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ABSTRACT

In this paper, we highlight how computational properties of bio-
logical dendrites can be leveraged for neuromorphic applications.
Specifically, we demonstrate analog silicon dendrites that support
multiplication mediated by conductance-based input in an inter-
ception model inspired by the biological dragonfly. We also demon-
strate spatiotemporal pattern recognition and direction selectivity
using dendrites on the Loihi neuromorphic platform. These den-
dritic circuits can be assembled hierarchically as building blocks
for classifying complex spatiotemporal patterns.
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1 INTRODUCTION

Dendrites are the computational interconnects of the brain. How-
ever, they are often overlooked while modeling neuromorphic ar-
chitectures and algorithms in favor of point neurons. Biological
dendrites have demonstrated a range of nonlinear properties that
support a range of computations including direction selectivity, co-
incidence detection, spatiotemporal filtering, and segregation and
amplification of inputs, suggesting a ‘dendritic toolkit’ [15] that
offers computational richness that is yet to be effectively exploited
in neuromorphic architectures.

Nonlinear interactions between different conductances on den-
dritic branches, typically driven by synaptic input, can be used to
implement multiple logic operations [15]. This paper discusses our
ongoing work to demonstrate the efficacy of dendritic computation
for various applications for neuromorphic systems. We present two
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Figure 1: Modeling passive dendrites in silicon. (A) Illustra-
tion of a neuron with dendritic branches. Image from Alfred
Pasieka/Science Photo Library via Getty Images. (B) Passive
resistor-capacitor circuit to model a linear cable where Vinem
is the membrane potential, R,;,; is the axial resistance and
Ricakages Cleakage are the leakage resistance and capacitance
respectively. (C) Transistors used to model a passive cable in
silicon where V,;,| is the gate voltage for the axial transistor
and Vi, is the gate voltage for the leakage transistor.

examples of leveraging properties of biological dendrites to imple-
ment neural-inspired algorithms on neuromorphic architectures.
First, we have recently proposed shunting inhibition as a mecha-
nism to do multiplication ‘cheaply’ in silicon dendrites [4]. Here
we demonstrate leveraging dendritic multiplication to implement
interception in a model of dragonfly prey-interception neural cir-
cuitry based on [3]. Second, we show direction-selective dendritic
circuits on Intel’s Loihi chip which can be directly coupled with an
event sensor for pattern detection. These examples were chosen to
illustrate how implementing biologically-inspired mechanisms in a
neuromorphic model can enable a computational operation that is
applicable for a wide range of applications.

2 ARTIFICIAL DENDRITES

There is growing interest to leverage silicon dendrites as computa-
tional interconnects to model multi-compartment neurons [1, 12].
It is hypothesized that dendrites will add to the computational com-
plexity of deep learning algorithms by enabling increased computa-
tion and pre-processing in single neurons and additional learning
rules [1, 5]. Recent work utilizes active dendrites for continual learn-
ing and avoiding catastrophic forgetting for multi-task learning in
a dynamic environment [11].

A resistor-capacitor (RC) circuit such as that shown in Figure
1B captures the ‘passive’ properties of a biological dendrite. This
RC circuit, in turn, can be modeled using CMOS transistors op-
erating in a linear region [8, 18] as shown in Figure 1C. Active
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components [19, 23] may be included to emulate the complexity
of active, time-varying conductances that are present in biological
dendrites, for example a silicon model of the NMDA (N-Methyl
D-Aspartate) conductance [12, 19, 23]. There are also several ef-
forts to leverage emerging devices, for example memristors [14]
or multi-gate ferroelectric FETs [2, 21], to build artificial dendrites.
These devices promise low-power solutions, can be integrated with
CMOS (Complementary Metal-Oxide Semiconductor), and have
the potential to leverage three-dimensional stacking techniques to
increase connectivity that will amplify the advantages offered by
neuromorphic dendrites.
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Figure 2: A. Single compartment dendrite with an excitatory
input (red) and a shunt input (controlling Ricaiage)- B. Vary-
ing the shunt input can multiplicatively scale the response
to excitatory input. Vieage 01 Vy is the gate voltage of the
leakage transistor.

Here we focus on exploiting non-linear properties of dendrites
for computation. To this end, we leverage a simulation code that
models a CMOS passive dendrite cable using transistors operating
in the subthreshold regime as demonstrated in [18] and [8]. We
have recently shown shunting inhibition as a potential mechanism
for multiplication in passive dendrites [4]. As illustrated in Figure 2,
shunt input multiplicatively scales the response to excitatory input,
enabling multiplication of two independently time-varying inputs,
a distinct operation from programmable fixed weights typically
associated with a neural network. We demonstrate this operation
in a neural network model of a biological prey-interception circuit
in the next section.

3 DRAGONFLY-INSPIRED INTERCEPTION
USING MULTIPLICATIVE DENDRITES

Recent studies [10, 16, 17] have demonstrated that the Drosophila
nervous system builds representations (e.g. for navigation) by mul-
tiplying different streams of sensory input. Multiplication is an
expensive but critical operation for many applications. Here we
investigate using our dendrite (see Figure 2) to implement multipli-
cation in a dragonfly-inspired neural network model.

