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ABSTRACT

We consider Global Sensitivity Analysis (GSA) for Monte Carlo (MC) radiation transport
(RT) applications. GSA is usually combined with Uncertainty Quantification (UQ), where
the latter (among other goals) quantifies the variability of a model output in the presence
of uncertain inputs and the former attributes this variability to the inputs. The additional
noise inherent to MC RT solvers due to the finite number of particle histories presents an
additional challenge to GSA and UQ, which are well-established for deterministic solvers.
In this contribution, we apply variance deconvolution to Saltelli’s method to address MC
RT solver noise without having to over-resolve the MC RT simulation.
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1. INTRODUCTION

Global sensitivity analysis (GSA) aims to apportion, or divide and allocate, variability in model
output to different sources of uncertainty in model input [1]. GSA is useful to understand the
relative importance of each of a model’s uncertain inputs, and their interactions with one another,
to the behavior of model output. It is typically paired with uncertainty quantification (UQ), which
deals with characterizing and propagating uncertainty sources through computational models. For
an exhaustive introduction to GSA in the scientific computing context, see Saltelli’s book [1].
This work focuses on sampling-based GSA applied to stochastic solvers, specifically Monte Carlo
radiation transport (MC RT) solvers. Typically, UQ and GSA assume that the computational model
itself is deterministic, i.e., that given identical inputs, the model will produce identical outputs.
From this assumption, it follows that any output variability characterized by UQ or apportioned by
GSA is a result of some uncertain input to the solver, not variability inherent to the solver itself.
Despite the abundant literature produced on GSA over the last few decades, there is a gap in the
quantification and control of the intrinsic randomness introduced by non-deterministic solvers.

Stochastic solvers are widely used and important for many applications depending on the infor-
mation needed by the user, the problem space, and the complexity of the modeled system. Un-
like deterministic methods, which require phase-space discretization and approximate solutions to
continuous equations, MC RT methods are event based and can faithfully model complex physics.
This makes MC RT methods well-suited to solve, for example, complicated three-dimensional,
time-dependent problems [2]. However, results from MC RT solvers are always approximate, con-
strained by the finite number of particle histories that can be used in a simulation. While it is
certainly possible to apply UQ and GSA to stochastic solvers, this invalidates the assumption that
output uncertainty can be analyzed solely in the context of input uncertainty. Statistical analysis
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can be considered “polluted” by the variability introduced by the solver itself. It is possible to
rigorously show [3,4] that the stochastic solver increases the observed model output variance, pos-
sibly causing an analyst to over-estimate the model’s response to an uncertain input. A brute-force
method to address this complication and “de-pollute” statistics of interest is to over-resolve the
stochastic solver, e.g., increase the number of particles in the simulation, until the solver variance
is rendered negligible compared to the effects of the uncertain inputs [5]. Resolving stochastic
models to this extent is already computationally expensive and folding that into the UQ and GSA
workflow, which requires repeated evaluation of numerical codes, increases the computational ex-
pense to the point of intractability. Our goal is to gain an understanding of how GSA can be
performed in the context of MC RT solvers by explicitly accounting for the stochastic variability
they introduce.

This work builds on a recently-derived variance deconvolution approach [3,4]. We have intro-
duced variance deconvolution to quantify the variance contribution from a stochastic solver and
effectively remove it from the total polluted variance, accurately estimating the desired variance
induced by uncertain input parameters (referred to from here as parametric variance). This is far
more cost effective than the brute-force approach, and uses an unbiased estimator for the variance
introduced by the solver and for the parametric variance. We apply this variance deconvolution
UQ workflow here to MC RT problems, but as we will show, the method is not specific to radi-
ation transport and is widely applicable to stochastic solvers. Also in recent work, we integrated
variance deconvolution in sampling-based GSA for stochastic media [6] and surrogate [7,8] ap-
proaches. Detailed derivation and analysis for UQ with variance deconvolution is available in [4],
and is summarized below. In this paper, we apply variance deconvolution to a general GSA case
and compare its performance to the straightforward application of Saltelli’s method, without any
particular correction for the solver’s noise.

