
We tested 6 different 
Paired Neural Network 
(PNN) models using 2 

analyst-validated 
aftershock sequences. 

The PNN models were 
originally trained on a 

noise-augmented, 
constructed, global 
earthquake dataset.
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We tested the PNN models 
with 2 different ‘Match’ and 
’Non-Match’ criteria, in lieu 

of more extensive, 
associated information. 

By most metrics, scores 
were relatively low – we 

place most importance on 
the F1 and AUC scores. 

However, our sub-optimal 
‘Match’ and ‘Non-Match’ 
criteria likely affects the 

low-performance.

Overall, the existing PNN 
models struggled to 

generalize to the available 
aftershock datasets.

Fine-tuning the PNN 
models on aftershock data 
indicates improvement, and 

provides some ideas for 
our future directions.

Please do 
not use this 
space, a QR 
code will be 

automatically 
overlayed

Testing a Paired Neural Network to Characterize 
Aftershock Sequences

Erica Emry, Brendan Donohoe, Andrea Conley, 
Rigobert Tibi, and Christopher Young
Sandia National Laboratories, Albuquerque, NM

This Ground-based Nuclear Detonation Detection (GNDD) research was funded by the National Nuclear 
Security Administration, Defense Nuclear Nonproliferation Research and Development (NNSA DNN R&D).

Sandia National Laboratories is a multimission laboratory managed and operated by National 
Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell 
International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration 
under contract DE-NA0003525. The views expressed here do not necessarily reflect the views of the 
United States Government, the United States Department of Energy, or Sandia National Laboratories.

SAND2023-04777CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do
not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly
owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract
DE-NA0003525.



Please do 
not use this 
space, a QR 
code will be 

automatically 
overlayed

Introduction: Exploration of Paired Neural Networks
 to Improve Aftershock Identification

Although cross-correlation techniques can identify similar earthquakes (like aftershocks):
• Creation of quality template libraries for in progress sequences can be difficult
• Some regions have no historical seismicity to use as templates
• Cross-correlation can be affected by spikes and overlapping earthquakes
• Cross-correlation tends to be computationally intensive

Can ML Improve Aftershock Labeling?

Like cross-correlation, if similar events (such as aftershocks) can be rapidly labelled a match or non-match, then it could help alleviate 
analyst burden and would allow the analyst to maintain attention on other global events.

Any ML model must generalize to data from other regions that it wasn’t trained on, because:

• The location of the next large magnitude earthquake is unpredictable and could occur in many different regions around the 
globe.

• We have few recorded earthquakes on some faults that can produce large-magnitude earthquakes (Example: currently locked 
faults, like the Cascadia subduction zone) 

A successful ML model should not mislabel events we care about as an aftershock.  Model should have low likelihood of false positives 
(false classification as aftershock).

Large magnitude earthquakes & aftershocks sequences unexpectedly 
occur & greatly increase analyst workload Initial Training Data: Real Event Data, Augmented with Noise

• The training data set was composed of global 
seismicity, not aftershock earthquakes.  This included 
15,764 earthquakes and 827 stations.

• Global distribution of available stations was much 
denser in U.S., Europe, Australia, and East Asia 

• Earthquakes from IMS stations spanned 2007-2020, 
and earthquakes from IRIS stations occurred during 
2011

• Noise datasets included the STEAD noise dataset 
(Mousavi et al., 2019) and the University of Utah noise 
dataset (Tibi et al., 2021)

• Some waveforms had copies of the event later in the 
sequence – to simulate overlapping events (common 
in aftershocks)

Above Figure: Conley et al., (2021) Training Data Station Distribution

• Tested against subset (15%) of constructed data.  
Training data accounted for 70%, and validation 
data accounted for 15%.

• The test data was pulled out of full dataset prior to 
training, and it was selected randomly.

• The PNN models were found to outperform cross-
correlation in the top left corner of the ROC curve

Below Figure: Conley et al. (2021) ROC curve comparison w/CC scores

Left Figure: Conley et al., (2021) Constructed waveform 
(no overlapping events)

Original PNN Model Test Results
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Paired Neural Network (PNN) Models

Conley et al. (2021) trained a PNN model to identify waveform similarity. 
PNNs (also referred to as Twin or Siamese Neural Networks) are 
frequently used for image recognition.

