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/ H2@Scale is an enabler for deep

decarbonization across sectors
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Source: U.S. DOE Hydrogen and Fuel Cell Technologies Office, https://www.energy.gov/eere/fuelcells/h2scale

// Hydrogen has broad potential for decarbonization

Hydrogen can decarbonize
end uses that are difficult to
electrify, such as boilers and
turbines in industry as well
as some building appliances
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1 * simple
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— - flexible
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Pipeline Blending CRADA
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/" Objective - Provide scientific framework that enables
blending of hydrogen into NG infrastructure

4 national laboratories

26 total industry, academia, and
consortium partners :
o 5 international partners

o 3 consortiums
o 2 oil majors
Tasks:
1) Structural Materials
2) Technoeconomic Analysis (TEA)
3) Life Cycle Analysis (LCA)
HyBlend?

Other
@ Hydrogen
Applications

Clean Hydrogen Production A

b o4

_________________

Commercial

End Uses
..... Distribution
== Pipeline
Natural Gas City
Production and Gate

Processing & % I

Bulk Industrial
Storage End Uses

Residential
End Uses

Oct 2021 — Sept 2023 (2 yr project)



/Materials activities in Pipeline Blending CRADA: ~7
4 Structural integrity for hydrogen gas infrastructure @ %

/ Assess structural integrity of Structural risk to assets with blended Formulate mechanistic models into
infrastructure with hydrogen hydrogen predictions

Develop Database of design properties # Pipeline Structural Integrity Tool h Physics-based mechanisms of hydrogen
for NG assets with hydrogen HELPR - Hydrogen Extremely Low embrittlement relevant to NG assets

* Fracture mechanics based measurements Probability of Rupture » Utilize advanced microscopy to understand
degradation mechanisms

* Evaluate vintage and modern pipes « Employ probabilistic fracture mechanics _ . _
» Establish models and framework for implementing
* Welds / HAZ . |nitial . . : . :
i Ben Schroeder will physical phenomena into structural integrity tool
» Effects of: Environment . Expa . , : .
Xp present this work * Inform materials selection guidance and establish
* Pressure « Sens 049 for basis for potential future materials development
* Microstructure syste ( ) activity
StreSSl AED STHLD pipr e ieels
* Hardness Mechanics .
H Unsafe
y "/ Region
“w| safe
¥ -Region =
.-4?‘/ [of: rforman_ce_- e
Guidance on operating conditions R T
Industry-focused probabilistic /-~y State-of-the-art 0
E o + partners framework for risk assessment Yy characterization Mat

PRC) &P (gt

International coordination facilitates definition of requirements, reduces redundancy, enhances
rigor, and improves breadth of structural integrity tools ‘
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/ Testing motivation: structural integrity assessment utilizing
fracture mechanics-based analysis

Rupture determined by
fracture resistance (K,;)

\

S

-
>
C

Number of pressure cycles, N N

Evolution of flaw size determined by
fatigue crack growth (da/dN - AK data)

ASME B31.12 describes rules for hydrogen pipelines with
reference to ASME BPVC Section VI, Division 3, Article KD-10




P/ Background: stress intensity factor, K

/" What is this stress intensity factor, K? (ﬁ.f{ =Kpaxr — K mm\
K = oyma x f(geometry) g = Stress g
a = crack size R K

\ MaLx J

K characterizes the stress state at a crack tip

 Kis a transferable parameter between geometries
- For example between a laboratory test & crack in wall of pipe

“\Tﬂ

-pressure

/i\




vl 'FatiguelFracture tests performed in high-pressure

Compact Tension

(C(T))
H2

gaseous H,

load cell

CT specimen

pull rod

primary chamber

bottom cover

balance chamber

Instrumentation
o Internal:

o Load cell
o Clip gauge
o Direct Current Potential Difference (DCPD)

