
A Dynamic Network-Native
MPI Partitioned Aggregation Over InfiniBand Verbs

Yıltan Hassan Temuçin∗, Scott Levy†, Whit Schonbein† Ryan E. Grant∗, Ahmad Afsahi∗
∗Queen’s University, Kingston, ON, Canada

†Sandia National Laboratories, Albuquerque, New Mexico, USA
∗{yiltan.temucin, ryan.grant, ahmad.afsahi}@queensu.ca

†{sllevy, wwschon}@sandia.gov

Abstract—Modern HPC systems require efficient hybrid
programming model to utilize their hardware resources effectively.
The Message Passing Interface (MPI) has accommodated
next-generation hardware by providing new APIs such as the
MPI Partitioned interface. This API provides a user with
fine-grain communication without the overhead of traditional MPI
point-to-point communication in multi-threaded workloads.

To the best of our knowledge, we present the first work on
detailed low-level design for an MPI Partitioned implementation.
We guide readers through a method to map the MPI Partitioned
interface to the InfiniBand Verbs API. Alongside implementation
details, we also study the aggregation of user partitions and how
we can efficiently send them over the network. We study a brute
force approach and using the Partitioned LogGP (PLogGP) model
to predict ideal aggregation. We observe that using the PLogGP
model provides comparable performance without exhausting
computing resources to search the entire solution space. The
PLogGP design was further optimized by considering how the
partition arrival pattern can be used to dynamically modify our
aggregation scheme. We profiled our micro-benchmarks to provide
analysis on how and why this additional optimization is beneficial
to our results and how we can fine-tune this mechanism. Finally,
we evaluated our PLogGP and Timer-based PLogGP designs with
a commonly used communication pattern in HPC (communication
sweep) to observe the impact when communicating with multiple
processes in an application-like scenario at 1024 cores.

Index Terms—Message Passing, Partitioned Communication,
InfiniBand, Aggregation, Multi-Threaded

I. INTRODUCTION

The Message Passing Interface (MPI) [1] is one of the
most popular programming models for high-performance
computing (HPC). MPI allows a user to transparently program
an application without explicitly considering the hardware
platform. Ideally, platform specific hardware optimizations are
left to MPI implementer. For example, an implementer can
optimize MPI for specific network hardware [2]. Alongside
hardware considerations, it is important to understand how a user
may call into an MPI library. Multi-threading MPI applications
enables programmers to maximize resource utilization and
application performance on HPC systems built around modern,

† This article has been authored by an employee of National Technology
& Engineering Solutions of Sandia,LLC under Contract No. DE-NA0003525
with the U.S. Department of Energy (DOE). The employee owns all right, title
and interest in and to the article and is solely responsible for its contents. The
United States Government retains and the publisher, by accepting the article
for publication, acknowledges that the United States Government retains a
non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce
the published form of this article or allow others to do so, for United States
Government purposes.The DOE will provide public access to these results of
federally sponsored research in accordance with the DOE Public Access Plan
https://www.energy.gov/downloads/doe-public-access-plan.

many-core processors. As a result, a recent survey on MPI
usage within the US Exascale Computing Project (ECP) [3],
showed that 86% of application and system software developers
plan to use MPI with multiple threads, and 82% of users plan
to make MPI calls within multi-threaded regions of their code.

The promise of multi-threading in MPI applications has led
to the development of several related features in MPI. Since
MPI-2.0, the standard has had the threading modes; MPI_
THREAD_FUNNELLED, MPI_THREAD_SERIALIZED,
MPI_THREAD_MULTIPLE. However, theses threading modes
have limitations that require many internal locks to share
hardware/software resources across different threads when
using MPI point-to-point. Lock-contention can arise from
sharing MPI objects [4], message matching [5] and accessing
network hardware [6]. To address these issues, researchers have
proposed additional interfaces that MPI could have to alleviate
these problems, such as Endpoints [7] and Finepoints [8].
Modifications were made to the Finepoints proposal and it was
formalized as MPI Partitioned Point-to-Point Communication
in the MPI-4.0 standard, in June of 2021.

MPI Partitioned provides semantics similar to point-to-point
communication but it can leverage software-level optimizations
and hardware-level triggered operations to enhance the
performance of multi-threaded applications. Its API is designed
in a manner which minimizes the lock contention issues that
were present in traditional MPI point-to-point communication. In
this new programming model, the send and receive buffers of a
point-to-point communication are partitioned into distinct chunks
which can be addressable by individual actors. MPI Partitioned
communication will be further explained in Section II-A.

At this current moment, MPI Partitioned has yet to be fully
optimized on specific hardware platforms. The majority of
work on MPI Partitioned has been on the interface itself and
high-level software optimizations [8], [9], [10], [11], [12]. In
this paper we will explore low-level optimizations and we will
make the following contributions:

• We provide the first study on MPI Partitioned Point-to-Point
communication that uses low-level networking libraries
in detail. We present our mapping of the MPI Partitioned
interface to InfiniBand Verbs as an example of how an MPI
implementer may want to design their library.

• We study aggregation of user partitions to improving network
utilization by using a brute force approach as well as using
the extended LogGP model for MPI Partitioned to optimize
library performance for medium-sized messages.

• We investigate how partition arrival could impact user partition

SAND2023-08000CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do
not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly
owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract
DE-NA0003525.



aggregation and propose a novel aggregation scheme which pro-
vides additional speedup for a sweep communication pattern.

The rest of the paper is organized as follows: Section II provides
the necessary information on MPI Partitioned Point-to-Point
Communication, InfiniBand Verbs, and the Partitioned LogGP
model. In Section III, we discuss the motivation for this work.
Then in Section IV, we explain the details of our design
and evaluate it in Section V. We discuss related research in
Section V-E and then conclude our work in Section VI.

II. BACKGROUND

In this section, we introduce the MPI partitioned point-to-point
communication model and highlight the relevant parts of the
MPI interface. We also provide some background information
on Remote Direct Memory Access (RDMA) programming with
InfiniBand network hardware using InfiniBand verbs.

A. MPI Partitioned Point-to-Point Communication

MPI Partitioned Point-to-Point Communication extends
traditional point-to-point semantics in a way that allows for
easy use with hybrid programming models [1]. With partitioned
communication, the send and receive buffers are segmented and
actors (threads, in the context of this paper) mark data ready for
transfer. Actors can take the form of OpenMP threads, POSIX
threads, GPU thread block, and so on. A high level diagram is
presented in Figure 1 to help visualize this programming model.

An application which uses MPI Partitioned first initializes
communication using MPI_Psend_init and MPI_Precv_
init. With these function calls the MPI run-time registers
the persistent buffers, the partition size, and the partition
count before any data transfers occurs. The Psend/Precv
calls are also matched between processes using the tag, rank,
and communicator in the order they are posted. Unlike MPI
point-to-point communication, MPI Partitioned does not support
wildcards. This is beneficial for highly-threaded codes as it
avoids matching list overheads when wildcards are allowed.
Once the application is ready to communicate, MPI_Start
is called to start communication between the predefined buffers.
Everything prior to this point must be called within a serial
portion of an application or by a single thread and is required
to be non-blocking [13, Chapter 4.2].

In the parallel region of application code, the sender thread
computes its calculation, and once the data is ready to transfer,
the application calls MPI_Pready to inform the MPI run-time
that the partition can now be transferred to the receiver. In Figure
1, it is shown that the data is directly transferred between threads
as we call MPI_Pready. However, calling MPI_Pready
only indicates that the partition is ready to be transferred; it does
not require the MPI implementation to transfer it immediately.
The frequency and mechanism of transfer is ultimately dictated
by the MPI implementation (as we discuss in Section IV) but
this is how MPI users can reason about their program. Once
the sender exits a parallel region it must call MPI_Test or
MPI_Wait to complete a partitioned communication transfer.

