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Overall, the existing PNN
models struggled to
generalize to the available
aftershock datasets.

We tested 6 different
Paired Neural Network
(PNN) models using 2
analyst-validated
aftershock sequences.

By most metrics, scores
were relatively low — we
place most importance on

We tested the PNN models
the F1 and AUC scores.

with 2 different ‘Match’ and
'Non-Match’ criteria, in lieu
of more extensive,
associated information.

Fine-tuning the PNN
models on aftershock data
indicates improvement, and

provides some ideas for
our future directions.

However, our sub-optimal

The PNN models were
‘Match’ and ‘Non-Match’

originally trained on a
noise-augmented,
constructed, global

earthquake dataset.

criteria likely affects the
low-performance.
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Large magnitude earthquakes & aftershocks sequences unexpectedly

. Initial Training Data: Real Event Data, Augmented with Noise
occur & greatly increase analyst workload

. . . . .. . . The training data set was composed of global
Although cross-correlation techniques can identify similar earthquakes (like aftershocks): seismicity, not aftershock earthquakes. This included
. Creation of quality template libraries for in progress sequences can be difficult 15,764 earthquakes and 827 stations. . .
. Some regions have no historical seismicity to use as templates o ) )
R C lati be aff db ik d I . h k . Global distribution of available stations was much E 4
ross-correlation can be affected by spikes and overlapping earthquakes denser in U.S., Europe, Australia, and East Asia u [ "y A -
. Cross-correlation tends to be computationally intensive )

. Earthquakes from IMS stations spanned 2007-2020,
and earthquakes from IRIS stations occurred during xr

Can ML Improve Aftershock Labeling? 2011

. Noise datasets included the STEAD noise dataset
(Mousavi et al., 2019) and the University of Utah noise
dataset (Tibi et al., 2021)

Like cross-correlation, if similar events (such as aftershocks) can be rapidly labelled a match or non-match, then it could help alleviate
analyst burden and would allow the analyst to maintain attention on other global events.

T O L [

. Some waveforms had copies of the event later in the =
sequence — to simulate overlapping events (common Above Figure: Conley et al., (2021) Training Data Station Distribution METHODS"‘DATA
LUSION

Any ML model must generalize to data from other regions that it wasn’t trained on, because:

*  The location of the next large magnitude earthquake is unpredictable and could occur in many different regions around the in aftershocks)
globe.

*  We have few recorded earthquakes on some faults that can produce large-magnitude earthquakes (Example: currently locked VR Left Figure: Conley et al., (2021) Constructed waveform

faults, like the Cascadia subduction zone) 1 E— . (no overlapping events)
A successful ML model should not mislabel events we care about as an aftershock. Model should have low likelihood of false positives
(false classification as aftershock).

el ) Wi syl Thlllll""'"'l.\|l"lllji4;| Below Figure: Conley et al. (2021) ROC curve comparison w/CC scores
| =1 (L I
Paired Neural Network (PNN) Models ) ) o L WA ) o P

Convolution - I 1o - — 1.0 Lo
Conley et al. (2021) trained a PNN model to identify waveform similarity. Max Pooling i
PNNs (also referred to as Twin or Siamese Neural Networks) are Convolution EUp 'C?tﬁ |
frequently used for image recognition. Max Pooling - NZTJ\::IU iona 0.8 1 0.a 0.8

Convolution Network Original PNN Model Test Results . i
Each PNN has 2 branches with the same (duplicated) architecture, and Dropout 2 ae L L) z
each branch is a convolutional neural network (CNN). Each model has 4 Max Pooling . Tested agai b 15%) of dd 2 I o6 % 065
convolutional blocks described below, and a 5% block with a flatten and ested against subset (15%) o constructed data. ] E £
a dense layer. Convolution Training data accounted for 70%, and validation a . = F Pl 3

Max Pooling data accounted for 15%. 'S | s F ease do

[ - I__/_.—f =1 04 04 not use this

Each convolutional block has 2 or 3 transformations. The convolutional Flatten . Th d lled £ full d . . i ) i space, a QR
transformation utilizes some number of filters, but the size of the Dense e test atda'was pu Ie °":jt o J' lataset prior to 0.2 1 ) code will be
output is not altered. The max pooling transformation takes the top training, and it was selected randomly. 1 ) 0.2 0.2 automatically
number in each subsample of the waveform, and the size of the output - ! overlayed
is decreased. The spatial dropout layer removes some number of L1 distance (PNN score) . The PNN models were found to outperform cross- e
neurons in the layer to prevent overfitting. 0.0

correlation in the top left corner of the ROC curve R SR X 0.0
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onte-Carlo dropout procedure is also used to quantify uncertainty. .5-
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Can ML Improve Aftershock Labeling?

