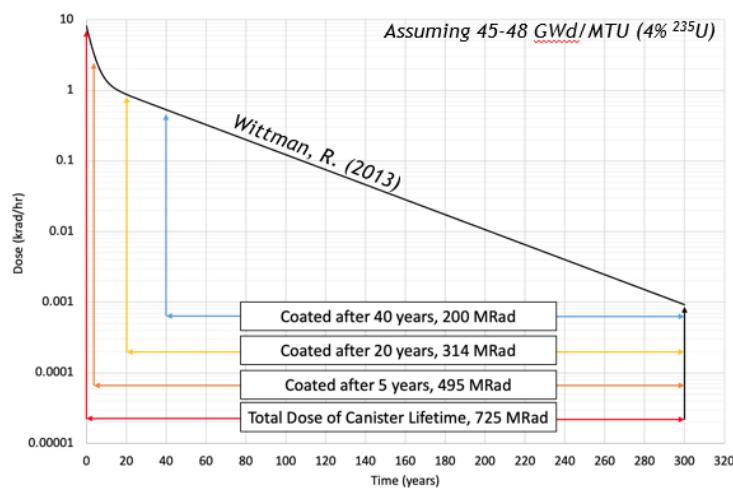
The coatings were applied by each vendor on stainless steel coupons and returned to SNL for evaluation in simulated corrosion conditions. During Phase 1, Electrochemical Impedance Spectroscopy (EIS) tests to evaluate corrosion resistance in relevant brine (chloride) environments over time were performed. A qualitative summary of the EIS results pre and post exposure, namely the charge transfer resistance ( $R_{CT}$ ), the pore resistance ( $R_{PO}$ ), the coating capacitance ( $C_c$ ), are provided in Figure 1. Additionally, a suite of mechanical tests (such as ASTM D4541 pull-off adhesion testing [7] and ASTM D7027 scratch testing [8]) were conducted and results are also presented in Figure 1. Each coating vendor had at least one candidate coating that performed well in these tests. After Phase 1 tests were completed, a qualitative comparison was performed to determine which coating variant would be down selected for additional testing in Phase 2 (Figure 1). The results and analysis were documented in detailed reports [9, 10].




- EIS of coatings with Zn-rich primer need to be reevaluated with a different equivalent circuit
- **BOLD** coatings have been selected (with modifications) for more rigorous testing.

**Figure 1 Qualitative comparison of coating performance before and after environmental exposure on Phase 1 coating variants. Variants selected for Phase 2 testing are bolded.**

### Phase 2: Radiation and Thermal Tests


During Phase 2 tests, the down selected coating variants were subjected to radiolytic and thermal exposures designed to simulate potential SNF storage relevant conditions that might influence the corrosion mitigation functions of the coatings (*i.e.* high doses of radiation up to  $>730$  Mrad [11] and prolonged exposure to temperatures exceeding  $220^\circ\text{C}$  [12]). A new company was also added to the project; TDA Research which provided an epoxy coating and a zinc rich primer coating (TDA-23-01 and TDA-23-02 respectively). Sandia National Lab's Gamma Irradiation Facility was used to expose six sets of samples to five different radiation doses using two different dose rates. Two sets of samples were exposed to the same total dose of  $\sim 350$  Mrad at two different exposure rates which allowed the simultaneous study of dose rate effects and total dose effects (Figure 2). A linear  $^{60}\text{Co}$  array was used to achieve an exposure rate of 176 rad/sec (silicon) and a circular  $^{60}\text{Co}$  array was used to achieve a higher rate of 1054 rad/sec (silicon). Expected dose rates on a loaded canister was calculated to be 2-3 rad/sec initially [11] thus dose rates used in this study were highly accelerated compared to the actual application.