On the receive side, the process can use MPI_Test to check
if all partitions have arrived, or it can use MPI_Parrived
which provides finer grained information to test whether
individual partitions have arrived. MPI_Parrived can also

be called by individual threads in a parallel region. Again, to
complete a partitioned communication transfer we must use
MPI_Test or MPI_Wait on the receiving process.

As MPI Partitioned is persistent, to restart the communication
and reuse the buffer, the application developer can call MPI_
Start to begin the data transfers again. If MPI Partitioned
is implemented efficiently it should not suffer from some of the
issues we see from using MPI send/receives in multi-threaded
environments. As communication has different stages, the
message matching occurs only once, prior to communication
and it is less problematic than searching the message queue with
multiple threads. A good implementation should also reduce
any lock contention that is observed with MPI point-to-point
communication [15].

B. InfiniBand Verbs

InfiniBand is a network specification maintained by the Infini-
Band Trade Association [16]. InfiniBand is used to connect high-
performance compute nodes together to provide high throughput
and low latency. This is achieved by InfiniBand allowing a ap-
plications to transfer data between two nodes without depending
on the remote node’s operating system for the data movement.

To use an InfiniBand network card, a user first creates a user
space device context and allocates a protection domain (PD).
A PD encapsulates resources such as memory regions (MRs)
and queue pairs (QPs) to prevent arbitrary access. MRs allow
for a network interface controller (NIC) to remotely access data.
A QP consists of a send queue (SQ) and a receive queue (RQ).
QPs which communicate with one other must be connected
to together during initialization. Completion queues (CQs) are
not within the PD but they are used to notify users when their
communication request has completed.

A user can create a work request (WR) which contains an
opcode, the remote key, the remote address, the local data layout,
and some immediate data (if applicable). The data layout can be
specified with the use of a scatter/gather array (sg_list) where
each item is a scatter/gather element (SGE). A SGE contains
the start address of the local memory buffer within our MR, the
length of the buffer and the local key. For a single contiguous
buffer we would have list of size one containing a single SGE.

MPI_Start

MPI_Psend_init

MPI_Pready

MPI_Pready

MPI_Pready

MPI_Wait

MPI_Start

MPI_Precv_init

MPI_Wait

MPI_Parrived

MPI_Parrived

MPI_Parrived

P0 P1

Fig. 1: Overview of the MPI Partitioned point-to-point
communication model, adapted from [14]



os G(k − 1) os

g

G(k − 1)

L

or or

Sender

Receiver

Fig. 2: The LogGP model applied to the transmission of two
back-to-back k-byte messages.

Using ibv_post_send, a user can post a WR to a QP
to generate a work queue entry (WQE). Then a user can poll
our CQ using ibv_poll_cq. Once the device has completed
the corresponding WR it issues a work completion (WC) on
the CQ. If an opcode using an *_WITH_IMM suffix is used,
then WC contains the associated immediate data.

C. The Partitioned LogGP (PLogGP) Model

The LogGP model of parallel communication models the time
to transfer a message from sender to receiver as a linear function
of network latency (L), sender and receiver processor overheads
(os and or , respectively), the minimum time between successive
messages (g), the time to send one byte (G), and the number of
bytes sent (k) [17]. This model can be extended to apply to parti-
tioned communication by taking into account the additional over-
heads introduced by dividing a buffer into multiple messages [18].
For example, Figure 2 shows the model extended to two partitions
sent back-to-back; the total time to transmit the data is:

os + 2G(k − 1) + max(g, os, or) + L+ or

Without going into details, the model can be further extended
to accommodate an arbitrary number of partitions, and take into
account opportunities afforded by partitioned communication
for initiating data movement early relative to traditional sends.
Provided parameter values for a given network, it is thus possible
to use the model to select a number of partitions that maximizes
communication performance relative to traditional communica-
tion, as discussed below. Throughout this paper we will refer to
the Partitioned LogGP model as the PLogGP model for brevity.

III. MOTIVATION

Due to the relatively new addition of MPI Partitioned to the
MPI standard, there has yet to be a thorough investigation into
optimizing MPI library support for partitioned communication.
In the MPI-4.0 standard [13], the authors provide the following
advice to MPI library implementers:

“It is expected that an MPI implementation will
attempt to balance latency and aggregation for data
transfers for the requested partition counts on the
sender-side and receiver-side to allow optimization
for different hardware. A high quality implementation
may perform significant optimizations to enhance
performance in this way; they may, for example,
resize the data transfers of the partitions to combine
partitions ... in a single data transfer”

This advice outlines some potential design paths to take in
improving the performance of MPI Partitioned. In this work, we
examine how we can directly use network hardware resources

2KiB 16KiB 128KiB 1MiB 8MiB 64MiB
Aggregate Message Size

101

102

103

104

105

T
im

e
to

C
om

p
le

ti
on

(µ
s)

Partitions

2

8

32

Fig. 3: Modelled time to completion of MPI Partitioned
point-to-point communication using the PLogGP with different
partition counts, we use an delay time of 4ms.

and how message aggregation can be used in the context of
MPI Partitioned to maximize communication performance.

To verify if this advice was applicable to the Niagara
Supercomputer (see Section V-A for system details), we used
Netgauge [19] to collect LogGP parameters [17]. We used
Netgauge’s MPI module to obtain our measurements, the
configuration of the Open MPI + UCX library used can be
seen in Section V-A. The InfiniBand module would have been
more appropriate to our work as we would obtain the LogGP
parameters directly from our network hardware. However, it
is listed as an ‘experimental InfiniBand implementation’ and
we were unable to get it to work on our platform.

We fed the measured LogGP values into the PLogGP model
to see the impact of different partition counts on this system [18].
The result of this modelling can be seen in Figure 3. Prior work
on MPI partitioned [8], [14], has used 100ms of computation
with 4% noise applied to a single thread to mimic a realistic use
case. Therefore, we have used 4ms of delay to our laggard thread
in this model to reflect prior work, as well as the benchmarking
results we present in Section V. For small and medium messages,
we observe that larger partition counts (i.e. 32) take longer to
transfer data than fewer partition counts. However, for large
messages we can see that the model favours larger partition
counts. This is expected, as a common MPI optimization is to
use message combining to improve the performance of smaller-
medium messages and message splitting for large messages.

As with any model, there are limitations in the information
it produces to provide simplicity to its user. Therefore, we can
expect that these general trends to be present in the MPI library
that we will design in this paper but the exact thresholds may
not match. In this paper we will explore those thresholds to
provide advice to other MPI Partitioned implementers.

IV. DESIGN

In our design we explored how the InfiniBand Verbs API
can be used by the MPI Partitioned interface without passing
through a middleware library such as Unified Communication X
(UCX) [20]. We first present the common parts of our design in
Section IV-A. Then we explain our three different aggregation
approaches: Tuning Table Aggregator, PLogGP Aggregator,
Timer-based PLogGP Aggregator.



A. MPI Partitioned over InfiniBand

When programming with MPI Partitioned, MPI_Psend_
init and MPI_Precv_init are used to initialize
communication between MPI process pairs. Therefore, within
those function calls we; create our device contexts, if one does
not exist, allocate our PD, register our MRs (i.e. register our
send and receive buffers), create and begin exchanging our QPs,
and create our CQ. In this process, we also bring our NICs
to the Ready to Send (RTS) state and Ready to Receive (RTR)
state for the sending and receiving processes respectively.

