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OVERVIEW

* Problem description: ns-scaled pulsed flashover of vacuum-insulator interface

« Material modification methods

- Experimental facilities used to investigate pulsed flashover

* Initial data on epoxy-CB, composite

« Materials characterization measurements

+ Revisiting epoxy-CB, on new Caeculus 500 kV Pulsed Flashover Test Stand

 Interpretation of experimental data
« Higher than predicted sample conductivity at high fields

« Absence of electrical impulse with flashover on composite sample

 Future work




FLASHOVER ACROSS VACUUM-INSULATOR INTERFACES CONSTRAINS\‘
TRANSMITTED POWER AND EFFICIENCY

AN

Surface breakdown at vacuum-insulator interface (flashover) occurs at fields many times lower than bulk breakdown or \
vacuum breakdown [1]

b

Multiple physical mechanisms are believed to be responsible, depending on the interface profile and pulse length [2]
« Cathode-initiated [3], Anode-initiated [4], Sub-surface processes [5]

Large accelerators employ stacks of insulators with field-grading rings and optimized 45-degree profiles to minimize size [6]

Further optimization requires machined field-shaping [7] (difficult at large scales) or intrinsically stronger insulators
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From Phys. Rev. ST Accel. Beams, vol 7, 070401, 2004 [6]
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FLASHOVER DEPENDS ON APPLIED VOLTAGE, DIMENSIONS, AND
MATERIAL PROPERTIES

For an insulator interface of circumference € and height d subject to a voltage pulse with peak field E,
and effective time t,:

12
+  Stygar model of insulator flashover [6]y =V, d~' (Ct,)# e"a with g and A fit parameters

9 1 4

«J. C. Martin model of insulator flashover [8] y =V}, d 10 t§ C1o

For experiments comparing samples of the same size and applying a consistent pulse shape,
peak holdoff voltage « material-dependent flashover strength

On large pulsed power facilities (e.g. Z), peak fields are typically 100-200 kV/cm and t, ~ 20-50 ns.
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WE INVESTIGATE TWO CLASSES OF MATERIAL MODIFICATIONS

Volumetric Blending
* Baseline material: EPON828/DEA (100:12)

« Dopant material blended with uncured resin
via planetary mixer and/or ultrasonic agitation

* Produces nearly uniform composite
throughout entire sample

apor
Polymer ' ‘ Diffusion |

N\
\\
Vapor Phase Infiltration \
- Baseline material: Poly(methyl)-methacrylate

« Dopant material infiltrated into near-surface
polymer via exposure to metalorganic under
elevated temperatures

* Produces high dopant concentrations near
surface which exponentially decay into bulk

™ + Metalorganic precursor

Sorption
- Film Surface
Vi ¥ +

PMMA/AIO, hybrid

€~ Entrapment

L%

poly

From Mater. Horiz., vol. 4, p. 747 (2017) [10]




THREE TEST FACILITIES HAVE ENABLED MEASUREMENTS OF N\

FLASHOVER CONDITIONS AT COUPON SCALES

UNM Marx Test Bed

30-stage, 40 kV charge Marx

400 kV max operating
voltage into vacuum

30 ns risetime

Overdamped matching load

lon Beam Laboratory PPEG

« 15-stage, 40 kV charge Marx

« 240 kV max operating voltage

into vacuum
e 15 nsrisetime

 Critically damped matching
load

* Modified from pulsed power
E-gun (PPEG) to
accommodate vacuum
insulator testing

AN
N\

Caeculus “son of Vulcan"\

»

30-stage, 50 kV charge Marx

500 kV max operating
voltage into vacuum

20 ns risetime

Slightly underdamped
matching load




INITIAL TEST DATA APPEARED TO INDICATE CB ,-EPOXY BLEND HAD \\
UNPRECEDENTED FLASHOVER RESISTANCE \

Samples of undoped EPON828/DEA, Rexolite cross-linked polystyrene, and 25 vol% CB, in \
EPON828/DEA were tested for flashover on the UNM and IBL PPEG test stands

« Forward bias on UNM test stand
* Reverse bias on IBL PPEG
The carbide composite never broke down under highest achievable test conditions
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SAMPLE MEASUREMENTS INDICATE LITTLE CHANGE AT THE \\
SURFACE DUE TO THE CB, INCLUSIONS \

»

Secondary emission yield measurements similar between carbide blend and undoped epoxy \
« First crossover energy, peak yield slightly more favorable in undoped sample (see poster by Kern)

X-ray photoelectron spectroscopy (XPS) showed boron only detected on cut surface (detection depth ~10nm)

« Laser-induced breakdown spectroscopy (LIBS) indicated large jump in boron concentration between 2 and 3 um

Interface difficult to resolve on SEM images, focused ion beam extracted sample under TEM showed CB, particles at
least several hundred nm from surface
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CONDUCTIVITY MEASUREMENTS INDICATE A PERCOLATION-ENHANC}D\
SAMPLE CONDUCTANCE WHICH CAN SELF-GRADE FIELD N\

b

Measurements made at 1,100 V with 1Tmm spacing electrodes (11 kV/cm) \
Theoretical percolation threshold for a« ~ 3-4 CB, microparticles around 12-17%
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EXPERIMENTS ON CAECULUS INDICATE SAMPLE RESISTANCE DROPS\\
MORE THAN PREDICTED AT ACCELERATOR-RELEVANT FIELDS N\

A\

7 Z
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AN

EXPERIMENTS ON CAECULUS INDICATE SAMPLE RESISTANCE DROPS ™\

MORE THAN PREDICTED AT ACCELERATOR-RELEVANT FIELDS \
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EXPERIMENTS ON CAECULUS INDICATE SAMPLE RESISTANCE DROPS\\

MORE THAN PREDICTED AT ACCELERATOR-RELEVANT FIELDS N\

Composite sample nearly indistinguishable from a short-circuit load region \
Estimated sample resistance with series resistor shorted is 20-30 ohms
« Too low to drive to the 300 kV/cm fields that break down Rexolite
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ENHANCED CONDUCTIVITY OF CB, COMPOSITE APPEARS TO

DISRUPT ELECTRICAL IMPULSE

FROM FLASHOVER AR
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CONCLUSIONS AND FUTURE WORK h

AN
We compared flashover behavior between EPON828/DEA, Rexolite, and a carbide/epoxy \
composite on multiple test fixtures

The apparent superiority of the carbide-epoxy composite is attributable to an enhancement
in field-dependent conductivity which lowers the peak field on the sample for a given output
Marx voltage

When the carbide material undergoes flashover, the flashover plasma is optically dimmer and
electrically “quiet,” suggesting the arc does not become as conductive as flashovers of pure
insulators

Future planned experiments:
- Look at other dopant materials and concentrations (we have a backlog of samples)
« Compare VPI modified and unmodified acrylic samples

» Explore coatings of composites on bulk insulating materials
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