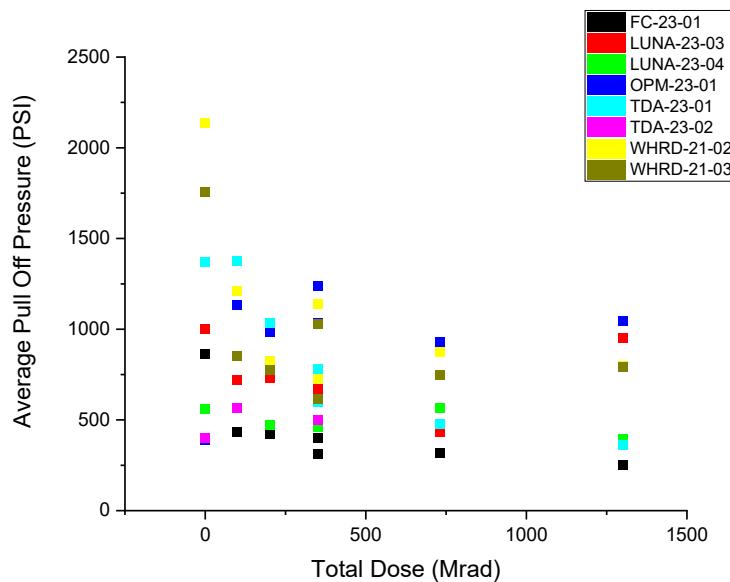
11-15 June 2023, Juan-les-Pins, France



**Figure 2 Total dose (Mrad) and dose rates (rad/sec (Si)) of study performed on coating variants at SNL's Gamma Irradiation Facility.**

The total doses used in the irradiation study were selected based on calculations of gamma ray fluence at the surface of a canister storing commercial spent nuclear fuel with a burnup of 45-48 GWd/MTU (4%  $^{235}\text{U}$ ) [11]. They were also based on canister inspection intervals which would occur during the lifetime of a canister (such as the initial inspection after 20 years in interim storage). Depending on when a canister was coated, the total dose the coating would experience would vary. A coating applied to a new canister, before or immediately after placement into storage would experience the highest total dose. Conversely, a coating applied to a canister after decades of storage would receive a significantly lower dose. These intervals can be seen in Figure 3.




**Figure 3 Calculated radiolytic dose rate as a function of time after loading with commercial spent nuclear fuel. Modified from [11].**

The impact of radiolytic exposure on the mechanical integrity of the coating variants was evaluated using ASTM D4541 [7] adhesion testing (Figures 4 and 5) and nanoindentation (Figure 6 and Table 2). Previous studies have shown evidence of radiation interaction with polymeric materials resulting in cross-linking (hardening) or chain scission (softening) [13] of the polymer chains.