2. Global Sensitivity Analysis: Background Theory

We consider a generic QoI Q = Q (ξ), which expresses a mapping from the vector of d uncertain
input parameters ξ ∈ Ξ ⊂ Rd, with joint probability density function (PDF) p(ξ), to scalar Q. In
standard UQ, we are concerned with estimating statistics for Q with respect to the input parameters,
e.g. moments like the mean and variance:

Eξ [Q] ≜
∫
Ξ

Q(ξ)p(ξ)dξ and Varξ [Q] ≜
∫
Ξ

(Q(ξ)− Eξ [Q])2 p(ξ)dξ. (1)

In this work, we consider variance-based GSA *, quantifying the uncertainty of model output by
studying how each parameter (or group of parameters) ξi affects the output’s variance. We start by
considering that ξi is fixed to some value in its PDF ξ∗i . To compute the mean of Q conditional
on ξi = ξ∗i , we take the expected value of Q over all parameters except ξi, denoted ξ∼i. The
conditional variance over all possible values of ξ∗i , Varξi

[
Eξ∼i

[
Q | ξi

]]
≜ Vi, is known as the

first-order effect of ξi on Q, a measure of the variance introduced by parameter ξi. To simplify
notation, we write this as Var [E [Q | ξi]], where the parameters of integration can be assumed
from the fixed parameter. We can also consider higher order effects, known as interaction effects,
which captures that Q’s response to a set of parameters cannot be fully described by the sum of
their individual first-order effects. For example, the second-order effect of the pair (ξi, ξj) can be

*We limit ourselves here to variance-based strategies, although other approaches are also possible [9,10].
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written using Sobol’s decomposition [11] by removing their individual first-order effects from their
joint effect, Vij = Var [E [Q | ξi, ξj]] − Vi − Vj . While Vi is a measure of the effect of ξi on Q,
the second-order effect Vij is a measure of the effect of the interaction between ξi and ξj on Q.

Sensitivity indices, sometimes referred to as Sobol’ indices (SI), provide a measure of how impor-
tant a parameter (or set of parameters) is in contributing to the overall variance. This sensitivity
can range between 0 and 1, where importance increases as a SI approaches 1. A SI can be com-
puted for any of a parameter’s arbitrary-order effects. We are typically interested in computing the
first-order SI Si and total SI ST i,

Si =
Varξi

[
Eξ∼i

[
Q | ξi

]]
Varξ [Q]

, ST i = 1−
Varξ∼i

[
Eξi

[
Q | ξ∼i

]]
Varξ [Q]

, (2)

where total SI accounts for the individual effect of ξi and all of its interaction effects. For a model
with three uncertain input factors, the total effect SI of ξ1 is the sum of its first-order, second-order,
and third-order SIs, ST1 = S1 + S12 + S13 + S123.

2.1. Saltelli’s method

Saltelli introduced a widely used sampling method [1] that provides the benchmark for any sub-
sequent GSA development, which we briefly summarize here. Assuming d random inputs and N
sampling realizations, Saltelli’s algorithm reads as follows:

1. Define two (N, d) matrices, A and B, which contain independent input samples.

A =

 ξ
(1)
1 · · · ξ

(1)
i · · · ξ

(1)
d

... . . . ...
ξ
(N)
1 · · · ξ

(N)
i · · · ξ

(N)
d

 , B =

ξ
(1)
d+1 · · · ξ

(1)
d+i · · · ξ

(1)
2d

... . . . ...
ξ
(N)
d+1 · · · ξ

(N)
d+i · · · ξ

(N)
2d

 . (3)

2. For each ith random input, define a matrix Ci using all columns of B except for the ith
column, which comes from A.

Ci =

ξ
(1)
d+1 · · · ξ

(1)
i · · · ξ

(1)
2d

... . . . ...
ξ
(N)
d+1 · · · ξ

(N)
i · · · ξ

(N)
2d

 . (4)

3. Compute model output for A, B, and all Ci to obtain vectors of model output y of dimension
(N, 1).

4. Estimate the first-order and total sensitivity indices via sampling:

Si =
Var [E [Q | ξi]]

Varξ [Q]
≈

1
N

∑N
j=1 y

(j)
A y

(j)
Ci

−
(

1
N

∑N
j=1 y

(j)
A

)2
1
N

∑N
j=1

(
y
(j)
A

)2
−
(

1
N

∑N
j=1 y

(j)
A

)2 , (5)

STi
= 1− Var [E [Q | ξ∼i]]

Varξ [Q]
≈ 1−

1
N

∑N
j=1 y

(j)
B y

(j)
Ci

−
(

1
N

∑N
j=1 y

(j)
A

)2
1
N

∑N
j=1

(
y
(j)
A

)2
−
(

1
N

∑N
j=1 y

(j)
A

)2 . (6)

While in this paper we only consider the baseline Saltelli method as in [1], a number of modifica-
tions and extensions have been made to the method, for example as discussed in [11].
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3. Computing Sobol’ indices with stochastic solvers

The Saltelli method is well-established when the computational model is deterministic. We pro-
pose a modified application of the Saltelli method for use with stochastic computational models by
applying variance deconvolution.