In this paper, we define User Partitions to refer to the
partitions that a user will interact with, and Transport
Partitions as partitions that the MPI library will send over the
network. A user will not have access to the transport partitions
other than any environment variables we create for fine-tuning
of our library. In Figure 4, we present a high level overview of
how we map user partitions to our network resources. As we are
working with InfiniBand network cards, we will create a WR for
each transport partition and post them onto our QPs. When we
refer to aggregation in this paper, we mean that multiple user
partitions are sent in a single WR, we are not staging the data
in another buffer. The hardware that we use for our evaluation is
limited to 16 concurrent RDMA WR per QP. Although we could
design a mechanism to limit the number of transactions posted
on the queue at any one time, we opted to use multiple QPs
as we can use up to 262,144 on the ConnectX-5 network cards.
The focus of this paper is on medium messages, therefore we
have not explored using features such as inlining or BlueFlame
which improves the latency of small messages. However, our
evaluation (see Section V) includes comparisons to Open MPI
+ UCX, which does leverage these features.

The QP exchange and bringing the NIC to the correct state are
done asynchronously to adhere to the non-blocking semantics
of MPI_Psend_init and MPI_Precv_init. However,
we do not know that the NIC are in the correct state when we
call MPI_Pready. One approach, proposed by the MPI forum
is to create an new function MPI_Pbuf_prepare which
would provide remote buffer readiness guarantees from MPI
[21]. To get around this issue, we currently poll the progress
engine in MPI_Start until the remote buffer is ready. This
only occurs for the first round of communication as the remote
buffer will remain ready for future rounds. In MPI_Start
we also post our receive WRs as they are required by IBV_
WR_RDMA_WRITE_WITH_IMM.
MPI_Pready executes an atomic add-and-fetch on an array

of flags we have for our transport partitions. This marks the
arrival of a user partition. If all user partitions mapped to
our transport partitions have arrived, then it will call ibv_
post_send on the associated WR. This work request uses

User Partitions 1 2 3 4 · · · n− 4 n− 2 n− 1 n

Transport Partitions 1 2 · · · t− 1 t

Queue Pairs 1 · · · q

Fig. 4: Mapping of user partitions to queue pairs

the opcode IBV_WR_RDMA_WRITE_WITH_IMM, so that we
can use the immediate value to encode which user partitions
are contained within the transport partition that is being posted.
The immediate value must be of type __be32. So to encode
the required information we store the starting user partition and
the number of contiguous partitions as two variables of type
uint16_t. We shift the bits appropriately so we can store
them as the type that is required by the WR.
MPI_Test and MPI_Wait hook into Open MPI’s progress

engine, when the request that is being serviced is associated
to partitioned communication we call ibv_poll_cq. If we
obtain a successful WC, we update the receiving user partition
flags. MPI_Parrived initially checks receiving user partition
flag to determine if the partition has arrived. If the queried
user partition has not set the flag to acknowledge an arrival,
it calls the progress engine. Our progress engine design is
single-threaded, we only allow a single thread to progress
at a time. MPI_Parrived tries to acquire a lock. If it is
successful, it will progress all MPI messages and release the lock
upon completion. Otherwise it just returns from the function.

Thus far we have discussed the general design of our library,
in the next three subsections we present three optimization
strategies we have explored to improve our design further.

B. Tuning Table Aggregator

The solution space for searching for an optimal configuration
is quite large. It is dependent on the number of process pairs, the
number of possible user partitions, the number of possible trans-
port partitions, the number of QPs used, maximum transmission
unit (MTU), and the message size. This gives us a very large,
six-dimensional search space if we only consider the variables
we have mentioned. We searched a subset of this solution space
for two processes with a 4KiB MTU, to create a tuning table
that provides an optimal configuration of these variables. We ran
our tests for 100 iterations and it took just under 23 hours on
two nodes. While this exhaustive approach is clearly not scalable
to larger process counts, it provides an important baseline to
evaluate the accuracy of the model-based approach against.

During initialization, we create a hash table where the key is a
tuple (number of user partitions, message size), and the value is
a tuple (number of transport partitions, number of QPs) for that
key. Each time MPI_Psend_init and MPI_Precv_init
are called to initialize a process pair, we query the hash table to
determine the optimal number of transport partitions and QPs to
use. We then initialize our QPs as described in Section IV-A. As
we know the aggregation scheme during initialization we preemp-
tively create the send WRs that will be called by MPI_Pready.

C. PLogGP Aggregator

In this design, we use the PLogGP model to create a
platform-specific tuning table. We use Netgauge to obtain the
required LogGP parameters and build a hash table where the
key is the message size and the value is the set of LogGP
parameters for the model. Running Netgauge has a significantly
lower cost than exhaustively searching the solution space
(cf. Section IV-B), especially at scale.

The PLogGP model considers different arrival patterns [18],
in this paper we focus on the many-before-one scenario, where



TABLE I: Optimal number of transport partitions predicted by
the PLogGP model for different message sizes on Niagara

Aggregate Message Size Transport Partitions
<256KiB 1

512KiB-1MiB 2
2MiB-4MiB 4

8MiB-16MiB 8
32MiB-64MiB 16
>128MiB 32

all but one of the threads finish simultaneously and one is
delayed. This is a possible occurrence if the operating system
moves a thread, during a programs execution. We implement the
many-before-one scenario inside of the Open MPI library. Each
time MPI_Psend_init and MPI_Precv_init are called,
we use the message size, the requested number of user partitions,
and a delay value as input into PLogGP model. We iterate the
model over power of two transport partition counts to arrive
at an optimal transport partition count. This model gives us
an optimal transport partition count regardless of user partitions
requested. If the model suggests a transport partition count that
is larger than what the user requested, then we fall back to the
user’s request. In this design we do not disaggregate (subdivide)
user partitions as there is little benefit since the application
does not expose any finer-grained communication pattern that
can be exploited. Disaggregation would result in issuing more
transactions than necessary to network hardware. On the receive
side, it would not provide much benefit as we would incur
additional completion overheads [9]. In Table I we present a
summary of the model for different message sizes on Niagara
(see Section V-A for details on this system). One restriction
we have placed on using this model, to reduce complexity, is
that we only consider power of two transport and user partition
counts. Our transport partition count is bound between one and
the number of user partitions, they are contiguous, and aligned
on #n user parts

#n transport parts boundaries. We use the calculated number
of transport partitions to initialize our QPs and create our WRs.

D. Timer-based PLogGP Aggregator

In this section, we extend the design outlined in Section IV-C
by making our design aware of the partition arrival pattern since
it has been shown that considering arrival patterns can greatly im-
prove the performance of MPI libraries [22]. The PLogGP model
receives an input value for noise but this value is used once during
MPI_Psend_init/MPI_Precv_init and is not adjusted
at run time. An online auto-tuning approach could be used to tune
the PLogGP model input delay parameter to adjust the model out-
put. However, this method would be far outside the scope of this
paper. In this work, we opt to use a rough user partition aggrega-
tion grouping generated from the PLogGP model and we dynam-
ically adjust the grouping based on how the user partitions arrive.

In Figure 5, we can see four user partitions {p0, p1, p2, p3}
calling MPI_Pready at slightly different times. This figure
would represent the user partitions for a single transport partition
that the PLogGP model would define. We propose that, the first
thread to arrive would sleep for a small amount of time and
periodically check a flag to see if it needs to wake. The thread will
sleep for a maximum amount of time defined by a δ value. Upon
wake, if all MPI_Pready’s have been called (e.g. δ = δa in
Figure 5), the first thread to arrive does nothing, as the last thread

Ti
m

e

p0

MPI_Pready

p1

MPI_Pready

p2

MPI_Pready

p3

MPI_Pready

δa

δb

Fig. 5: Diagram presenting a possible user partition arrival pattern.
We also illustrate how our aggregator could selectively choose
to which user partitions we aggregate based on our δ value

to arrive would have aggregated and sent all the user partitions
as defined in Section IV-C. Providing a δ value that is too
large results in this design providing no additional benefit to the
original PLogGP aggregator while also introducing an additional
delay into an another thread. However, if our δ = δb, then our
user partitions above the green line would be aggregated into their
largest contiguous user partitions and sent. So in this example,
p0 would execute two RDMA write operations containing user
partitions {0, 1} and {3}. Once p2 arrives, after δb, it would
send the remaining user partition {2}. The ideal scenario is
aggregating all user partitions which have arrived into a single
WR, and then a second for the laggard thread. However, we still
issue fewer RDMA writes than no aggregation at all. We did
consider using scatter/gather support for noncontinuous data but it
is only supported on the sending side for RDMA write operations.
This would require data to be staged on the receiving side as well
as providing the receiver with information about the data layout.