11-15 June 2023, Juan-les-Pins, France

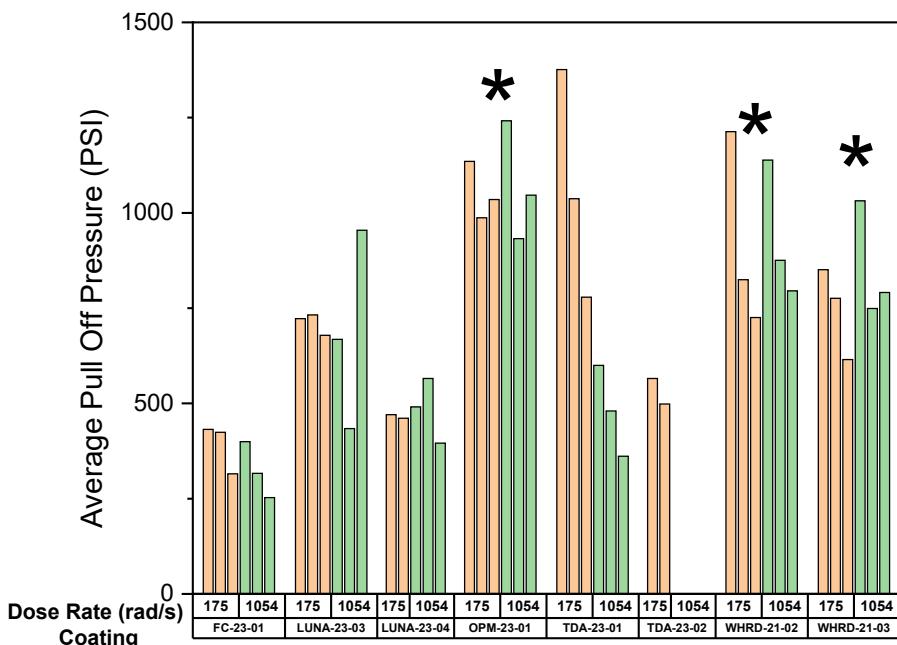

These interactions should result in increasing or decreasing adhesion strengths as well. The high dose rates (especially compared to the actual fluence on the canister surface) may result in hardening or softening phenomena which may not occur on a canister due to the highly accelerated nature of this experiment. The implications of these effects have not yet been fully explored.

Figure 4 shows the average pull-off pressure as a function of radiolytic dose. Samples were also tested in baseline to measure the unirradiated adhesion strength. Overall, the adhesion pressure appears to decrease with increasing dose. This may be due to chain scission in the polymers that comprise the coatings [13]. WHRD-21-02 and WHRD-21-03 exhibited type 2 failure (failure within the coating) after radiolytic exposure. OPM-23-01 exhibited a type 3 failure mode (failure between the test dolly/epoxy and the coating surface). The decrease in OPM-23-01 pull-off values indicates that the adhesion of the epoxy to the coating surface is dependent on the radiolytic exposure, possibly meaning that chemical changes are occurring on the surface (such as reactions with ambient moisture or oxygen). The remaining datasets exhibited cohesive or adhesive failure modes.



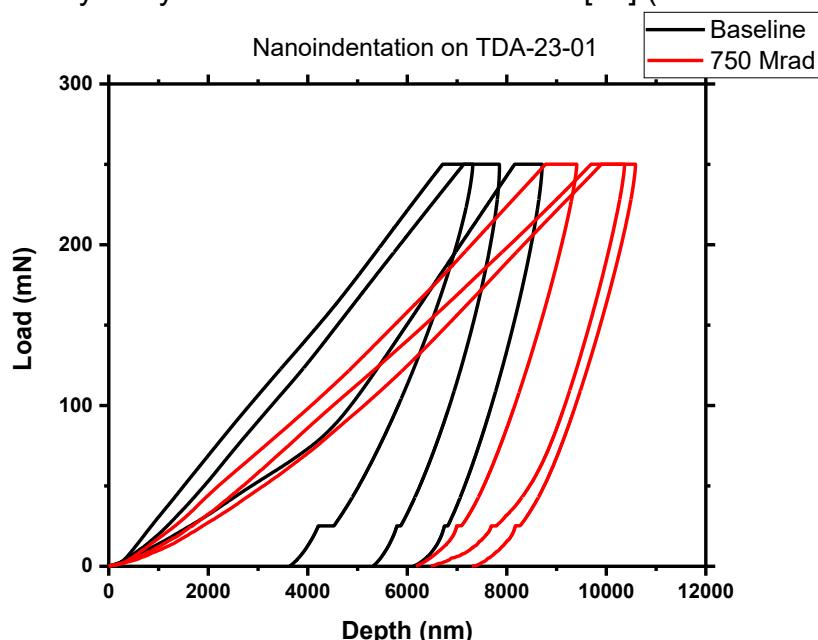

**Figure 4 Average adhesion pull-off pressure (PSI) as a function of total dose in megarad. Samples with zero dose were baseline measurements. OPM-23-01 exhibited a type 3 failure mode while WHRD-21-02 and WHRD-21-03 exhibited type 2 failure mode.**

Figure 5 shows a dose rate comparison of the average pull-off pressure on the coatings. Overall, there are no clear trends that indicate a strong dose-rate dependence for adhesion. OPM-23-01 exhibited a type 3 failure mode (failure between the test dolly and the coating surface) while WHRD-21-02 and WHRD-21-03 exhibited a type 2 failure mode (failure within the coating). The remaining datasets exhibited cohesive or adhesive failure modes.