Figure 3 describes the basic architecture of the neural network.
The input layer is composed of two populations of neurons. One
population (denoted by the red circles) receives visual input, for
example from a camera. The response of visual neuron i is

2
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Figure 3: Schematic of the dendrite-enabled dragonfly neural
network. Red and orange neurons in the input layer encode
visual and fovea-position information, respectively. Yellow
circles denote sensorimotor dendrite-enabled neurons. Green
neurons are the motor-output neurons.

where x is the location of the target’s image on the camera’s plane,
a; is the preferred target-image location of neuron i, and o, de-
termines the width of the tuning curve. Neurons in the second
population of input neurons (orange circles, referred to here as
‘fovea neurons’) encode the desired location of the target’s image
on the sensor (unlike a biological fovea, the model fovea is a vari-
able location). Like visual neurons, the responses of fovea neurons
are characterized by Gaussian tuning curves:

(y—b))?*
9j(y) = exp (——2 ,
204
where y is the fovea location, b; is the preferred fovea location of
neuron j, and o4 determines the width of the tuning curve.
For the model presented in [3], the response S;; of a single sen-
sorimotor neuron (yellow circles in Figure 3) was the product of
input from visual-input neuron i and fovea neuron j:

Sij = fi(x)g;(y).

The sensorimotor population therefore included neurons tuned for
all possible combinations of target-image and fovea positions.

To demonstrate the viability of using shunting inhibition for
multiplication in a neuromorphic application, we have replaced
sensorimotor neurons with multi-compartment neurons consisting
of a single dendritic compartment model (see Figure 2 and details
below). The dendritic compartment enables multiplicatively scaling
of the excitatory input by the shunt input. The excitatory input (red
arrow in Figure 2 is sent to the dendrite by the visual neurons in
Figure 3), and the shunt input is controlled by fovea neuron activity.

Our dendrite compartment is modeled as a passive cable using
transistors operating in the subthreshold regime. The subthreshold
regime of transistors is dominated by diffusion much like biological
processes with an exponential current-voltage relationship. We
use Matlab code to solve the coupled ODEs (Ordinary Differential
Equations) that capture the behavioral properties of this CMOS-
based dendrite. This is needed to capture the subthreshold dynamics
of a transistor.
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For an n compartment dendrite, we solve for the voltage at each
‘tap’ of the dendrite as shown in Figure 2. We define all the constants
in the equations based on the transistors used on the FPAA (Field
Programmable Analog Array) (Constants k, Iy, thermal voltage
Ur, capacitance C) [9] along with the input parameters as defined
for the block (leakage conductance modulated by Vieakage, axial
conductance modulated by Vs, potential Ei). For more details
on the model, please refer to [8, 18].

dv 1 % v
- = glarding + k(e VIUT — g VIUT)
+ kl(ea4.‘7/UT _ e(ls-‘-}/UT) 1
+ k(e V/UT _ eFIUTY 4 Tyia)
where

V=i » W% ... V]
a1,a2,as3, as, as and ag are constant matrices whose size is dependent
on the number of stages/taps of the dendrite.
The motor-output neurons (green circles in Figure 3) encode the
direction to which the dragonfly should turn. The response R of

motor-output neuron k is a weighted sum over all inputs from the
sensorimotor population:

Ry = Z WijkSij-
Lj
The synaptic weight between sensorimotor neuron S;; and motor
output neuron k is described by

. 1 .\2 _

202 205 202,

dydz,

where cy. is the preferred turn direction for neuron k and oy, is a
parameter that controls the tuning of the motor neurons for turn
direction (see [3, 22] for more details). The dragonfly executes a
change in yaw,

2k CkRe

Zi R’

decoded by performing a weighted average of motor output neuron
activities. For simplicity, we constrain the dragonfly and its target
to move in one plane of motion, which significantly reduces the
size of the neural network.

Figure 4 presents two examples of successful interception trajec-
tories as calculated by the dendrite-enabled dragonfly model. At
the beginning of each simulation time step, the target moves to
a new location (in plane of motion). The location of the target’s
image on the camera representing the dragonfly’s eye determines
the activities of the visual input neurons. The neural network model
calculates the dragonfly’s turn as described above and the dragonfly
advances in the new direction. The new fovea location is calculated
as e = ey — d, where e is the previous location of the fovea, and
the activities of the fovea neurons are updated accordingly. This
update is equivalent to shifting the fovea position in an equal but
opposite direction to the shift in the target image’s location on the
camera that results from the dragonfly’s turning.

In a full experimental implementation, the input and output
neurons would be position-encoded without a Gaussian to repre-
sent their firing rates. For the purpose of this experiment we only
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Figure 4: Dendrite-enabled dragonfly network with multi-
plicative dendrites successfully calculates interception. Drag-
onfly (open black circles) and prey (filled red circles) posi-
tions are plotted at each simulation time step for example
straight (top) and curved (bottom) prey trajectories.

modeled the dendrites in hardware. The software-simulated retina
and fovea inputs of the network were mapped to the appropriate
current and voltage ranges for the hardware dendrite. The dendrite
output was then mapped to the software-simulated motor neurons.
In future implementations, pre-processing for this network would
depend on the application constraints and the system design.