V. PERFORMANCE RESULTS AND ANALYSIS

A. Experimental Setup

Experiments were conducted on the Niagara cluster at the
SciNet HPC Consortium [23]. Each Niagara node has two
sockets with 20 Intel Skylake cores at 2.4GHz, for a total of
40 cores and 188GB of RAM per node. The 2024 nodes are
connected using an EDR InfiniBand network in a Dragonfly+
topology. Niagara uses the GNU/Linux distribution CentOS
7.6. In this section we refer to the persistent implementation as
using the part_persist Modular Component Architecture
(MCA) module of MPI Partitioned in Open MPI (5.0.x) using
UCX v1.12.1. For our three proposed designs, we use use the
same Open MPI version but we create our own MCA module
that directly uses the InfiniBand Verbs API.

We modified the public benchmarks listed in [14], to use
Open MPI rather than the MPIPCL [24], which was used in
that work. These benchmarks assign one user partition to each
thread and only evaluate power of two user partition counts.
For the point-to-point benchmarks, we ran each job for 10
warm-up iterations, then we obtained our measurements over
100 iterations. For the sweep benchmarks, each job used three
warm-up iterations and we obtained our measurements over 10
iterations. Fewer trials were used for the sweep benchmarks as



512B 4KiB 32KiB 256KiB 2MiB 16MiB 128MiB
Aggregate Message Size

1.0
1.2
1.4
1.6
1.8
2.0
2.2

S
p

ee
d

u
p

TP/QP

2/2

32/2

Fig. 6: Overhead benchmark for 32 user partitions comparing
the number of transport partitions

256B 2KiB 16KiB 128KiB 1MiB 8MiB 64MiB
Aggregate Message Size

0.8

1.0

1.2

1.4

1.6

1.8

S
p

ee
d

u
p

TP/QP

16,1

16,16

Fig. 7: Overhead benchmark for 16 user/transport partitions
comparing the number of QPs

they are more computationally intensive as they run on multiple
nodes and we were required to keep within our compute
allocation budget. We submitted a minimum of three jobs for
each test and on our figures we present the mean of those job
submissions. Throughout this paper we present our results with
compute amounts of 1ms or 100ms and with noise values of 1%
or 4%. These values were chosen to evaluate MPI Partitioned
using the same parameters as prior work in this area [8], [14].

For our profiling results, we created our own MPI Partitioned
profiler1 built upon the MPI Profiling interface (PMPI) to
collect the data that is presented.

B. Overhead of Aggregation

In this section, we used a modified version of the overhead
benchmark from [14], to evaluate the wire efficiency of our
MPI Partitioned module and compare it to the implementation
of partitioned communication in OpenMPI. We give some initial
results that compares different mappings of WR and QPs to
user partitions. Then we compare our Tuning Table Aggregator
and PLogGP Aggregator designs. We do not investigate our
Timer-based PLogGP Aggregator in this subsection as we
not using noise, thus no partition imbalance are present in
these tests. We will evaluate that design in Section V-C as the
perceived bandwidth benchmark is more appropriate.

1) Mapping WRs and QPs to Partitions: In Figure 6 and
Figure 7, we present results to begin our exploration into
different mappings mechanisms. The speedup is shown relative
to Open MPI’s persistent communication module. Although,
we were able to recreate the modelling results of the PLogGP
model, we want to verify we saw the same behaviour if we
used it to tune an MPI library.

We ran the overhead benchmark while keeping the number
of QPs constant and varying the number of transport partitions
in Figure 6. Using fewer transport partitions does yield better
performance for small messages. However, there is around
0.16% to 1.77% difference between using two and 32 transport
partitions up to 8KiB. For small messages, we cannot be
conclusive that there is any impact to varying transport count,
while using two QPs. Therefore, the difference between the two
partition counts is not as large as we would have expected, from
the PLogGP modelling results. The source of the discrepancy
between the PLogGP model and our results could stem from

1https://github.com/Yiltan/MPI-Partitioned-Profiler

a few places. For example, we obtain our LogGP parameters
from Netguage using the MPI transport but use the values to
estimate a InfiniBand Verbs transport. The PLogGP model does
not consider QPs. Finally, we also do not use the small message
features of InfiniBand hardware such as inlining and BlueFlame.
This does not detract from the work in this paper, as our focus
is for medium sized messages since they have been shown
to be the most important message range for MPI Partitioned
(see [8], [14] and Section V-C). After 16KiB, more transport
partitions are favourable. This is expected as Table I shows that,
as message size grows the PLogGP model suggests using more
partitions. Once we reach around 4MiB we drop to a speedup of
1.0, this is due to the saturation network hardware bandwidth.

In Figure 7, we also investigate the impact of QPs, since
this is not accounted for in the PLogGP model. When no
aggregation is used for 16 partitions, a single QP is sufficient
until around 64KiB then using 1 QP per partitions performs
better. We suspect this is due to large messages preferring more
concurrency when possible.

For brevity, we have not included all results but we did notice
the exact cut off points varied with number of user and transport
partitions that we request. However, the static tuning table we
created from that data presented the same trends as the PLogGP
model of more transport partitions as message size increases.

2) Evaluation of Different Aggregation Mechanisms: In
Figure 8, we compare our tuning table aggregator and our
PLogGP aggregator designs for different user partition counts.
With four user transport partitions, our aggregators do not
perform well for messages below 2KiB and above 32KiB when
compared to the persistent implementation in Open MPI. This
leaves a very narrow range where there is some performance
benefit. In this message range, the performance difference
between the tuning table and PLogGP approach is at most 8.73%.
The spikes shown in our data are from calculating the speedup
over a protocol switch that occurs in Open MPI + UCX. For
example, in Figure 8, there is a dip at 4KiB (where individual
transport partition size is 1KiB). 1KiB is the threshold where
UCX switches from its eager/bcopy to its eager/zcopy protocol.
As the overhead benchmark has no thread imbalance, this
suggest that using aggregation may not be the most beneficial
for an application with only a few balanced threads present.

For both 32 and 128 user partitions, we see a significant
speedup over the persistent implementation, which indicates that
aggregation is favourable when there are more user partitions.

https://github.com/Yiltan/MPI-Partitioned-Profiler


256B 4KiB 64KiB 1MiB 16MiB
Aggregate Message Size

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0
S

p
ee

d
u

p
Tuning Table

PLogGP

(a) 4 User Partitions

512B 8KiB 128KiB 2MiB 32MiB
Aggregate Message Size

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

S
p

ee
d

u
p

(b) 32 User Partitions

4KiB 64KiB 1MiB 16MiB
Aggregate Message Size

1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

S
p

ee
d

u
p

(c) 128 User Partitions

Fig. 8: Overhead benchmark for different user partitions counts comparing the tuning table aggregator to the PLogGP aggregator

At 32 user partitions, the difference is minimal and ranges
between 0.21-1.22% until 128KiB where we observe our peak
speedup of 2.17x over the persistent implementation. After
512KiB, our speedup drops as we begin to reach the bandwidth
limits of the network hardware. With the larger messages the
discrepancy between the two model can be quite large. At
512KiB the tuning table approach achieves 2.13x speedup and
1.38x for PLogGP model. However as the message sizes grow,
the difference between the two models shrink.