Fatigue: ASTM E647
o Load ratios (R) 0.1t0 0.8
o Frequency: 0.01 2> 10 Hz
o Constant load or K-control

Fracture: ASTM E1820 (Elastic-Plastic)

Environment
o Alir
o Pure H,
o Gas blends, e.g. N, — 3%H,
o Gas impurity mixtures:
e.g. H, + 10-1000 ppm O,




Pipeline

Materials




/f’lpellne steels examined have range of microstructures,
7 strengths, ages

Materlal Microstructure
X52 Ferrite / pearlite
__ X65 Banded ferrite / pearlite
c
&= | X65 (E18) |Awaiting characterization
<))
) | X65 (J22) |Awaiting characterization
@ o o
S X80 (B) 90% PF + 10% AF
— (coarse)
X80 (E) AF (fine)
X80 (F) 70% AF + 30% PF
@O
o)
av]
_'I_')
cC
> Higher carbon, higher sulfur

AF = acicular ferrite: PF = polygonal ferrite



Trends in
Fatigue Crack

Growth Rates
in H,




// Background: Hydrogen Assisted Fatigue

‘4 Fatigue: Loading of pipe caused by fluctuations in operating pressure
' i For constant P, ~ Knax

1000 )
©
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z | E
~ 600 O
= (@)
3 400 S
o o
200 L
U Z
0 RS,
Time © -, .
© AK (stress intensity factor range)
Shallow pressure Deep pressure cycles
P cycles (high R, low AK) (low R, high AK)
R= P

HA-FCG does not preclude material from use but necessitates proper design
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Variety of grades show similar behavior in gaseous H2

F 210 bar H2
[ R=0.5
"1 Hz

da/dN (m/cycle)
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E 210 bar H2

- =

X52 Y59 (1959)
X52 B50 (1950)

X42 Y49 (1949)
X52 U52 (1952)

X80 F33

¢ X65E18

20
AK (MPa m'?)

30 40

X52 Y59 (1959) 4
X52 B50 (1950) 3
X52-Y49 (1949) |
X52 U52 (1952)

20
1/2
)

30 40
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- 210 bar /
| R=0.5 4
- f=1Hz %
p— -6 | _
© 10 -
O
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= 7
& 107 L .
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2
S /
8 / 0 X65 weld
© 107 >/ O X52 (1964) weld 340 bar* |7
Q 7/ @® X52base i
Q / ¥ X52 friction stir weld
c{,\/ > X52 weld (1962)
/ A X52 weld (1950)
107° /L . .
4 5 6 7 8910 20 30 40

AK (MPa m'?)

Ref: Ronevich et al. IJHE 42 (2017)
Sliftka, PVP2015-45242
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//Welds and base materials behave similarly

Similar trends have been observed for a variety of weld processes
- Design curves bound behavior

AK (MPa m'?)

e " v I '
80 bar e
[ R=0.5 s’
- f=1Hz
3 weld | base e
- RS o O|® X60
Q‘b’" A A& XT0
S 4
" ’- M 1 1 | 1 1
4 5 6 7 8 910 20 30 40




F| —— R=0.1
[| — R=05
5| | —R=07

E P =207 bar

Fatigue crack growth rate, da/dN (m/cycle) \

n n n L 1 n 1 L
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Stress intensity factor range, AK (MPa m'’2)
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Fatigue crack growth rate, da/dN (m/cycle)
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l. 1 f PR | n " 1
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Stress intensity factor range, AK (MPa m'’2)

/besign curves enable upper bound prediction for fatigue crack
/" growth as function of loading and pressure

The effects of pressure and load ratio on fatigue crack growth are
captured in conventional power law formulation :

-At high AK _d: — 1.5x10~11
da
Atlow AK 22 — —14
ow N 3.5x10 _

([1+2R

AK3 66
1+0 4286R] A

K®>g(P)

From 0 to 210 bar: g(P) = 0.071P%>' units in MPa

Master Design Curves appear to be effective for a wide range of

construction steels

Ref.: San Marchi et al., PVP2019-93907

Outcome:

 Master Design Curves provide a simple framework to
bound the fatigue crack growth of steels in gaseous H,




r/ﬁaster design curves bound pipeline steel data & are sensitive to
7 observed dependence on pressure
10— .