The initial PNN model was trained using a “constructed” dataset. Using global (non-
aftershock) earthquakes and various noise libraries to augment the waveforms,
pairs of matching and pairs of non-matching time-series were constructed (Conley
etal., 2021).

The PNN models were successful when tested against a subset of the constructed
database (Conley et al., 2021).

However, the model must generalize to datasets that it has not been trained on —
specifically we are interested in applicability to aftershock sequences.

To test this, we utilize arrival datasets of ‘true positives’ and ‘false alarms’,
corresponding to real aftershock sequences that were previously explored in a
cross-correlation study from Sundermier et al. (2019) and validated by an expert
analyst. The original cross-correlation detections from Sundermier et al. (2019)
were based on templates that were automatically generated from the SEL3 catalog
on 12 or 13 different IMS stations, located at regional to teleseismic distances from
the sequence.

q_"'"q
TIMELIME 1_,;_.:\ Run Corralations
o Make Events

Sundermier et al. (2019) — Timeline for selecting templates and
for running SeisCorr detection software

Objectives: Explore Generalizability of PNN Models when Sandia
Tested on Validated Aftershock Sequences National

Laboratories

The two aftershock sequences validated by an expert analyst were the 2015 lllapel, Chile and the 2015
Gorkha, Nepal.

The mainshock magnitude for the 2015 lllapel, Chile event was Mw 8.2. Sundermier et al. (2019)
identified 88 template events with 441 distinct template arrivals from the SEL3 catalog. This led to 960
detections on the 12 IMS stations used.

The mainshock magnitude for the 2015 Gorkha, Nepal event was Mw 7.8. Sundermier et al. (2019)
identified 91 template events with 353 distinct template arrivals from the SEL3 catalog. This led to 968
detections on the 13 IMS stations used.

These results from Sundermier et al. (2019) were validated by an independent analyst. When
comparing the data to the IDC LEB catalog, the analyst marked the arrivals as:

. "True Positive” — In this case, the arrival detected by Sundermier et al. (2019) matched the LEB
and was a valid event.

. “Valid Added” — In this case, the arrival detected by Sundermier et al. (2019) was found to be a
valid arrival from a valid event that was not in the LEB catalog.

. “False Alarm” — In this case, the arrival detected by Sundermier et al. (2019) was not a valid
arrival from a valid event or it was an arrival from non-aftershock earthquake elsewhere in the
world.

To Answer the Objective Question: “Can ML Improve Aftershock Labeling?”

We utilize 6 different PNN models trained by constructed (noise-augmented) datasets of global
seismicity. They were trained on data that either included or did not include overlapping waveforms,
and they were trained at 3 different frequency bands (raw, bandpassed at 1.5-5 Hz, or highpassed at
>0.3 Hz).

We test the generalizability of these 6 different PNN models on expert-validated datasets for the 2015
Illapel and 2015 Gorkha aftershock sequences.
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Match/Non-Match Criteria (Ground-Truth):
We leveraged 2 expert-validated aftershock test datasets

Station 1

Station-Specific, Template-Invariant:
A e Benefits:
* All aftershock arrivals at the same stations are assumed to
match
* Easy to implement, results in more matches
Template .
Group 1 *  Would be better for eventual operational setup

N * Drawbacks:

*. e Aftershocks from opposite ends of rupture would be called a
i I' match, but might not match well (as suggested for template

Template -

groups 1 and 2, on left)
Station 2 * Aftershocks of different source types (normal, thrust, etc.)
AA would be called a match, but might not match well.
Group 2

Station-Specific, Template-Specific:

Station 1
‘ * Benefits:

‘.’ * All aftershock arrivals detected by the same template
Template assumed to match
.. Group1l * Aftershocks from opposite ends of rupture are not a match
Template *  Aftershocks from different source types are not a match
& M Group3 *  Drawbacks:
".’1:‘ e Aftershocks detected by nearby (but different) templates

might actually be similar and should be a match, but would
not be considered as one (as in the case of the gold and blue
.. %, Station 2 template groups, on left).
Template .