With 128 user partitions, we see up to 8.80x speedup for
our implementations, but there is some discrepancy between
approaches (2.02-9.10%). However, we always better than
our baseline by a considerable amount. This is because we
have over-subscribed the number of threads on our system.
Message aggregation in this scenario reduces the amount of
lock contention to post a WR. So we suspect that aggregation
could be beneficial to workloads that have higher user partition
counts as well as those that require oversubscription.

For all three user partition counts presented in Figure 8, using
the Tuning Table Aggregator and the PLogGP Aggregator gen-
erally follow similar trends. This shows PLogGP model predicts
reasonable results, which can be relatively close to doing a brute
force search on the solution space, while requiring much less com-
pute to calculate ideal user partitions groupings. For the remainder
of this paper we will focus on the PLogGP aggregator, to mini-
mize the compute resource that would be required to create a new
tuning table for each test and communication pattern we evaluate.

C. Perceived Bandwidth

In this subsection, we use the perceived bandwidth benchmark
from [14], [8]. This micro-benchmark is useful for measuring
thread imbalance, as we inject noise in to our tests, unlike the
overhead benchmark. This shows us how well we could tolerate
a thread imbalance in our design, as well as, what the effective
network bandwidth we would require from the network hardware,
if we used a single-threaded MPI point-to-point implementation
rather than MPI Partitioned to achieve the same performance.

1) Evaluation of Different Aggregator Designs: In Figure 9,
we present a comparison of the persistent implementation, our
PLogGP aggregator, and our Timer-based PLogGP aggregator.
The value of δ = 3000µs in this figure is arbitrary and is used
here for illustration. Choosing an appropriate δ is discussed
in Section V-C3. The persistent implementation provides some
the highest perceived bandwidth results. This is expected as
the persistent implementation provides no aggregation. In this
benchmark, we measure the latency to send the last partition and
divide it by the total buffer size. A lack of aggregation minimizes
the latency for the last user partition which results in a higher
perceived bandwidth. Our PLogGP aggregator still provides
additional performance improvement as the perceived bandwidth
is above the hardware limits for a single-threaded MPI point-to-
point communication (shown by the dotted line). However, it still
falls short of the persistent implementation in Open MPI. This
is especially true for 32 Partitions. We believe this stems from
the aggregator combining multiple messages, which effectively

4KiB 64KiB 1MiB 16MiB 256MiB
Aggregate Message Size

0

20

40

60

80

100

P
er

ci
ve

d
B

an
d

w
id

th
(G

iB
/s

)

Implementation

Persist

PLogGP

Timer

(a) 8 User Partitions

8KiB 128KiB 2MiB 32MiB 512MiB
Aggregate Message Size

0

20

40

60

80

100

120

140

160

180

P
er

ci
ve

d
B

an
d

w
id

th
(G

iB
/s

)

(b) 16 User Partitions

16KiB 256KiB 4MiB 64MiB
Aggregate Message Size

0

50

100

150

200

250

300

350

P
er

ci
ve

d
B

an
d

w
id

th
(G

iB
/s

)

(c) 32 User Partitions

Fig. 9: Comparison of our different aggregator designs using the perceived bandwidth benchmark. 100ms compute, 4% noise,
and the single thread delay model is used. For the Timer-based PLogGP aggregator, we use a value of δ = 3000µs



99 100 101 102 103 104 105
Time (ms)

0
1
2
3
4
5
6
7

P
ar

ti
ti

on

Comp

Comm

(a) 8 Partitions

99 100 101 102 103 104 105
Time (ms)

0
2
4
6
8

10
12
14

P
ar

ti
ti

on

(b) 16 Partitions

99 100 101 102 103 104 105
Time (ms)

0
4
8

12
16
20
24
28

P
ar

ti
ti

on

(c) 32 Partitions

Fig. 10: Profiling the user partition arrival pattern of the perceived bandwidth benchmark. 8MiB, 100ms compute, 4% noise,
and the single thread delay model is used

100 102 104 106 108 110
Time (ms)

0
1
2
3
4
5
6
7

P
ar

ti
ti

on

(a) 8 Partitions

100 102 104 106 108 110
Time (ms)

0
2
4
6
8

10
12
14

P
ar

ti
ti

on

(b) 16 Partitions

100 102 104 106 108 110
Time (ms)

0
4
8

12
16
20
24
28

P
ar

ti
ti

on

(c) 32 Partitions

Fig. 11: Profiling the user partition arrival pattern of the perceived bandwidth benchmark. 128MiB, 100ms compute, 4% noise,
and the single thread delay model is used. This figure has the same legend as Figure 10 but it has been omitted for space

increases the message size of the last transport partition and
thus the time taken for that last user partition to be sent. This
increase in latency results in a lower perceived bandwidth result.

The Timer-based PLogGP aggregator, improves the
shortcoming of the PLogGP aggregator as it performs much
closer to the persistent implementation. This aggregator does not
delay all user partitions before transmission, it sends as many
as it can before the laggard thread, to utilize the idle network.
Therefore, the library still views the last user partitions as a single
user partition so that it does not hold back others. This balances
aggregation and latency, as we are able to have fewer RDMA
writes but maintain good latency for the last user partition.

2) Profiling Partition Arrival Patterns: To further understand
why the Timer-based PLogGP aggregator and the persistent imple-
mentation perform best, we profiled the benchmark to visualize
the user partition arrival pattern. We developed the profiler using
the PMPI interface to measure the time the program arrives at
MPI_Start, and at each MPI_Pready call. From this infor-
mation we calculated the computation time as shown in green in
Figure 10 and Figure 11. The communication time was estimated
from the theoretical network bandwidth of our hardware. For each
user partition, we calculated the estimated communication time
using the basic bandwidth equation commn = user partition size

bandwidth .
As each user partition would arrive, we would append the
communication time to the plot, shown in black.

As we used the single thread delay model in this benchmark,
we clearly see that most user partitions arrive within a reasonable
time frame, apart from the laggard thread. For “medium”
message sizes, such as in Figure 10, we can complete the data
transfer of n− 1 user partitions before our last thread arrives.
This provides us a large perceived bandwidth as the application
only perceives the communication time of a single user partition.

The possible range of δ values for our Timer-based PLogGP
aggregator is relatively large, just over 3000µs would be suf-
ficient to communicate all user partitions early and benefit from
early bird-communication. However, it is clear that our δ value
could be much smaller while providing sufficient performance.
Although this value has some flexibility for these point-to-point
benchmarks, in a scenario where a process communicates with
multiple processes, like an application, this would be more
impactful. For example if a single thread calls MPI_Pready
multiple times for different requests, a large δ would introduce
an artificial delay that would impact communication requests
other than the one that the MPI library is acting on.

For “larger” messages as shown in Figure 11, we are unable
to communicate all our early user partitions before our last
partition arrival. For 128MiB we send roughly 3

8 of our user
partitions early as we are limited by the actual hardware
bandwidth. Our PLogGP aggregator is required to wait for all
user partitions to arrive before it communicates. Therefore, this
could result in 3

8 not being sent early and thus not efficiently
using network bandwidth. However, the benefit of early-bird
communication in this case is minimal in comparison to medium
sized messages. This is also reflected in Figure 9, as we see
our perceived bandwidth drop closer to our theoretical max (the
dotted line) for large messages. We are now sending multiple
user partitions after our deadline and are network limited.