4 < - X52 Pipeline Steel
a total P = 210 bar
\E\ R=0.1& f=1Hz
S 10-6_ E
= ]
2 A
© ad
L®) Vi -
< . 7
+ 10 F -
< ; ]
E L
(@] I Q‘b
s ! Q
Q N
© ) v/
G 10°F 7 -
E , S
o /-
b= 2
L
109 s & |I| ] | I L
4 5 6 7 8 910 20 30 40

AK (MPa m'’?)

Ref.: San Marchi et al, PVP2021-62045

Even low partial pressures can exhibit accelerated FCGR ‘ s
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Fatigue crack growth in H, depends on load ratio, R

0° A
74 : 'R=05 7
" heat E (X80) R=077 - 7
- 34barH /7 R=01
f=1Hz 7
- / -
)
S
-
O
E107L E
yd
O
4y]
©
10-8:_ B
/5
77 7/
/77 7/
10° 2Ll - '
4 5 6 7 8 910 20 30 40

AK (MPa m'?)

Three load ratios were
evaluated including the

influence of frequency for
R=0.7

Unlike tests in air and
general recommendations in
the codes, R has an effect on
da/dN in hydrogen

Higher frequency does not
necessarily affect da/dN for
low AK

Ref.: San Marchi et al, PVP2022-84757 n



Trends in
Fracture

Toughness
in H,




rd

" Hydrogen Assisted Fracture Testing

‘4 Fracture: subcritical crack extension as defined in ASTM E1820

/ 14— e 820

. : 1 800

T o Monotonically load sample 2 r 1w
H, until crack extension I 1 o©
i Z o0s| : Q
ot | o Instrumented with DCPD Y {70 3
H, 2 g 0.6 1720 :3;
Y 1700 ~

H, H,

- 680

1 660

Displacement (mm)

J (kJ/m2)

| EJgH
Kjon = (1-v?)

In Hydrogen, K, is referred to as
K,qn @s it is hydrogen dependent

Fracture resistance, K o, is environmentally dependent (e.g. pressure, rate)




//Fracture resistance trends for pipeline welds and
base metals are similar in H,

-
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/ Approximate Vickers Hardness ° KJQH IS genera"y greater than

T, 156 187 218 43 55 MPa m'?

E [ rrrrgrrrr.1rrrrrgrrrrJr1rroo| .01 m ]

o 210 bar H, Ve =2 me | ¢ Strength has only minor effect on

= . 4 e lower bound K, for steels with
T v p 8 - oot tensile strength < 650 MPa

xg 100F @ - R mhd 1| W xsoB

" L . o 4 xeor « Local hard spots might account for

X52 (1964)

O wene|  lower toughness of welds

© X52 B50 (1950)

it X52 Y59 (1959) .

L 50 X52 Y52 (1952) X52 weld (1962) Electric Flash Weld

8 X52 U52 (1952) HV 05

%

Q K, = 55MPa m"? (ASME B31.12) =

— £

- 3

3] . .

© oL vty v v 0 0w 0w 0 by e by 1 g

= 450 500 550 600 650 700 750

Tensile Strength (MPa)

15
Distance (mm)
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toughness In air

~ Older pipeline steels tend to have poorer fracture

 Modern steels have greater
percent drop in fracture
resistance than vintage
steel

- Broad knock-down factors
may be non-conservative

74
/S~
S 300
£ O :
© [ MOder,, 0 ]
o 250 [ Steg, h
= [ - 5]
o o |
(o IS
Y : . T <Z-
2 150 F A A i o m O Modern
© i A Vlnt
- i (o7 o a 2~ \intage
»n [ m o & 0 -
% 100f || e ]
o : *i YOTOg e ]
o 50 A -
> [ ]
ot
u b -
E (0]} PP BRI PRI SRR EPEPEPEP B ]
LL 450 500 550 600 650 700 750