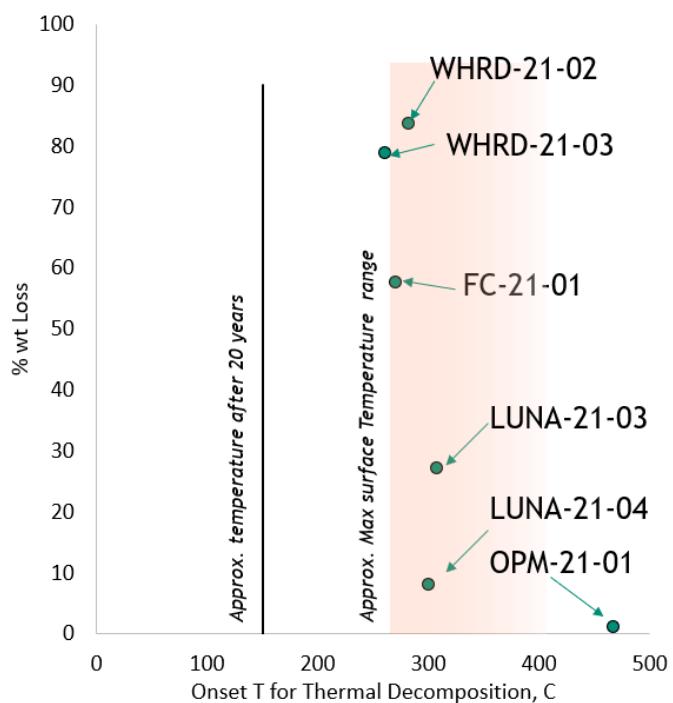


**Figure 5 Dose rate comparison of average pull-off pressure for all coatings.**  
Three datasets are marked (\*) to denote that OPM-23-01 exhibited a type 3 failure mode while WHRD-21-02 and WHRD-21-03 exhibited type 2 failure mode.

Nanoindentation was performed on all coatings. Figure 6 shows the load-displacement curves of TDA-23-01 before and after exposure to 750 Mrad. After exposure, the stiffness of the coating decreased substantially likely as a result of chain scission [13] (also seen in Table 2).



**Figure 6 Load-displacement curves for baseline and irradiated TDA-23-01.**


11-15 June 2023, Juan-les-Pins, France

**Table 2 Nanoindentation Average Hardness and Modulus for Coatings**

| Coating   | Dose (Mrad) | Dose Rate (rad/s) | Modulus (GPa) | Hardness (MPa) |
|-----------|-------------|-------------------|---------------|----------------|
| TDA-23-01 | 0           | 0                 | 4.68          | 362            |
| TDA-23-01 | 750         | 1054              | 3.498         | 200            |

The approximate temperature of the outer surface of canisters has been modeled for vertical and horizontal canisters in interim storage as a function of storage time. Canister surface temperatures can exceed 220°C immediately after loading. After 20 years, some locations on the canister still exceed 150°C in some locations on the canister [12]. Phase 2 coating variants were evaluated against these two application intervals and their respective calculated surface temperatures. The temperatures which a coating must be able survive is then highly dependent on when the coating is applied during the canister storage lifetime.

Thermogravimetric analysis (TGA) was used to determine the onset of thermal decomposition temperature of the Phase 2 coating variants (Figure 7). A small amount of coating (~10mg) was removed from the coating substrate and heated at 10°C/min to 500°C in air while measuring mass against an empty alumina crucible. Three coatings did not experience onset of thermal decomposition at the expected canister surface temperature of 230°C, while three coatings (WHRD-21-02, WHRD-21-03, and FC-21-01) did. While these did not survive higher heat loads, these coatings could still be of interest for ex-situ repair scenario in which coatings are applied to canisters which have cooled for at least 20 years. Additionally, further research is necessary to determine potential effects on coatings decomposition when examined at various thermal ramp rates and/or aging for prolonged periods at canister relevant temperatures.