3) Is There an Optimal Delta Value?: After obtaining our pro-
filing result, we asked ourselves if there is an optimal δ value, we
could find. We used the profiling data to compute a minimum δ
value that would cover most user partitions. For each message size
and partition count, we obtained the average arrival time for each
partition that was not the laggard thread. Then we obtained our
minimum δ by calculating the difference between the first and last



8KiB 64KiB 512KiB 4MiB 32MiB
Aggregate Message Size

0
5

10
15
20
25
30
35

M
in

im
u

m
δ

(µ
s)

User Partitions

4 8 16 32

Fig. 12: Estimated minimum δ value for our Timer-based
PLogGP aggregator

(non-laggard) thread to arrive. The results can be seen in Figure
12. The missing data points in Figure 12 are due to the PLogGP
model requesting no aggregation for those message sizes. The
trends are somewhat expected, as the user partition count grows,
the minimum δ value grows. For large user partition counts we
would expect the aggregator to wait for more threads which would
result in larger imbalances as the must take turns to increment
the atomic counter that we use to keep track of partition arrival.

In Figure 12, we can observe that for 32 Partitions, a minimum
δ value of 35µs should be sufficient to aggregate most user
partitions that are not the laggard thread. So in Figure 13, we
chose two δ value above and below 35µs to evaluate how well our
estimation would work. The difference between δ = 10µs, δ =
35µs, and δ = 100µs is at most 6.15%. So while picking an opti-
mal number is important, as user can be off by 3.5x and the perfor-
mance penalty is not to the same extent. For the value bellow our
minimum we have to consider that the aggregator is not instanta-
neous so the user partitions may arrive while it is processing. With
the larger δ value, the impact of waiting slightly longer is small.
We saw in Figure 10 that the room for sending data is quite large
and our Timer-based PLogGP aggregator can tolerate a δ value
that is a little too large than the optimal value. With the larger
message size of 128MiB, we saw that those data sizes are network
limited in Figure 11, so having a δ = 100µs value that is a little
too large has minimal impact when the latency of a 128MiB is
around 10ms and a very small fraction of time comparatively.

D. Communication Pattern Results

Thus far we have only investigated point-to-point micro-
benchmarks, so in this section we evaluate a Sweep3D
communication pattern which is commonplace in HPC appli-
cations. In Figure 14, we apply our PLogGP and Timer-based
PLogGP designs to this communication pattern to gain insight
on how these optimizations could benefit applications. In these
tests, we subtract the computation time listed in each subfigure
caption from the round of communication, so that we present
only the speedup of the communication portion of our code.

We evaluate our design with different amount of computation
and noise values and we generally see that our aggregation
mechanisms predominantly benefit small-medium size messages.
At 1MB We see up to 1.60x, 1.63x, and 1.04x for Figure 14a,
Figure 14b, and Figure 14c respectively. Those experiments
have 10µs, 40µs, and 400µs of noise. The speedup for those
message sizes is related to the amount of compute and noise. For

16KiB 128KiB 1MiB 8MiB 64MiB 512MiB
Aggregate Message Size

0

50

100

150

200

250

300

350

P
er

ci
ve

d
B

an
d

w
id

th
(G

iB
/s

)

δ=10µs

δ=35µs

δ=100µs

Fig. 13: Perceived bandwidth using a window that falls around
our minimum δ value for 32 user partitions

400µs of noise our our speedup is reduced as the percentage of
noise contributes to a larger delay time for the laggard thread.
This results in a larger total communication time, which is also
shown in Figure 10 when the computation is larger than the
original communication time. In Figure 14a and Figure 14b
the noise is still sufficiently small that we can benefit from MPI
Partitioned’s early bird communication.

In Figure 14, we also evaluated our PLogGP and Timer-based
PLogGP aggregation mechanisms. Timer-based design provides
an additional speedup when we consider the arrival pattern of
threads for medium messages. For larger messages, the two
designs perform comparably as we are now limited by network
bandwidth rather than the computation time. The difference
between the two designs are minimal for small messages but
becomes more noticeable for medium messages. That is largely
due to the benefit of early-bird transmission of small messages are
minimal as shown in our perceived bandwidth tests in Figure 9

The performance for very large messages with both
approaches does not provide any speedup. As we have
previously noted, MPI Partitioned is aimed at medium sized
messages. If an application were to use those very large
messages, traditional MPI point-to-point communication would
be more suitable than MPI Partitioned.

E. Related Work

Multi-threaded MPI communication faces many challenges
with regards to good performance at scale. MPI Endpoints was
initially proposed in the MPI Forum, where it suggested that
assigning ranks to threads could be one possible solution to
handling hybrid MPI codes [7], [25]. This approach had some
issues as it would increase the rank space by the number of
threads, and it does not necessarily avoid some of the issues
present with multi-threaded MPI from an implementation
perspective. In [2], the authors explored the implementation
trade-off between performance and resource usage on Mellanox
InfiniBand hardware for MPI Endpoints. Our work differs are
we are evaluating the trade-offs within the context of MPI
Partitioned. MPI Partitioned does not require all threads to
access hardware, only to mark that the data is ready. This allows
us to explore user partition aggregation, which presents different
limitations on Mellanox hardware for MPI implementers.

MPI Partitioned Point-to-Point, which was eventually stan-
dardized, was first introduced in [26]. In that work, the authors



4KiB 64KiB 1MiB 16MiB 256MiB
Aggregate Message Size

0.8

1.0

1.2

1.4

1.6

1.8
S

p
ee

d
u

p

PLogGP

Timer

(a) 1ms Comp, 1% Noise, δ = 5µs

4KiB 64KiB 1MiB 16MiB 256MiB
Aggregate Message Size

0.8

1.0

1.2

1.4

1.6

S
p

ee
d

u
p

(b) 1ms Comp, 4% Noise, δ = 20µs

4KiB 64KiB 1MiB 16MiB 256MiB
Aggregate Message Size

0.95

1.00

1.05

1.10

S
p

ee
d

u
p

(c) 10ms Comp, 4% Noise, δ = 100µs

Fig. 14: Speedup in communication time (computation time not included), Open MPI’s persistent implementation compared
to our PLogGP and Timer-based PLogGP designs. We ran the benchmark on 1024 cores (16 threads x 64 nodes)

describe the need for threads to easily commit data that is ready
for transfer without the MPI run-time acquiring internal locks.
They propose partitioning a buffer during initialization and send-
ing data as needed or once all data is ready. At this time, many
of the final features had yet to be proposed but this work laid
the foundations for MPI Partitioned. In [8], the authors present
a two-sided MPI interface that is much closer to the final MPI
Partitioned interface. They formally describe that agreeing on
message size and partition count, and message matching should
occur with the initialization functions. Here is where we first see
the MPI_Pready function to commit data. They also describe
how this interface can be implemented using triggered operations
on existing hardware. However, the implementation presented
in this paper was on top of the MPI library using the RMA
interface. During their evaluation, they show how preemptively
sending data can yield performance improvements for finite
elements codes. That work did not include receive-side partitions
in its proposal but these were first seen in [9]. In their evaluation,
they found the overhead of checking for arrival of data by the
receiver was minimal and actually performed better when using
more threads. They were also able to perform some additional
receive side computation using the MPI_Parrived interface.

The work discussed so far has been about how MPI Partitioned
Point-to-Point communication came to be. In [10], the authors
propose a portable interface built on top of existing MPI libraries.
They mention the necessity of a different request object which can
store additional information that is specific to MPI Partitioned,
such as partition count and which partitions are ready. Their
design also used a helper thread to maintain the non-blocking
semantics of MPI_Psend_init/MPI_Precv_init/MPI_
Start. This differs from our design where we wait on MPI_
Start to ensure that our RDMA buffers are ready. This was
possible as they relied on existing MPI point-to-point communi-
cation rather than one-sided communication. Performance result
for this portable interface was shown in [12] where it was also
compared to an implementation within the Open MPI library. The
Open MPI implementation used in this paper is what eventually
become the persistent implementation used in this paper. There
was minimal difference between the layered library approach and
the Open MPI persistent MCA module. This library was further
evaluated in [11] where they compare persistence send/receive
implementation to an RMA implementation. They found that
an RMA implementation provides some additional performance

benefits compared to the persistent implementation. However,
an RMA implementation still has limitations as it is limited by
a software API. A software-based RMA implementation does
does not provide access to fine grain RDMA hardware features
to further optimize but it does have the benefit of being portable.