Each PNN has 2 branches with the same (duplicated) architecture, and 
each branch is a convolutional neural network (CNN).  Each model has 4 
convolutional blocks described below, and a 5th block with a flatten and 
a dense layer.

Each convolutional block has 2 or 3 transformations.  The convolutional 
transformation utilizes some number of filters, but the size of the 
output is not altered. The max pooling transformation takes the top 
number in each subsample of the waveform, and the size of the output 
is decreased. The spatial dropout layer removes some number of 
neurons in the layer to prevent overfitting.

A Monte-Carlo dropout procedure is also used to quantify uncertainty.

Convolution
Max Pooling

Convolution
Max Pooling
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Objectives: Explore Generalizability of PNN Models when 
Tested on Validated Aftershock Sequences
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Sundermier et al. (2019) – Timeline for selecting templates and 
for running SeisCorr detection software

Can ML Improve Aftershock Labeling?

The initial PNN model was trained using a “constructed” dataset.  Using global (non-
aftershock) earthquakes and various noise libraries to augment the waveforms, 
pairs of matching and pairs of non-matching time-series were constructed (Conley 
et al., 2021). 

The PNN models were successful when tested against a subset of the constructed 
database (Conley et al., 2021).

However, the model must generalize to datasets that it has not been trained on – 
specifically we are interested in applicability to aftershock sequences. 

To test this, we utilize arrival datasets of ‘true positives’ and ‘false alarms’, 
corresponding to real aftershock sequences that were previously explored in a 
cross-correlation study from Sundermier et al. (2019) and validated by an expert 
analyst.  The original cross-correlation detections from Sundermier et al. (2019) 
were based on templates that were automatically generated from the SEL3 catalog 
on 12 or 13 different IMS stations, located at regional to teleseismic distances from 
the sequence.

The two aftershock sequences validated by an expert analyst were the 2015 Illapel, Chile and the 2015 
Gorkha, Nepal.  

The mainshock magnitude for the 2015 Illapel, Chile event was Mw 8.2. Sundermier et al. (2019) 
identified 88 template events with 441 distinct template arrivals from the SEL3 catalog.  This led to 960 
detections on the 12 IMS stations used.

The mainshock magnitude for the 2015 Gorkha, Nepal event was Mw 7.8.  Sundermier et al. (2019) 
identified 91 template events with 353 distinct template arrivals from the SEL3 catalog. This led to 968 
detections on the 13 IMS stations used.
 

These results from Sundermier et al. (2019) were validated by an independent analyst.  When 
comparing the data to the IDC LEB catalog, the analyst marked the arrivals as:
• ”True Positive” – In this case, the arrival detected by Sundermier et al. (2019) matched the LEB 

and was a valid event.
• “Valid Added” – In this case, the arrival detected by Sundermier et al. (2019) was found to be a 

valid arrival from a valid event that was not in the LEB catalog.
• “False Alarm” – In this case, the arrival detected by Sundermier et al. (2019) was not a valid 

arrival from a valid event or it was an arrival from non-aftershock earthquake elsewhere in the 
world.

To Answer the Objective Question: “Can ML Improve Aftershock Labeling?”

We utilize 6 different PNN models trained by constructed (noise-augmented) datasets of global 
seismicity.  They were trained on data that either included or did not include overlapping waveforms, 
and they were trained at 3 different frequency bands (raw, bandpassed at 1.5-5 Hz, or highpassed at 
>0.3 Hz).  

We test the generalizability of these 6 different PNN models on expert-validated datasets for the 2015 
Illapel and 2015 Gorkha aftershock sequences.
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Methods: Determining Ground-Truth and Metrics
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Station 1

Station 2

Template
Group 1

Template
Group 2

Station 1

Station 2

Template
Group 1

Template
Group 2

Match/Non-Match Criteria (Ground-Truth): 
We leveraged 2 expert-validated aftershock test datasets 

Station-Specific, Template-Invariant: 
• Benefits: 

• All aftershock arrivals at the same stations are assumed to 
match

• Easy to implement, results in more matches
• Would be better for eventual operational setup

• Drawbacks:
• Aftershocks from opposite ends of rupture would be called a 

match, but might not match well (as suggested for template 
groups 1 and 2, on left)

• Aftershocks of different source types (normal, thrust, etc.) 
would be called a match, but might not match well.