**Figure 7 Thermogravimetric data expressed as weight loss (due to outgassing or decomposition) as a function of onset temperature.**

11-15 June 2023, Juan-les-Pins, France

## CONCLUSIONS

Eleven candidate coatings were subjected to electrochemical and mechanical tests under environmental, radiological, and thermal exposure conditions to determine the feasibility of use on spent nuclear fuel storage canisters. After an initial round of electrochemical and mechanical tests on unexposed coupons, a small down selection was performed. The second round of testing included exposure to radiation which caused softening and a decrease in adhesion strength in some of the coatings. Three coatings showed lower onset of thermal decomposition but generally all materials displayed good thermal resistance under the conditions examined. Future work will include further investigation of mechanical properties after thermal and radiological exposures.

## ACKNOWLEDGMENTS

The authors would like to acknowledge the efforts of Samay Verma to obtain the adhesion data, Melissa Mills for nanoindentation and the commercial partners involved in this project (White Horse R&D, Luna Labs, TDA Research, Flora Coatings, and Oxford Performance Materials) for their generosity of time and materials.

This article has been authored by an employee of National Technology & Engineering Solutions of Sandia, LLC under Contract No. DE-NA0003525 with the U.S. Department of Energy (DOE). The employee owns all right, title and interest in and to the article and is solely responsible for its contents. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this article or allow others to do so, for United States Government purposes. The DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan <https://www.energy.gov/downloads/doe-public-access-plan>. SAND23-xxxxxx

## REFERENCES

1. Knight, A.W., et al., *Corrosion-Resistant Coatings for Mitigation and Repair of Spent Nuclear Fuel Dry Storage Canisters*, S.F.a.W. Disposition, Editor. 2020.
2. Ross, K., et al., *M3SF-20PN010207091 Investigation of Cold Spray as a Dry Storage Canister Repair and Mitigation Tool*, U.D. SFWST, Editor. 2020, Pacific Northwest National Laboratories: Richland, WA.
3. Ross, K.A., et al., *Assessment of Cold Spray Technology for Nuclear Power Applications*, U.D. NRC, Editor. 2021, Pacific Northwest National Laboratory: Richland, WA.
4. Bryan, C.R., et al., *Innovative Technologies for Optical Detection of Stress Corrosion Cracks in SANDIA REPORT*. Sandia National Labs: [www.osti.gov](http://www.osti.gov). p. 75.
5. Schaller, R.F., et al., *FY22 Status Report Cold Spray for Canister SCC Mitigation and Repair*, in *US DOE SFWST*. 2022, Sandia National Labs.
6. Karasz, E.K., et al., *Accelerated corrosion testing of cold spray coatings on 304L in chloride environments*. Frontiers in Metals and Alloys, 2022. 1.
7. ASTM International, *D4541 – 17: Standard Test Method for Pull-Off Strength of Coatings Using Portable Adhesion Testers*. 2017.

11-15 June 2023, Juan-les-Pins, France

8. ASTM international, *D7027 – 13: Standard Test Method for Evaluation of Scratch Resistance of Polymeric Coatings and Plastics Using an Instrumented Scratch Machine*. 2013.
9. Knight, A.W., et al., *FY21 Status Report: SNF Canister Coatings for Corrosion Prevention and Mitigation*. 2021.
10. Knight, A.W., et al., *FY22 Status: CorrosionResistant Coatings on Spent Nuclear Fuel Canisters to Mitigate and Repair Potential Stress Corrosion Cracking*. 2022.
11. Whittman, R., *Radiolysis Model Sensitivity Analysis for a Used Fuel Storage Canister*. USDOE Used Fuel Disposition Campaign, 2013. **PNNL-22773, FCRD-UFD-2013-000357**.
12. Gilkey, L., et al., *M3SF-22SN010207054 FY22 Status Update: A Probabalistic Model for Stress Corrosion Cracking of SNF Dry Storage Canisters*. 2022, US DOE Office of Nuclear Energy: Sandia National Labs.
13. Shulman, H. and W.S. Ginell, *Nuclear and Space Radiation Effects on Materials*. 1970, National Aeronautics and Space Administration.