4 DIRECTION SELECTIVITY USING
DENDRITES

Direction selectivity and coincidence detection are other interesting
properties of dendrites. These can be exploited to classify spatio-
temporal patterns. Here, we demonstrate a direction-selective cir-
cuit built using dendrites on Intel’s Loihi 1 chip [6]. The example
demonstrated is relevant for event sensor inputs. Event sensors
are bio-inspired sensors that asynchronously measure per-pixel
brightness changes and encode an output stream of events that
encode time, location and sign of the brightness change [7]. They
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Figure 5: Figure illustrating the direction-selective dendrite
circuit implemented on Loihi 1.

have high temporal resolution, high dynamic range, low power con-
sumption, and reduced motion blur. Event cameras are especially
useful since they encode only motion in a given scene. The inputs
for the experiment model pixel activation in the UP and DOWN
direction.

The direction-selective circuit as shown in Figure 5 takes inputs
from multiple pixels along the Loihi dendrite. Each dendritic com-
partment adds input from one spike generator as well as the the
‘upstream’ compartment. There is a fixed transmission delay of one
timestep between each dendritic compartment. We demonstrate
our experiment for two patterns for upward and downward motion
as seen by an event camera. For simplicity, we model two adjacent-
in-space pixel inputs. Each pixel sends input to compartment 0
of one dendrite and compartment 1 of the other dendrite. We use
the Loihi spike generator to simulate the pixel input spikes for the
circuit. As shown in Figure 6, each dendrite is tuned to detect a cer-
tain direction. It is important to note here that both compartments
receive inputs driven by both UP and DOWN patterns (see Figure
6D and E). However, as soon as a dendrite detects a pattern (e.g. the
DOWN dendrite detects the DOWN pattern), it laterally inhibits
the other dendrite, causing it to reset. This ensures only the correct
destination compartment spikes. The destination compartment also
inhibits itself once it spikes. The destination compartment and volt-
age trends are not exactly mirror images as seen in Figure 6 D and
E because the destination compartment voltage is not completely
reset to initial conditions after the first pattern is detected.

The direction-selective local dendritic circuit is an example of
spatiotemporal processing that could be incorporated into a hi-
erarchical model to detect more complex patterns [25]. It is also
important to note that while there is practically no difference in
the energy cost of a neuron versus a dendritic compartment on
the Loihi platform, if the dendrites were implemented in analog,
the circuit footprint would be much lower compared to the same
circuit constructed from multiple neurons.

5 SUMMARY AND CONCLUSIONS

We have presented initial findings from leveraging dendritic prop-
erties for two different applications, the dragonfly-interception-
inspired neural network model and direction selectivity for event-
sensor input. The dragonfly interception model successfully lever-
ages subthreshold analog dendrites for biologically-inspired multi-
plicative integration of two distinct time-varying inputs. We have
also demonstrated a pattern-recognition circuit using digital den-
drites implemented on the Loihi neuromorphic chip.
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Figure 6: direction-selective dendrite circuit output for UP
and DOWN pattern on Loihi 1. The inputs are modeled as
spikes generated by an event sensor responding to a LED
point source moving in the UP or DOWN direction. (A) Spike
Generator patterns for UP (time steps 1to 9) and DOWN (time
steps 15 to 23). (B) Input spikes to Compartment 0 of both
dendrites (spikes to UP and DOWN dendrites in 5 are in blue
and orange, respectively). (C) Input spikes to Compartment
1 of both dendrites. (D) Destination compartment current
for both dendrites. (E) Destination compartment voltage for
both dendrites. (F) Destination compartment spikes of UP
and DOWN dendrites report UP and DOWN patterns, respec-
tively.

The artificial intelligence/deep learning field has benefited from
brain inspiration whether it is for the perceptron model by Rosen-
blatt [20], convolutional kernels [13] or even regularization/dropout
[24] techniques. We assert that taking inspiration from the brain
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for the underlying hardware will prove to be extremely impor-
tant when modeling and mapping brain-inspired algorithms. Af-
ter all, the brain is a product of ‘biological codesign’, where the
underlying noisy substrate has been utilized to achieve various
complex cognitive functions. Thus, it is imperative that algorithm
designers, computer architects and hardware engineers alike ex-
ploit the inherent physics of the underlying hardware for compu-
tation. While neuromorphic hardware has achieved scaling to a
billion neurons, current systems sacrifice complexity in favor of
scaling. In order to achieve brain-like abilities, we need scaling,
complexity, computational efficiency and computational density.
We believe that modeling dendrites will be a key property to exploit
for next-generation neuromorphic architectures and applications.
This requires computational elements in hardware that not only
support dense three-dimensional connectivity but also enable other
key computational properties like non-linear filtering, direction
selectivity, and coincidence detection.
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