When the computational model is a stochastic solver, the QoI Q can only be approximated by
averaging a finite number of elementary event realizations f (see [4] for details). For instance,
in MC RT applications, we indicate with f an event resulting from a single particle history, and
approximate Q using Nη particle histories:

Q(ξ) ≜ Eη [f(ξ, η)] ≈
1

Nη

Nη∑
j=1

f(ξ, η(j)) ≜ Q̃Nη(ξ). (7)

The additional variable η is introduced only to notionally represent the randomness in a MC RT
solver. In practice η, unlike ξ, is neither controlled nor assumed to be known, and merely reflects
that even for identical systems defined by the same ξ, individual particle histories will follow
different trajectories. Because Q is approximated by Q̃Nη , parametric variance is not directly
accessible. With the variance deconvolution approach [4], we approximate the parametric variance
Varξ [Q] from observable quantities via Eq. (8), where Var

[
Q̃Nη

]
represents the total variance

(polluted by the MC RT noise) and Eξ

[
σ2
η

]
represents the average contribution from the solver’s

stochasticity σ2
η ≜ Varη [f ]

Varξ [Q] = Var
[
Q̃Nη

]
−

Eξ

[
σ2
η

]
Nη

. (8)

In [6], we applied this variance deconvolution strategy to GSA in the case where the QoI was the
conditional expectation of Q over stochastic media realizations. Here, we focus on the general
case, wherein we desire to compute first-order and total SIs (Eq. (2)) for the QoI Q but can only
access Q̃Nη . We develop an expression for the first-order effect Var [E [Q | ξi]] by first applying
the law of total variance to the polluted total variance,

Var
[
Q̃Nη

]
= Varξi

[
Eξ∼i,η

[
Q̃Nη

]]
+ Eξi

[
Varξ∼i,η

[
Q̃Nη

]]
. (9)

We apply variance deconvolution and the law of total variance as needed and, after a few manipu-
lations, arrive at an expression for the first-order effect of ξi,

Varξi
[
Eξ∼i

[
Q
]]

= Var
[
Q̃Nη

]
− Eξi

[
Varξ∼i

[
Q̃Nη

]]
, (10)

where we have refrained from including the full derivation details in the interest of space. It follows
that the first-order effect of ξ∼i, needed to compute the total SI, can be written

Varξ∼i

[
Eξi

[
Q
]]

= Var
[
Q̃Nη

]
− Eξ∼i

[
Varξi

[
Q̃Nη

]]
. (11)

When applying variance deconvolution to UQ [4], we computed the parametric variance by re-
moving the average solver variance from the total polluted variance. Applied here for GSA, how-
ever, we do not need to explicitly compute the average solver variance to compute the paramet-
ric conditional variances. Instead, we do so by removing the polluted conditional means, e.g.,
E
[
Var

[
Q̃Nη |ξi

]]
from the total polluted variance.
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3.1. Modifying Saltelli’s method for stochastic solvers

We use the sampling scheme from Saltelli’s method to compute sample estimates of Eqs. (10)
and (11), analogous to the sampling estimators in Eqs. (5) and (6) for the deterministic-solver case.
We consider matrices of random numbers A, B, and Ci as defined in Eqs. (3) and (4), and output
vectors ỹA, ỹB, and ỹCi

that contain outputs of an MC RT solver Q̃Nη (ξ1, . . . , ξd). The only new
information to collect for our modification is a vector of solver variances

ỹσ2
η ,A

≜


σ̂2
η

(
ξ
(1)
1 , · · · , ξ(1)i , · · · , ξ(1)d

)
σ̂2
η

(
ξ
(2)
1 , · · · , ξ(2)i , · · · , ξ(2)d

)
...

σ̂2
η

(
ξ
(N)
1 , · · · , ξ(N)

i , · · · , ξ(N)
d

)

 , (12)

where σ̂2
η is the sampling estimator for σ2

η ,

σ̂2
η

(
ξ(k)
)
≜

1

Nη

Nη∑
j=1

(
f
(
ξ(k), η(j)

)
− Q̃Nη

(
ξ(k)
))2

. (13)

We define sampling estimator counterparts for the terms in Eq. (10) and (11). The total polluted
variance,

Var
[
Q̃Nη

]
≈ S̃2 ≜

1

N − 1

N∑
j=1

(
ỹ
(j)
A −

N∑
k=1

ỹ
(k)
A

)2

, (14)

is used to estimate the parametric variance,

Varξ [Q] ≈ S2 ≜ S̃2 − 1

NηNξ

N∑
j=1

ỹ
(j)