Station-Specific, Template-Specific: 
• Benefits: 

• All aftershock arrivals detected by the same template 
assumed to match

• Aftershocks from opposite ends of rupture are not a match
• Aftershocks from different source types are not a match

• Drawbacks:
• Aftershocks detected by nearby (but different) templates 

might actually be similar and should be a match, but would 
not be considered as one (as in the case of the gold and blue 
template groups, on left).

Template
Group 3

Metrics for Test Results:
Depending on test datasets, different scores can be used to 
determine model performance

Requires evenly sized match & nonmatch populations (no “class 
imbalance”)
In our dataset, we have many more non-matches & the PNN models 
performed best at determining non-matches.  So, accuracy would give 
artificially high values (making it look like our PNN model is better than it is)

Model Precision is only sensitive to match predictions
If our 2nd match criteria (“template-specific”) leads to many FP in 
comparison to the 1st match metric (“template-invariant”), we’d expect a 
decreased precision.

Information for TPR (recall) & FPR with different PNN score threshold 
assumptions – directly informs the ROC curves

F1 is the harmonic mean of precision & recall (TPR)
It is specifically designed to balance datasets with class imbalances, like 
ours.

As PNN score threshold 
changes (between match & 
nonmatch), the TPR (Recall) 
and FPR changes.

A concave downward curve is 
desired, and results in a high 
Area-Under-the-Curve (AUC)

Coin Toss: AUC = 0.5
Needs Work: AUC = 0.65
Good: AUC ~ 0.9

Test 5: Bandpass-filtered, Trained without overlapping waveforms, Template-Invariant criteria 

Coin Toss

Good

Needs W
ork
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Results: Initial Models Struggle to Generalize to Aftershocks, 
Given Assumed Match/Non-Match Criteria 
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Models trained with Overlapping Data

Match Criteria #1

Station-Specific & 
Template-Invariant

(All aftershocks are 
Matches)

**All numbers (except AUC) are 
for PNN threshold score = 0.5

Bandpass is better (in comparison to raw or highpass)
AUC is higher overall for the template-specific criteria
Clear decrease in Precision in Template-Specific Criteria

Match Criteria #2

Station-Specific & 
Template-Specific

(All aftershocks associated 
to same Templates are 
Matches)

Models trained with NO Overlapping Data

Match Criteria #1

Station-Specific & 
Template-Invariant

(All aftershocks are 
Matches)

Match Criteria #2

Station-Specific & 
Template-Specific

(All aftershocks 
associated to similar 
Templates are 
Matches)

AUC is highest overall for these tests
Precision and F1 are highest, assuming Template-Invariant Criteria
Clear decrease in Precision and F1 in Template-Specific Criteria

Test 8:  Template-Specific
Bandpass, Trained with
Overlapping Data

Test 2:  Template-Invariant
Bandpass, Trained with
Overlapping Data

Test 4:  Template-Invariant
Raw, Trained with NO
Overlapping Data

Test 5:  Template-Invariant
Bandpass-Filtered, Trained 
with NO Overlapping Data

Test 6:  Template-Invariant
Bandpass-Filtered, Trained 
with NO Overlapping Data
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Conclusion: Trained PNN Models Struggle with 
Real Aftershock Sequences, but may Improve with Fine-Tuning
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• We need better criteria for defining a Match vs. a Non-Match
• Explore template similarity & cross-correlation scores (for all waveform combinations)

• We need to better explore how PNN models are trained
• What’s different between how original models were trained, and why did tuning with aftershock data improve it?
• Geographic Distribution of data?

• New validated 2011 Tohoku aftershock sequence data!
• Data from Japan was better represented in the training dataset – so maybe the original PNN models will work better here…?

• Original model used training data that were the same base waveform, but with different amounts of noise added.  
• Are those waveforms not different enough?

• We used a contrastive loss function, but would other loss functions be more appropriate?  (e.g. Triplet Loss, as in Dickey et el., 2019)

Future Directions

Conclusions and Initial Results from Fine-Tuning Studies

• PNN models trained with constructed data struggled to 
generalize to the aftershock datasets

• However, the available datasets need more associated 
information to better quantify the “Match” vs. “Non-Match” 
criteria

• Initial Results from Fine-Tuning of existing PNN Models with 
some aftershocks shows improvements

• However, fine-tuning is not the best answer for rapid 
response to an in-progress aftershock sequence.  Initial results from fine-tuning of PNN models 

Above shows improvement (right) after fine-tuning the original PNN model trained 
with overlapping, raw waveforms (left)
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