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> | Aftershock Sequences and Cross-Correlation

- Large-magnitude earthquakes & aftershock sequences unexpectedly occur &
greatly increase analyst workload

« Cross-correlation techniques can identify similar earthquakes (like aftershocks)
* Creation of quality template libraries for in progress sequence can be difficult
« Some regions have no historical seismicity to use as templates
» Cross-correlation can be affected by spikes and overlapping earthquakes
* Cross-correlation tends to be computationally intensive
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MNarthridge Earthquake

On average, aftershock activity decreases
with time from tha mainshock.

® Ewven late in the sequence,
large aftershocks are possibla
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From: USGS Aftershock Forecast Overview
https://earthquake.usgs.gov/data/oaf/overview.php



« Like cross-correlation, if similar events (such as aftershocks) can be rapidly labelled
a match or non-match, then could help alleviate analyst burden

« Allows analyst to maintain their attention on other events globally

* Any ML model must generalize to data from other regions that it wasn't trained on.
«  Location of the next large magnitude earthquake is unpredictable and can occur around
the globe.

«  We may have few records of seismicity on faults that could produce a large-magnitude
earthquake (currently locked faults, like Cascadia subduction zone)

« A ML model should not mislabel events we care about as an aftershock. The model
should have low likelihood of false positives (false classification as aftershock).

|
s 1 Can ML Improve Aftershock Labeling? m
|



4+ 1 Paired Neural Network

Conley et al. (2021) trained a PNN model to identify
waveform similarity

2 branches with same architecture;

Each branch is a Convolutional Neural Network
(CNN)

Branches are exact duplicates

4 blocks with 2 or 3 transformations in each
«  Convolution
Some # of convolutional filters
Size of the output is not altered
*  Max Pooling
Takes the top number in each group
Size of the output decreases
» Spatial Dropout
To prevent overfitting

Monte Carlo dropout used to quantify uncertainty
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I
Initial Training Data m
Real Event Data, with added Noise

Trained on global seismicity

Not aftershock earthquakes
* 15,764 earthquakes

« 827 stations S0°N I
Global distribution of stations:

*  Much denser in U.S., Europe, Australia, and East Asia -
Noise datasets 0°

STEAD noise dataset (Mousavi et al., 2019)

30°S ---[ 30°S

« University of Utah noise dataset (Tibi et al., 2021)
Some training datasets included ‘overlapping’ waveforms 60°S

Training datasets were filtered at different frequencies

*  Raw, bandpassed (1.5-5 Hz), highpassed (>0.3 Hz) A RIS stations I

N A  IMS stations

180° 120°W 60°W 0° 60°E 120°E 180°

Conley et al., (2021) Training Data Station Distribution I



s I Original PNN model test results

Tested against subset of constructed data

(15%): 1.0 - 1.0 1.0
« Test data randomly pulled out of full
dataset prior to training 8 0.8 - 0.8
. . o
« Outperformed cross-correlationinthetop € 6. 3 3
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;7 1 Test Aftershock Dataset

Aftershock Sequences: TIMELINE e

Run Correlations
Make Events

« 2015 lllapel, Chile; 2015 Gorkha, Nepal ' h +12 hours through 1 weel

 Aftershocks originally from cross-
correlation project, using templates
from SEL3 automated detection

(Sundermier et al., 2019) Sundermier et al. (2019) - Timeline

Analyst Validation:
 "True Positive”: arrival matches LEB
* “Valid Added”: valid arrival, not in LEB

« "“False Alarm”: arrival not from a valid event or from non-aftershock
earthquake elsewhere



¢ 1 What We Have To Work With:

« 6 different PNN models
« Trained with or without overlapping signal

- Trained with data filtered at different frequencies
Raw, Bandpass Filtered (1.5-5 Hz), and Highpass Filtered (>0.3 Hz)

- 2 Validated Aftershock Sequences
« 2015 lllapel, Chile
* Recorded on vertical component of 12 IMS stations
« 2015 Gorkha, Nepal
* Recorded on vertical component of 13 IMS stations

* |Info about ‘True Positives’ and ‘False Alarms’




o 1 Match vs. Non-Match Criteria

Criteria 1: Event is a match if it is an aftershock.

What about aftershocks of different
orientation/slip?

What about aftershocks from different ends
of the ruptured region?

140E 142E

144EF 140E 142E 144E

Nettles et al. (2011), “Conforming” and “Non-Conforming” Aftershocks
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0 I Match vs. Non-Match Criteria

Criteria 2: Event is a match if it was originally
detected by the same template event.

What about events detected by similar
template events? Are those a match or
non-match?

This could lead to higher ‘false positives'
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*Evenly sized match & nonmatch populations (no “class imbalance”)
This is not true for this test dataset.