Tensile Strength (MPa)

Fracture In air is not a great
indicator of performance in H,

Ref: Ronevich et al. 4" Int Conf on Metals and Hydrogen ﬂ



,/ Fracture resistance decreases with increasing
hydrogen pressure

AN

7 150 —————1———T———T1————
X52 N62 (1962) ] 1 * Significant reduction of
@ - 0.005 mm/min - .
o _ [ u fracture resistance (K;qu)
&8s oo is apparent at low
2 - _ 4
B § pressure
O o N _ i
'ﬁ = i _ ] ¢ Further reduction of K ;o
2 Esf : at higher pressure is
S x| non-linear
L 0 bar 17 bar 34bar 210 bar
0 [ MR T R a | U S P R —

Partial pressure of H,
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/- Summary of Pipeline Behavior in Hydrogen Gas

/ Fatigue crack growth rate (FCGR) accelerates by 10X in H,
« Similar behavior among grades, age, strength, microstructure,
weld
* Pressure sensitive in low AK regime
* Design curves capture FCGR relationship with pressure and R

Fracture resistance decreases in gaseous H,

* Pressure dependent and non-linear

* Welds exhibit similar behavior for same hardness

* No significant influence of strength on lower bound fracture
behavior for tested X52-X80

* Fracture in air is not a great indicator of performance in H,

Gaps Remaining:

- Role of hard spots, HAZ, dents, bends

- How do we define bounding fracture behavior
- Anomalies to trends identified
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Fracture Resistance in Hydrogen, KJ OH (MPa.ml/ 2)
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Hardness Results
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Average Vickers Hardness, (HV )

Y52 and U52 data taken from flat
faces

Lower bound HV at 55
MPavm

Minima: ~190 HV

Mean: ~205 HV
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/" 1 ASTM E1820 elastic-plastic
fracture test (J-R curve)
using arc geometry

J Estimate of strain rate:
— de/dt ~ 1 EQPS/s for
— dK/dt ~ 10 MPa m'2 s
[ At high rate, limited time for H diffusion;
however, background (equilibrium) H is
sufficient to degrade fracture resistance
compared to air

(MPa m'?)
N W
o o
o o

JQ
N
o
o

N
an
o

Fracture Resistance, K
(@) |
o

Effect of H, on fracture at high rate
should not be ignored

100 |

T | T ””5 T
[ o i
s © X100 pipe -
® 210 bar H2 |
N O Air
g 2sec |
[ 2000 sec 3
[ e [ ™ d i
e |
0 [ L1 g aaaul A ERET | L v g aaaul L1 oa gl L ......._
0 0.01 0.1 1 10 100

Rate effects

/" Gaseous hydrogen affects fracture at high deformation rates

dK/dt (MPa m'%s™)

Ref.: Ronevich, San Marchi (unpublis%



Oxygen-impurities
/~ Oxygen did not affect hydrogen fracture resistance for
/ long exposures

rd

/4 ASTM E1681
Constant displacement fracture tests
1 8 different materials with yield strengths 450
from 760 to 1480 MPa all exhibited a delay 400 X100 Koo = 50
in cracking (i.e., incubation time increased) 1000 bar =
but ultimate fracture resistance in hydrogen 590 WOL
was not affected 300 geometry

4 K, ~ 48 to 50 MPa m'2
d Evaluated O, contents from 0.01% to 1%

N
0
o

~2.3X delay

Incubation time (hr)

—
[6)]
o

—
o
o

Impact: Long-term benefits of O,
cannot be relied on to
m itigate H -embrittlement Ref.: Wheeler, Ronevich, San Marchi (unpublished).
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