Group 2

Methods: Determining Ground-Truth and Metrics

Sandia
National
Laboratories

Metrics for Test Results:
Depending on test datasets, different scores can be used to
determine model performance

Requires evenly sized match & nonmatch populations (no “class
imbalance”)

TP+TN
ACC‘I&TEC‘}’ = TP1TN+FPIFN In our dataset, we have many more non-matches & the PNN models
performed best at determining non-matches. So, accuracy would give
artificially high values (making it look like our PNN model is better than it is)
P Model Precision is only sensitive to match predictions
FPrecision = - - If our 2"¢ match criteria (“template-specific”) leads to many FP in
T+ ep comparison to the 15t match metric (“template-invariant”), we’d expect a
decreased precision.
TP
TPR = . o
TP+FN Information for TPR (recall) & FPR with different PNN score threshold
Fi assumptions — directly informs the ROC curves
FPR = -
TH+FP
PrecisionsTPR F1 is the harmonic mean of precision & recall (TPR)

™ : . A ) . .
F1 Precisiond TPR It is specifically designed to balance datasets with class imbalances, like
ours.

10 10 As PNN score threshold
changes (between match &

08 | oa nonmatch), the TPR (Recall)
" and FPR changes.
- -]
E ot o6 Li :
E ¢ A concave downward curve is
i 0.8 i desired, and results in a high
g n4z Area-Under-the-Curve (AUC)
=

e . Coin Toss: AUC = 0.5

o Needs Work: AUC = 0.65

o . Good: AUC™~ 0.9

00 02 04 06 08 10
False positrve rate

Test 5: Bandpass-filtered, Trained without overlapping waveforms, Template-Invariant criteria

U.S. DEPARTMENT OF

|ENERGY

Security Administration
£ k

INTRODUCTION
0BJECTIVES
METHODS/DATA

RESULTS

< &

Please do
not use this
space, a QR
code will be

automatically
overlayed

P3.5-348



Results: Initial Models Struggle to Generalize to Aftershocks, N__ERGY

Given Assumed Match/Non-Match Criteria

SnT2023

National
Laboratories

Models trained with Overlapping Data Models trained with NO Overlapping Data

Match Criteria #1 e I T I Match Criteria #1 Test# | TPR- JAUC § TP | FP TN | FN | TPR | FFR | Precision| Fl :
(Filter) | to-FPR (Filtery | 1w0-FFR
Station-Specific & Chile, Station-Specific, Temlate-Invariant, With Overlupping Signals Station-Specific & Chile, Station-Specifle, TemBlate-Tnvariant, Without Oveslappd! |z Signa s
Template-Invariant - T — | Template-Invariant
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iHM (120 Qosod foro 0005 413732 | 074l 0031 oozs lfl oosz 0,045 - - " -
[ | [ | 6(HPy [222 0.692 Ja867 | 29215 395422 | 26986 || 0,153 Poose f0.143 0.148
INTRODUCTION
Match Criteria #2 Match Criteria #2
OBJECTIVES
SationSoecific & Chile, Smim-Specrc. Templaic-Specific, With Overlapping & gnals Station-Specific & Chile, Staton-Specific, Tenfblate-Specific, Withous Overluppints Signull
ation-Specitic i T [
TemplaterfSpecific TR 173 fosis f7s 0 (7567 [4stmoz | 2620 | oo2e Noots f eoto (15 Template-Specific 10/ (R) 260 0654 §349 | 22588 | 431207 | 2256 [ 0134 0050 f 0.015 0.027 METHODS/DATA
* s@p |32t Jossr o2 [1seso [a3s036 | 2313 | oz Joossfloms | oos (Al aftershocks @ER) (166 QOSET §1357 | 143304 | 3108 (1230 § 0525 §O216 0005 g G017 RESULTS
: F T T I associated to similar
(All aftershocks associated | gy | 164 f o528 fi1s | 11768 | 442018 | 2620 | ;o2 [foo2e ff o010 D6 Templates are 12HP) |23z Boose 447 | 33635 | 420250 | 2158 || 072 | 0074 003 0024
to same Templates are Matches)
Matches) CONCLUSION
Bandpass is better (in comparison to raw or highpass) AUC is highest overall for these tests
AUC is higher overall for the template-specific criteria **All numbers (except AUC) are Precision and F1 are highest, assuming Template-Invariant Criteria
Clear decrease in Precision in Template-Specific Criteria for PNN threshold score = 0.5 Clear decrease in Precision and F1 in Template-Specific Criteria
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Test 2: Template-Invariant
Bandpass, Trained with
Overlapping Data