More non-matches & model performed best with non-matches

- Accuracy gives artificially high values (making it look better than it is)

TP+TN
TP+TN+FP+FN

Accuracy =

|
11 1 Results: Statistical Scoring m

Pioiic o, If *Model Precision only sensitive to match predictions
recision = A . :
TP+ FP - If our 219 match criteria (“template-specific”) leads to many FP in
comparison to the 1st match criteria (“template-invariant”), we'd expect a
decreased precision. |
TPR = —
LG *Information for TPR (recall) & FPR with different PNN score threshold
FPR = _FP assumptions - directly informs the ROC curves I
TN+FP I
Precision*TPR *Harmonic mean of precision & recall (TPR)
F1=2x Precision+TPR *Specifically designed to handle class imbalance I



2 ROC Curves & AUC

*As PNN score threshold changes
(between match & nonmatch), the

10 TPR (Recall) and FPR changes.
*A concave downward curve is
. - 08 desired, and it produces a high
® b Area-Under-the-Curve (AUC)
g L 06 &
-k
a =  CoinToss: AUC=0.5
é -04=Z  Needs Work: AUC = 0.65
Good: AUC ~ 0.9
0.2 _
At a PNN Threshold = 0.5,
the TPR ~0.5 & the FPR ~0.3
] | I 1 0-0

00 02 04 a8 08 10
False positive rate

Test 5: Bandpass-filtered, Trained without overlapping waveforms, Template-Invariant criteria



13 ‘ Results - Models trained on Overlapping Data

All numbers (except AUC) are for PNN threshold score = 0.5

&
|
|

Test# | TPR- | AUC| TP FP TN | FN | TPR | FPR | Precision | F1

Match Criteria #1 (Filter) | to-FPR
Station-Specific & Template- Chile, Station-Specific, Tenjplate-Invariant, With Overlapping Signals
invariant 1 (®) 1.20 0.486 | 606 | 6738 | 417899 | 31247 | 0.019 | 0.016 | 0.083 0.031
(All aftershocks are Matches) Yo l2@p)  |205 0.545 | 2149 | 13993 | 410644 | 29704 | 0.068 | 0.033 | 0.133 0.090

3(HP) | 1.20 0504 | 979 | 10905 | 413732 | 30874 | 0.031 | 0.026 | 0.082 0.045
Match Criteria #2 Chile, Station-Specific, Tenjplate-Specific, With Overlapping Siznals
Station-Specific & Template- 7 (R) 1.73 0.515 || 75 7567 | 461702 | 2620 | 0.028 | 0.016 | 0.010 0.015
Specific Y | 8 (BP) 3.21 0.587 || 292 | 15850 | 438036 |2313 |0.112 | 0.035 | 0.018 0.031
g\r']'q ﬁ;tre{zkr‘rf’pﬂﬁea:??g'ﬁﬂtgfcﬁoes oHP) |1.64 |o0528 | 116 |11768 | 442118 |2620 |o0.042 | 0.026 | 0.010 0.016 I

« Bandpass is better (in comparison to raw or highpass)
AUC is a little higher overall for the template-specific criteria
« Clear decrease in Precision in Template-Specific Criteria I

For PNN Models
Trained with Overlaps:



14 ‘ Results - Models trained on NO Overlapping Data

All numbers (except AUC) are for PNN threshold score = 0.5

Test # TPR- AUC b FP TN FN TPR || FPR | Precision i
Match Criteria #1 (Filter) | to-FPR
Station-Specific & Template- Chile, Station-Specific, Tenjplate-Invariant, Without Overlappirlg Signzls
Invariant
4 (R) 2.98 0.677 § 4192 | 18745 405892 | 27661 | 0.132 || 0.044 | 0.183 0.153
(All aftershocks are Matches)
-}* 5 (BP) 1.75 0.688 | 16869 | 128390 | 296247 | 14984 | 0.530 || 0.302 | 0.116 0.190
Yole®P) |222  |0692 | 4867 |29215 | 395422 | 26986 |0.153 || 0.069 | 0.143 | 0.148
Match Criteria #2 Chile, Station-Specific, Tenjplate-Specific, Without Overlapping Signal
Station-Specific & Template- 10 R) 2.69 0.654 | 349 22588 431297 | 2256 |0.134 | 0.050 | 0.015 0.027
Specific
=) 11 (BP) 1.66 0.687 | 1357 | 143304 | 310598 | 1230 [0.525 | 0.316 | 0.009 0.017
(All aftershocks associated to
similar Templates are Matches) 12 (HP) 292 0.689 | 447 33635 420250 | 2158 J0.172 | 0.074 ]0.013 0.024

« AUC is highest overall for these tests
Precision and F1 are highest, assuming Template-Invariant Criteria I
« Clear decrease in Precision and F1 in Template-Specific Criteria I

For PNN Models
Trained without Overlaps:



5 | ROC Curve Comparisons

Test 2:

Template-Invariant
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Test 4: Raw Data
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16 I Fine Tuning with Aftershocks

Considered a ‘match’. a template with one TP aftershock it detected

Tuned PNN models with overlap (raw showed improvement)

Test TP FP TN FN

1 (R) 606/21782 6738/169119 417899/255518 31247/10071

Test TPR FPR TPR-to-FPR | AUC Precision F1

1(R) 0.019/0.684 | 0.016/0.398 | 1.20/1.72 0.486/0.701 | 0.083/0.114 0.031/0.196

Results are mixed and tuning

process needs to be refined!

But some improvement

observed...
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17 1 Future Directions

«  We need better metrics/criteria for how to define a match vs. a non-match
« Explore template similarity & cross-correlation scores (for all waveform combinations)

*  We need to think about model training

«  What's different between how original models were trained and why tuning with
aftershock data improved it?
* Geographic Distribution of data?
New validated 2011 Tohoku aftershock sequence datal!

This region was better represented in the training dataset - so will the original PNN models work better here?

« Original model use training data that were the same base waveform, but with different
amounts of noise added.

Are those waveforms not different enough?

«  We used a contrastive loss function, but would other loss functions be more
appropriate? (e.g. Triplet Loss, as in Dickey et el., 2019)