σ2
η ,A

. (15)

We estimate the conditional variances as

Varξ∼i

[
Q̃

(j)
Nη

]
≈
(
S̃2
ξ∼i

)(j)
≜
(
ỹ
(j)
A

)2
+
(
ỹ
(j)
Ci

)2
−

(
ỹ
(j)
A + ỹ

(j)
Ci

)2
2

, (16)

Varξi
[
Q̃

(j)
Nη

]
≈
(
S̃2
ξi

)(j)
≜
(
ỹ
(j)
B

)2
+
(
ỹ
(j)
Ci

)2
−

(
ỹ
(j)
B + ỹ

(j)
Ci

)2
2

(17)

such that the sample estimators for first-order and total SI using stochastic solvers are:

Si =
Var [E [Q | ξi]]

Varξ [Q]
≈

S̃2 − 1
N

∑N
j=1

(
S̃2
ξ∼i

)(j)
S2

(18)

STi
= 1− Var [E [Q | ξ∼i]]

Varξ [Q]
≈ 1−

S̃2 − 1
N

∑N
j=1

(
S̃2
ξi

)(j)
S2

. (19)
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4. Results

As a test radiation transport problem, we consider a neutral-particle, attenuation-only, mono-
energetic steady-state radiation transport problem. A beam source of magnitude one is inci-
dent on a 1D slab of length 3 that is separated into three material regions. The problem QoI
Q (ξ) is transmittance through the slab. We introduce six uniformly distributed uncertain pa-
rameters, grouped into three uncertainty sources of interest: 1) Cosine of beam-source incidence
angle µ ∼ U [0.6, 1.0]; 2) Boundary locations between material regions x1 ∼ U [0.3, 1.7] and
x2 ∼ U [1.7, 2.3]; and 3) Total cross sections of the slab materials Σt,1 ∼ U [0.1, 0.9] ,Σt,2 ∼
U [0.2, 0.4] ,Σt,3 ∼ U [0.07, 1.03].

To investigate our variance deconvolution modification of Saltelli’s method (denoted Saltelli-VarD
for brevity), we compute first-order and total SIs for the three groups of parametric uncertainty with
both Saltelli-VarD and the straightforward Saltelli method. For benchmark reference solutions, we
solve for SIs using Saltelli’s method with N = 108 sample realizations, computing transmittance
analytically with optical thickness.

GSA is performed using N = Nξ sample realizations, where each model realization is a MC RT
simulation using Nη particle histories. We perform two GSA tests, one using (Nξ = 1000, Nη =
10), and another using (Nξ = 1000, Nη = 1000). We repeat this numerical experiment 1000
times to construct histograms of estimator output, shown in Figure 1. Across all of the histograms
in Figure 1, we can see that applying Saltelli’s method, developed for deterministic solvers, to a
stochastic solver does indeed produce biased results for first-order and total SI compared to the
benchmark result. This is most visible in S3 and ST1, Figures 1e and 1b. For every SI, we can
see that the Saltelli-VarD result is unbiased compared to the benchmark solution, corroborating
our theoretical finding that the conditional variance is accessible using variance deconvolution. In
using Saltelli’s method with a stochastic solver, one could increase the number of particle histories
per simulation to drive down the MC RT variance. We can see the effect of this approach looking
at the Nη = 1000 case, where we see that all of the results are converging to the benchmark
mean, confirming that over-resolving the MC RT simulation will eventually drive down the solver
variance and cause the bias term to approach 0. However, in every case, the Saltelli-VarD results
with Nη = 10 are distributed similarly to Saltelli’s method with Nη = 1000. For this particular
example problem, we observe that Saltelli-VarD produces results comparable to Saltelli’s method
with 100× fewer particles per sample. Comparing Saltelli-VarD’s Nη = 1000 results to Saltelli’s
Nη = 1000 results, we see that Saltelli-VarD achieves a much tighter distribution around the
benchmark solution for all first-order and total SIs.

