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Aftershock Sequences and Cross-Correlation

• Large-magnitude earthquakes & aftershock sequences unexpectedly occur & 
greatly increase analyst workload

• Cross-correlation techniques can identify similar earthquakes (like aftershocks)
• Creation of quality template libraries for in progress sequence can be difficult
• Some regions have no historical seismicity to use as templates
• Cross-correlation can be affected by spikes and overlapping earthquakes
• Cross-correlation tends to be computationally intensive
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From: USGS Aftershock Forecast Overview
https://earthquake.usgs.gov/data/oaf/overview.php



Can ML Improve Aftershock Labeling?

• Like cross-correlation, if similar events (such as aftershocks) can be rapidly labelled 
a match or non-match, then could help alleviate analyst burden 

• Allows analyst to maintain their attention on other events globally

• Any ML model must generalize to data from other regions that it wasn’t trained on.
• Location of the next large magnitude earthquake is unpredictable and can occur around 

the globe.
• We may have few records of seismicity on faults that could produce a large-magnitude 

earthquake (currently locked faults, like Cascadia subduction zone) 

• A ML model should not mislabel events we care about as an aftershock.  The model 
should have low likelihood of false positives (false classification as aftershock).
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Paired Neural Network 

Conley et al. (2021) trained a PNN model to identify 
waveform similarity

2 branches with same architecture:

• Each branch is a Convolutional Neural Network 
(CNN)

• Branches are exact duplicates

• 4 blocks with 2 or 3 transformations in each
• Convolution
• Some # of convolutional filters
• Size of the output is not altered

• Max Pooling
• Takes the top number in each group
• Size of the output decreases

• Spatial Dropout
• To prevent overfitting

• Monte Carlo dropout used to quantify uncertainty
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Initial Training Data
Real Event Data, with added Noise
Trained on global seismicity

Not aftershock earthquakes

• 15,764 earthquakes

• 827 stations

Global distribution of stations:

• Much denser in U.S., Europe, Australia, and East Asia

Noise datasets

• STEAD noise dataset (Mousavi et al., 2019)

• University of Utah noise dataset (Tibi et al., 2021)

Some training datasets included ‘overlapping’ waveforms

Training datasets were filtered at different frequencies

• Raw, bandpassed (1.5-5 Hz), highpassed (>0.3 Hz)
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Conley et al., (2021) Training Data Station Distribution



Original PNN model test results

Tested against subset of constructed data 
(15%):

• Test data randomly pulled out of full 
dataset prior to training

• Outperformed cross-correlation in the top 
left corner of the ROC curve (magnified in 
bottom right).
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Conley et al. (2021) – Above: ROC curve comparison w/CC 
scores, Left: Constructed waveform



Test Aftershock Dataset

Aftershock Sequences: 

• 2015 Illapel, Chile; 2015 Gorkha, Nepal

• Aftershocks originally from cross-
correlation project, using templates 
from SEL3 automated detection 
(Sundermier et al., 2019)
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Sundermier et al. (2019) - Timeline

Analyst Validation: 

• ”True Positive”: arrival matches LEB

• “Valid Added”: valid arrival, not in LEB

• “False Alarm”: arrival not from a valid event or from non-aftershock 
earthquake elsewhere



What We Have To Work With:

• 6 different PNN models
• Trained with or without overlapping signal
• Trained with data filtered at different frequencies
• Raw, Bandpass Filtered (1.5-5 Hz), and Highpass Filtered (>0.3 Hz)

• 2 Validated Aftershock Sequences
• 2015 Illapel, Chile 
• Recorded on vertical component of 12 IMS stations

• 2015 Gorkha, Nepal
• Recorded on vertical component of 13 IMS stations

• Info about ‘True Positives’ and ‘False Alarms’
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Match vs. Non-Match Criteria
Criteria 1: Event is a match if it is an aftershock.

- What about aftershocks of different 
orientation/slip?