The authors of [14] noticed that despite the many papers inves-
tigating MPI Partitioned there was no standardized set of micro-
benchmarks available to the public. Therefore, they developed
their own public set of benchmarks for MPI developers to use.
Alongside the micro-benchmarks they evaluated common com-
munication patterns used by MPI applications such as a halo ex-
change and a sweep3d. These micro-benchmarks and the sweep3d
pattern is used throughout this paper to evaluate our designs.

The paper which presents the PLogGP model used in this
paper [18], validated the model different hardware platforms.
However, they did not present a use case for the model with
results. In this paper we address that by providing an MPI
implementation which can benefit from the model.

Optimizing MPI libraries using RDMA hardware features
has been present for many years [27]. The authors of [27]
investigated how an RDMA design can reduce MPI latency.
Aggregation for the improvement of RDMA traffic in Open
MPI was performed [28] where they find that aggregation is
beneficial when ordering of messages is not needed. Therefore,
the method in [28] is only useful for MPI RMA types of traffic.

VI. CONCLUSION

As modern HPC systems continue to grow in terms of CPU-
core counts and heterogeneity, the need for efficient hybrid pro-
gramming models to use these system effectively is increasingly
important. Extensions to long standing programming models such
as MPI have adapted to accommodate next generation hardware
by providing new APIs such as the MPI Partitioned interface.

We present one of the first works on detailed network low-level
design optimizations for an MPI Partitioned implementation. We
initially provide a method to map MPI Partitioned interface to
the InfiniBand Verbs API in a logical manner as an example of
how an MPI implementer may want to design their library. We
also investigate the aggregation of user partitions and how we
can efficiently send them over the network. We combine our user
partitions into our transport partitions using a brute force ap-
proach and using the PLogGP model. It was shown that using the
PLogGP model to predict an aggregation scheme with reasonable



results while using much less compute time than the brute force
approach to arrive at a reasonable answer. This design was further
optimized by considering the pattern in which user partitions call
MPI_Pready to dynamically modify our aggregation scheme.
We profiled our micro-benchmarks to provide analysis on how
and why this additional optimization was beneficial to our results
and how we can fine-tune this mechanism. Finally, we evaluated
our PLogGP and Timer-based PLogGP designs with a commonly
used communication pattern in HPC (communication sweep) to
observe the impact when communicating with multiple processes
in an application-like scenario.

A. Future Work

This paper focuses on medium messages sizes but there are
InfiniBand hardware features such as BlueFlame or inlining
which are commonly used for small messages that could be
studied to further optimize an MPI design. Continuing with
the work presented, in this paper, by evaluating our designs on
real and proxy-applications could be incredibly beneficial to the
community. At this time, there are currently no production-grade
applications which use MPI Partitioned. Therefore, this requires
an application porting effort which is outside the scope of this
work. In [29], the authors identify possible application that
could benefit from a porting effort.

Application of this work to novel accelerators and network
cards could be advantageous for next generation systems. We
could investigate how we could offload our aggregation design
onto a DPU to remove the burden of aggregation and progression
off of the host. It is also important to consider GPUs as they are
actively discussed in the MPI forum as well as FPGA which are
still in their infancy with regards to MPI Partitioned support [30].

ACKNOWLEDGEMENT

This research was supported in part by the Natural Sciences
and Engineering Research Council of Canada Grant RGPIN
05389-2016 and Compute Canada. Computations were
performed on the Niagara supercomputer at the SciNet HPC
Consortium. SciNet is funded by: the Canada Foundation for
Innovation; the Government of Ontario; Ontario Research Fund
- Research Excellence; and the University of Toronto.

REFERENCES

[1] (2023) Message Passing Interface. [Online]. Available:
http://www.mpi-forum.org

[2] R. Zambre, A. Chandramowlishwaran, and P. Balaji, “Scalable
Communication Endpoints for MPI+Threads Applications,” in 2018
IEEE 24th International Conference on Parallel and Distributed Systems
(ICPADS), 2018, pp. 803–812.

[3] D. E. Bernholdt, S. Boehm, G. Bosilca, M. Gorentla Venkata,
R. E. Grant, T. Naughton, H. P. Pritchard, M. Schulz, and G. R.
Vallee, “A survey of MPI usage in the US exascale computing
project,” Concurrency and Computation: Practice and Experience,
vol. 32, no. 3, pp. 1–16, 2020, e4851 cpe.4851. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4851

[4] D. Goodell, P. Balaji, D. Buntinas, G. Dózsa, W. Gropp, S. Kumar, B. R.
de Supinski, and R. Thakur, “Minimizing MPI Resource Contention
in Multithreaded Multicore Environments,” in 2010 IEEE International
Conference on Cluster Computing (Cluster), 2010, pp. 1–8.

[5] M. G. Dosanjh, R. E. Grant, W. Schonbein, and P. G.
Bridges, “Tail queues: A multi-threaded matching architecture,”
Concurrency and Computation: Practice and Experience, vol. 32,
no. 3, pp. 1–13, 2020, e5158 cpe.5158. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5158

[6] R. Zambre, A. Chandramowliswharan, and P. Balaji, How I Learned
to Stop Worrying about User-Visible Endpoints and Love MPI. New
York, NY, USA: Association for Computing Machinery, 2020. [Online].
Available: https://doi.org/10.1145/3392717.3392773

[7] J. Dinan, P. Balaji, D. Goodell, D. Miller, M. Snir, and R. Thakur, “Enabling
MPI Interoperability through Flexible Communication Endpoints,” in
Proceedings of the 20th European MPI Users’ Group Meeting, ser. EuroMPI
’13. New York, NY, USA: Association for Computing Machinery, 2013,
p. 13–18. [Online]. Available: https://doi.org/10.1145/2488551.2488553

[8] R. E. Grant, M. G. F. Dosanjh, M. J. Levenhagen, R. Brightwell, and
A. Skjellum, “Finepoints: Partitioned Multithreaded MPI Communication,”
in High Performance Computing, M. Weiland, G. Juckeland, C. Trinitis,
and P. Sadayappan, Eds. Cham: Springer International Publishing, 2019,
pp. 330–350.

[9] M. Dosanjh and R. Grant, “Receive-Side Partitioned Communication,”
9 2019. [Online]. Available: https://www.osti.gov/biblio/1763213

[10] P. V. Bangalore, A. Worley, D. Schafer, R. E. Grant, A. Skjellum, and
S. Ghafoor, “A Portable Implementation of Partitioned Point-to-Point
Communication Primitives,” in Poster: Proceedings of the 27th European
MPI Users’ Group Meeting, ser. EuroMPI/USA ’20. New York, NY,
USA: Association for Computing Machinery, 2020, pp. 1–3.