To quantify these effects, we compute the mean-squared error (MSE) for both methods compared
to the benchmark result. Eq. (20) shows MSE of estimator value X̂ with respect to a known result
X , from which we can see that MSE captures both the variance and the bias of the estimator,

MSE
[
X̂
]
= E

[(
X̂ −X

)2]
= Var

[
X̂
]
+Bias2

[
X̂,X

]
. (20)

In Table 1 we compare the SIs computed with Saltelli and Saltelli-VarD (averaged over 1000
repetitions) and the benchmark SI values. Using Nη = 10, Saltelli-VarD well-approximates the
benchmark result, while Saltelli’s method has statistically significant deviation from the bench-
mark results. In Table 2, we report the variance, bias, and MSE of each SI from both methods. For
Saltelli’s method, going from Nη = 10 to Nη = 1000 does reduce the bias term, corresponding
to how one might hope to over-resolve the MC RT solution by increasing the number of parti-
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(a) First-order SI for cosine of beam incident angle (b) Total SI for cosine of beam incident angle

(c) First-order SI for material boundary location (d) Total SI for material boundary location

(e) First-order SI for total cross section (f) Total SI for total cross section

Figure 1: First-order and total sensitivity indices for the three groups of parametric
uncertainty. Comparing using the straightforward Saltelli approach and Saltelli with

variance deconvolution (Saltelli-VarD) over 1000 repetitions. MC RT simulations
performed with Sandia National Laboratories research code PlaybookMC.
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cle histories. This comparison between Nη = 10 and Nη = 1000 is for a simple 1D slab and
attenuation-only physics, and the computational cost of MC RT resolution will only increase with
problem complexity. While we do see non-zero bias results for Saltelli-VarD, the standard devi-
ation indicates zero-bias is within a 1σ confidence interval, corroborating our theoretical finding
that the Saltelli-VarD approach provides an unbiased estimate of SIs.

Table 1: Comparing Saltelli’s method to Saltelli-VarD for computing first-order and total
SIs when using a MC RT solver. Saltelli and Saltelli-VarD results averaged over 1000

repetitions, using Nξ = 1000 for every case. Results indicate mean(std dev).

Benchmark Saltelli Saltelli-VarD
Nη 10 1000 10 1000

S1 0.1824(4) 0.07(8) 0.2(1) 0.2(1) 0.18(3)
S2 0.0549(4) 0.02(9) 0.1(1) 0.0(1) 0.06(3)
S3 0.6752(2) 0.27(8) 0.66(8) 0.67(8) 0.67(2)
ST1 0.1835(8) 0.7(2) 0.2(2) 0.18(8) 0.18(5)
ST2 0.1424(8) 0.7(2) 0.2(3) 0.14(8) 0.14(5)
ST3 0.7623(7) 0.9(1) 0.8(2) 0.8(1) 0.76(4)

5. CONCLUSIONS

The Saltelli method is a well-defined approach for global sensitivity analysis (GSA), but assumes
that analysis is performed using a deterministic solver. In this paper, we consider the effects on
GSA results of using a stochastic solver, namely a Monte Carlo radiation transport solver. We have
incorporated our previously-developed variance deconvolution approach [4] to the Saltelli method
for GSA and compared its performance to the unmodified approach. Applied to a test 1D radiation
transport problem with three independent sources of parametric variance, our approach accurately
estimated first-order and total sensitivity indices for significantly less computational cost than the
unmodified Saltelli method and, for the same computational cost, out-performed the unmodified
Saltelli method in terms of accuracy.
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Table 2: MSE, variance, and bias of Saltelli and Saltelli-VarD methods. Comparing
performance using Nη = 10 to using Nη = 1000 with a constant Nξ = 1000, over 1000

repetitions.

MSE Var Bias
Nη 10 1000 10 1000 10 1000

Sa
lte

lli

S1 0.0194 0.0130 0.0068 0.0129 -0.1121 -0.0077
S2 0.0089 0.0155 0.0075 0.0155 -0.0368 -0.0006
S3 0.1693 0.0064 0.0062 0.0063 -0.4038 -0.0111
ST1 0.2626 0.0562 0.0233 0.0560 0.4892 0.0151
ST2 0.2914 0.0639 0.0252 0.0638 0.5160 0.0115
ST3 0.0396 0.0313 0.0189 0.0313 0.1437 0.0047

MSE Var Bias
Nη 10 1000 10 1000 10 1000

Sa
lte

lli
-V

ar
D

S1 0.0109 0.0010 0.0108 0.0010 -0.0099 -0.0013
S2 0.0124 0.0012 0.0123 0.0012 -0.0091 0.0008
S3 0.0066 0.0005 0.0066 0.0005 -0.0007 -0.0010
ST1 0.0064 0.0023 0.0064 0.0023 0.0004 -0.0015
ST2 0.0063 0.0024 0.0063 0.0024 0.0016 -0.0024
ST3 0.0187 0.0013 0.0186 0.0013 0.0104 0.0003
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