This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do
not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Discovery of High-Entropy Hydrides
Inspired by Machine Learning
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2 I H,@Scale: Hydrogen as a renewable energy carrier
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3 I Hydrogen use cases
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4 I Potential for materials-based hydrogen storage

o Increased capacities to meet technical targets

o Materials-based options would allow for lower pressure
storage, meaning the potential for all-metal Type | tanks
o Potential for 100 bar refueling = significant cost and energy

savings for infrastructure

Vinyl Ester Resin,
$0.68 (4%)

Other Tank
Components,
$1.54
(10%)
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chemical storage
~70-150 g H,/L
(NH,BH,)

sorbents
<70 g H,/L
(MOFs/activated C)

interstitial hydrides
~100-150 g H,/L
(LaNis)

Current technology
p (H,) =700 bar, 25 g H,/L

Key is finding the right
material to reversibly
absorb and desorb H,

complex hydrides
~70-150 g H,/L
(MgB, <-> Mg(BH,),)
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High-entropy hydrides

By mixing multiple elements in near equiatomic proportion, the configurational entropy is increased to
the level sufficient to overcome the enthalpies of intermetallics formation
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High-entropy hydrides for H, storage’-

Key concepts:
» Compositional ML models can predict critical hydride properties
» High-throughput screening and synthesis of destabilized high entropy alloy hydrides

» Can target multi-dimensional Pareto optimal materials for experiments
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, I Explainable machine learning models

(1) In(Pg,/P,) target property

(Hz Metal Hydride PCT curves h
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» Data manually accumulated from experimental
literature in HydPARK database (pre “ML days”)
» Large effort to clean, remove errors, etc.

\ » Only 400 / 2500 examples usable for ML training | )

(2) Featurization for compositional ML model
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v; = ground state vol. per atom

(3) Gradient boosting regression (GBR)

model validation and explainability
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o I ML predicts destabilization of high entropy hydrides

(1) Expanded refractory HEA search space overview:

( )

» >4 elements, approx. equimolar, defined lattice type
» Solid solution character -> compositional ML model

» Target HEA space, E = {Al,Ti,V,Cr,Zr,Nb,Mo,Pd,Hf Ta}

(i) + (g) + (g) = 672 compositions, model needed!

\

(2) Solid Solution gradient boosting classifier model

(> {SS, IM, SS+IM} experimental data from Senkov

» ~75% class-weighted accuracy on {SS, IM, SS+IM}
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» Filter candidates based on synthesizability metric

(3) Screening expanded refractory HEA space
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» Desired hydriding thermodynamics
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Experimental validation of destabilized high-entropy hydrides

AITiVNbTa & AITiVCr synthesis
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I From an expanding training dataset and increased elemental search space,
108 determine the Pareto optimal front of high-entropy hydrides

(2) Identification of ~100 Pareto optimal materials

(1) Begin augmenting training data with 4 )
most up-to-date HEA hydride literature Define objectives / quantities to maximize:
COmPosition AH | AS |In(Ps/P,) | Hwt.% | H/M T Reference \ > Optlmal thermOdynamlcs -> _lAH - 27'
Iy o7a| 903 | 641 | 1s | ior |ane| Rets » High volumetric capacity -> H/M
NBTIV, 5 ZolIf 59.1 | 874 -13.33 18 1.76 | 326.0 | Ref. 5 . . . . o
VTAITND 51| 921 | aiss | 125 | 10 |s010| Rets > High gravimetric capacity ->  Hwt%
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Tio.2833Vo.2833Nbp 2833Cr0.15 | 68.0 | 156.0 -8.67 3.2 2.04 | 160.0 Ref. 8 > = RaW materlal COSt
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11I Magnesium-containing

high-entropy hydrides

(XRD patterns of fcc hydrides
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. I Magnesium-containing high-entropy hydrides

Pre-H; exposure
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(EDS maps show no elemental segregation after cycling under hydrogen
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Conclusions:

Introduced a powerful explainable ML capability for
high-throughput screening of high-entropy hydrides

ML-directed and experimentally validated synthesis
of promising high-entropy hydride materials based on
both refractory and lightweight metals (e.g. Mg, Al)

Incorporation of magnesium increases the reversible
capacity with no phase segregation observed upon
cycling under hydrogen

This approach enables co-design of materials and
systems for various hydrogen use cases
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Zenodo database of hydrogen storage materials properties

November 15, 2022
Database for machine learning of hydrogen 156 133

. . @ Views & downloads
storage materia IS properties See more details..
Witman, Matthew; (® Allendorf, Mark; » Stavila, Vitalie
Database for machine learning of hydrogen storage materials properties

Matthew Witman?, Mark Allendorf?, Vitalie Stavila®
Indexed in

OpenAIRE

a3andia National Laboratories, Livermore, CA

Description

This ML-HydPARK dataset provides a csv file of metal hydride compositions, capacities, and thermodynamic values that
can be used as target properties for building, training, and testing machine learning models. It has been parsed and cleaned
from the DOE's original publicly available HydPARK database according to the procedure in [1] to make it more suitable for

immediate use with data-driven models. Generally, this removed duplicate entries, removed entries missing critical data, Publication date:

and attempted to fix various entries with obvious errors in the data. It is continuously updated under version control as new November 15, 2022

metal alloy hydrides are published in the open literature. Most entries contain data on the enthalpy and entropy of the DOI:

hydriding reaction, as well the maximum hydrogen capacity, for which compositional machine learning models can be
trained [1,2].

License (for files):
(4" Creative Commons Attribution 4.0 International
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