[11] M. G. Dosanjh, A. Worley, D. Schafer, P. Soundararajan, S. Ghafoor,
A. Skjellum, P. V. Bangalore, and R. E. Grant, “Implementation
and evaluation of MPI 4.0 partitioned communication libraries,”
Parallel Computing, vol. 108, p. 102827, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167819121000752

[12] A. Worley, P. Prema Soundararajan, D. Schafer, P. Bangalore, R. Grant,
M. Dosanjh, A. Skjellum, and S. Ghafoor, “Design of a Portable
Implementation of Partitioned Point-to-Point Communication Primitives,” in
50th International Conference on Parallel Processing Workshop, ser. ICPP
Workshops ’21. New York, NY, USA: Association for Computing Machin-
ery, 2021. [Online]. Available: https://doi.org/10.1145/3458744.3474046

[13] Message Passing Interface Forum, “MPI: A Message-Passing
Interface Standard Version 4.0,” 2021. [Online]. Available:
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf

[14] Y. H. Temuçin, R. E. Grant, and A. Afsahi, “Micro-Benchmarking MPI
Partitioned Point-to-Point Communication,” in Proceedings of the 51st
International Conference on Parallel Processing, ser. ICPP ’22. New
York, NY, USA: Association for Computing Machinery, 2023. [Online].
Available: https://doi.org/10.1145/3545008.3545088

[15] A. Amer, H. Lu, Y. Wei, P. Balaji, and S. Matsuoka, “MPI+Threads: Run-
time Contention and Remedies,” in Proceedings of the 20th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, ser. PPoPP
2015. New York, NY, USA: Association for Computing Machinery, 2015,
p. 239–248. [Online]. Available: https://doi.org/10.1145/2688500.2688522

[16] “InfiniBand Trade Association.” [Online]. Available:
https://www.infinibandta.org/

[17] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. Scheiman,
“LogGP: Incorporating Long Messages into the LogP Model
for Parallel Computation,” Journal of Parallel and Distributed
Computing, vol. 44, no. 1, pp. 71–79, 1997. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0743731597913460

[18] W. Schonbein, S. Levy, M. Dosanjh, W. Marts, E. Reid, and R. E.
Grant, “Modeling and Benchmarking the Potential Benefit of Early-Bird
Transmission in Fine-Grained Communication,” in Proceedings of the
52nd International Conference on Parallel Processing, ser. ICPP ’23.
New York, NY, USA: Association for Computing Machinery, 2023.

[19] T. Hoefler, A. Lichei, and W. Rehm, “Low-Overhead LogGP Parameter
Assessment for Modern Interconnection Networks,” in Proceedings of
the 21st IEEE International Parallel & Distributed Processing Symposium,
PMEO’07 Workshop. IEEE Computer Society, Mar. 2007.

[20] P. Shamis, M. G. Venkata, M. G. Lopez, M. B. Baker, O. Hernandez,
Y. Itigin, M. Dubman, G. Shainer, R. L. Graham, L. Liss, Y. Shahar,
S. Potluri, D. Rossetti, D. Becker, D. Poole, C. Lamb, S. Kumar,
C. Stunkel, G. Bosilca, and A. Bouteiller, “UCX: An Open Source
Framework for HPC Network APIs and Beyond,” in 2015 IEEE 23rd
Annual Symposium on High-Performance Interconnects, 2015, pp. 40–43.

[21] R. E. Grant, “Synchronization on Partitioned Communication
for Accelerator Optimization.” [Online]. Available:
https://github.com/mpi-forum/mpi-issues/issues/302

[22] P. Alizadeh, A. Sojoodi, Y. Hassan Temucin, and A. Afsahi, “Efficient
Process Arrival Pattern Aware Collective Communication for Deep
Learning,” in Proceedings of the 29th European MPI Users’ Group
Meeting, ser. EuroMPI/USA’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 68–78. [Online]. Available:
https://doi.org/10.1145/3555819.3555857

[23] M. Ponce, R. van Zon, S. Northrup, D. Gruner, J. Chen, F. Ertinaz,
A. Fedoseev, L. Groer, F. Mao, B. C. Mundim, M. Nolta, J. Pinto,

http://www.mpi-forum.org
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4851
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5158
https://doi.org/10.1145/3392717.3392773
https://doi.org/10.1145/2488551.2488553
https://www.osti.gov/biblio/1763213
https://www.sciencedirect.com/science/article/pii/S0167819121000752
https://doi.org/10.1145/3458744.3474046
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://doi.org/10.1145/3545008.3545088
https://doi.org/10.1145/2688500.2688522
https://www.infinibandta.org/
https://www.sciencedirect.com/science/article/pii/S0743731597913460
https://github.com/mpi-forum/mpi-issues/issues/302
https://doi.org/10.1145/3555819.3555857


M. Saldarriaga, V. Slavnic, E. Spence, C.-H. Yu, and W. R. Peltier,
“Deploying a Top-100 Supercomputer for Large Parallel Workloads: The
Niagara Supercomputer,” in Proceedings of the Practice and Experience
in Advanced Research Computing on Rise of the Machines (Learning), ser.
PEARC ’19. New York, NY, USA: Association for Computing Machinery,
2019. [Online]. Available: https://doi.org/10.1145/3332186.3332195

[24] “MPIPCL.” [Online]. Available: https://github.com/mpi-advance/MPIPCL
[25] J. Dinan, R. E. Grant, P. Balaji, D. Goodell, D. Miller, M. Snir, and

R. Thakur, “Enabling Communication Concurrency through Flexible MPI
Endpoints,” Int. J. High Perform. Comput. Appl., vol. 28, no. 4, p. 390–405,
Nov. 2014. [Online]. Available: https://doi.org/10.1177/1094342014548772

[26] R. Grant, A. Skjellum, and P. V. Bangalore, “Lightweight threading
with MPI using Persistent Communications Semantics.” in Workshop
on Exascale MPI (ExaMPI). Held in conjunction with the 2015
International Conferencefor High Performance Computing, Networking,
Storage and Analysis (SC15), 2015, pp. 1–3. [Online]. Available:
https://www.osti.gov/biblio/1328651

[27] J. Liu, J. Wu, S. P. Kini, P. Wyckoff, and D. K. Panda, “High Performance
RDMA-Based MPI Implementation over InfiniBand,” in Proceedings
of the 17th Annual International Conference on Supercomputing, ser. ICS
’03. New York, NY, USA: Association for Computing Machinery, 2003,
p. 295–304. [Online]. Available: https://doi.org/10.1145/782814.782855

[28] N. Hjelm, M. G. Dosanjh, R. E. Grant, T. Groves, P. Bridges, and D. Arnold,
“Improving mpi multi-threaded rma communication performance,” in
Proceedings of the 47th International Conference on Parallel Processing,
2018, pp. 1–11.

[29] W. P. Marts, M. G. F. Dosanjh, W. Schonbein, S. Levy, and P. G. Bridges,
“Measuring Thread Timing to Assess the Feasibility of Early-bird Message
Delivery,” 2023.

[30] S. Christgau, M. Knaust, and T. Steinke, “A First Step towards Support for
MPI Partitioned Communication on SYCL-programmed FPGAs,” in 2022
IEEE/ACM International Workshop on Heterogeneous High-performance
Reconfigurable Computing (H2RC), 2022, pp. 9–17.

https://doi.org/10.1145/3332186.3332195
https://github.com/mpi-advance/MPIPCL
https://doi.org/10.1177/1094342014548772
https://www.osti.gov/biblio/1328651
https://doi.org/10.1145/782814.782855

	Introduction
	Background
	MPI Partitioned Point-to-Point Communication
	InfiniBand Verbs
	The Partitioned LogGP (PLogGP) Model

	Motivation
	Design
	MPI Partitioned over InfiniBand
	Tuning Table Aggregator
	PLogGP Aggregator
	Timer-based PLogGP Aggregator

	Performance Results and Analysis
	Experimental Setup
	Overhead of Aggregation
	Mapping WRs and QPs to Partitions
	Evaluation of Different Aggregation Mechanisms

	Perceived Bandwidth
	Evaluation of Different Aggregator Designs
	Profiling Partition Arrival Patterns
	Is There an Optimal Delta Value?

	Communication Pattern Results
	Related Work

	Conclusion
	Future Work

	References