Test 8: Template-Specific
Bandpass, Trained with
Overlapping Data

Test 4: Template-Invariant
Raw, Trained with NO
Overlapping Data

Test 5: Template-Invariant
Bandpass-Filtered, Trained
with NO Overlapping Data

Test 6: Template-Invariant
Bandpass-Filtered, Trained
with NO Overlapping Data
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CTT:SCIENCE AND TECHNOLOGT CONFIRENC Conclusion: Trained PNN Models Struggle with ﬁa?_dial
H.w:l.;h. |T+gn2;wh: |E| Real Aftershock Sequences, but may Improve with Fine-Tuning L:b:,‘:g:},,ies

Conclusions and Initial Results from Fine-Tuning Studies 19 ' 1o 1a ' ! Lo *.
0a 1 oa oA 11-]
. PNN models trained with constructed data struggled to g v 4 -
generalize to the aftershock datasets y °5 Los§ & 06 locd
B = 5 =
. However, the available datasets need more associated u 04 oy LoaZ O
information to better quantify the “Match” vs. “Non-Match” . _ - |
criteria ' o IL“ INTRODUCTION
o, . . . . . . l:ll-Il l:l':l | .
. Initial Results from Fine-Tuning of existing PNN Models with o ————————— .00 T —————— 8.00 SEIECTIVES
some aftershocks shows improvements False positive rake Falsas positive raks
. However, fine-tuning is not the best answer for rapid . ) . METHODS/DATA
response to an in-progress aftershock sequence. Initial results from fine-tuning of PNN models
Above shows improvement (right) after fine-tuning the original PNN model trained RESULTS
with overlapping, raw waveforms (left)
Future Directions CONCLUSION
*  We need better criteria for defining a Match vs. a Non-Match
. Explore template similarity & cross-correlation scores (for all waveform combinations)
. We need to better explore how PNN models are trained
. What's different between how original models were trained, and why did tuning with aftershock data improve it?
. Geographic Distribution of data?
. New validated 2011 Tohoku aftershock sequence data!
. Data from Japan was better represented in the training dataset — so maybe the original PNN models will work better here...? = S
ease do
. Original model used training data that were the same base waveform, but with different amounts of noise added. not use this
. space, a QR
. Are those waveforms not different enough? code will be
. . . . automatically
. We used a contrastive loss function, but would other loss functions be more appropriate? (e.g. Triplet Loss, as in Dickey et el., 2019) overlayed

P3.5-348



Sandia

} ) U.S. DEPARTMENT OF
(@) ENERGY
References National Y/

Laboratories VS

Security Administration
£ k

Sn

19 1

References

e Conley, A., B. Donohoe, and B. Greene (2021), Aftershock Identification Using a Paired Neural Network Applied to Constructed Data, OST/
Technical Report, doi:10.2172/1821802

* Dickey, J., B. Borghetti, W. Junek, and R. Martin (2019), Beyond Correlation: A Path-Invariant Measure for Seismogram Similarity, Seismological O
Research Letters, 91(1), 356-369, doi:10.1785/0220190090
* Mousavi, S.M., Y. Sheng, W. Zhu, and G.C. Beroza (2019), Stanford Earthquake Dataset (STEAD): A Global Data Set of Seismic Signals for Al, IEEE
Access, 7, 179464-179476, doi:10.1109/ACCESS.2019.2947848
* Sundermier, A., R. Tibi, and C.J. Young (2019), Applying Waveform Correlation to Aftershock Sequences Using a Global Sparse Network, OST/
Technical Report, doi:10.2172/1763210
* Tibi, R., . Hammond, R. Brogan, C.J. Young, and K. Koper (2021), Deep Learning Denoising Applied to Regional Distance Seismic Data in Utah,
Bulleting of the Seismological Society of America, 111(2), 775-790, doi:10.1785/0120200292
Please do
not use this
space, a QR
code will be
automatically
overlayed

P3.5-348