- What about aftershocks from different ends 
of the ruptured region?
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Nettles et al. (2011), “Conforming” and “Non-Conforming” Aftershocks



Match vs. Non-Match Criteria
Criteria 2: Event is a match if it was originally 
detected by the same template event.

• What about events detected by similar 
template events?  Are those a match or 
non-match?

• This could lead to higher ‘false positives’
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Results: Statistical Scoring11

*Evenly sized match & nonmatch populations (no “class imbalance”)
This is not true for this test dataset.
More non-matches & model performed best with non-matches 
– Accuracy gives artificially high values (making it look better than it is)

*Model Precision only sensitive to match predictions
- If our 2nd match criteria (“template-specific”) leads to many FP in 
comparison to the 1st match criteria (“template-invariant”), we’d expect a 
decreased precision.

*Information for TPR (recall) & FPR with different PNN score threshold 
assumptions – directly informs the ROC curves

*Harmonic mean of precision & recall (TPR)
*Specifically designed to handle class imbalance



ROC Curves & AUC12

*As PNN score threshold changes 
(between match & nonmatch), the 
TPR (Recall) and FPR changes.

*A concave downward curve is 
desired, and it produces a high 
Area-Under-the-Curve (AUC)

Coin Toss: AUC = 0.5
Needs Work: AUC = 0.65
Good: AUC ~ 0.9

At a PNN Threshold = 0.5, 
the TPR ~0.5 & the FPR ~0.3

Coin To
ss

Good

Needs W
ork

Test 5: Bandpass-filtered, Trained without overlapping waveforms, Template-Invariant criteria 



Results - Models trained on Overlapping Data

Match Criteria #1
Station-Specific & Template-
Invariant

(All aftershocks are Matches)
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All numbers (except AUC) are for PNN threshold score = 0.5

• Bandpass is better (in comparison to raw or highpass)
• AUC is a little higher overall for the template-specific criteria
• Clear decrease in Precision in Template-Specific Criteria

Match Criteria #2
Station-Specific & Template-
Specific

(All aftershocks associated to 
similar Templates are Matches

For PNN Models
Trained with Overlaps:



Results - Models trained on NO Overlapping Data

Match Criteria #1
Station-Specific & Template-
Invariant

(All aftershocks are Matches)

Match Criteria #2
Station-Specific & Template-
Specific

(All aftershocks associated to 
similar Templates are Matches)
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All numbers (except AUC) are for PNN threshold score = 0.5

• AUC is highest overall for these tests
• Precision and F1 are highest, assuming Template-Invariant Criteria
• Clear decrease in Precision and F1 in Template-Specific Criteria

For PNN Models
Trained without Overlaps:



ROC Curve Comparisons15

• Trained with Overlapping Data – Bandpass Filtered

Test 2: 
Template-Invariant

Test 8: 
Template-Specific

• Trained without Overlapping Data, Template-Invariant Criteria

Test 4: Raw Data Test 5: Bandpass-Filtered Test 6: Highpass-Filtered



Fine Tuning with Aftershocks
Considered a ‘match’: a template with one TP aftershock it detected

Tuned PNN models with overlap (raw showed improvement)
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Results are mixed and tuning 
process needs to be refined! 

But some improvement 
observed…

All numbers (except 
AUC) are for PNN 
threshold score = 0.5



Future Directions

• We need better metrics/criteria for how to define a match vs. a non-match
• Explore template similarity & cross-correlation scores (for all waveform combinations)

• We need to think about model training
• What’s different between how original models were trained and why tuning with 

aftershock data improved it?
• Geographic Distribution of data?

• New validated 2011 Tohoku aftershock sequence data!
• This region was better represented in the training dataset – so will the original PNN models work better here?

• Original model use training data that were the same base waveform, but with different 
amounts of noise added.  
• Are those waveforms not different enough?

• We used a contrastive loss function, but would other loss functions be more 
appropriate?  (e.g. Triplet Loss, as in Dickey et el., 2019)
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