SAND2023-04528R

Sandia
National
Laboratories

Active High Assurance
Authentication Protocol (AHAAP)

Adrian R. Chavez, Tam D. Lee, Juan A. Martinez, Matthew S. Stroble

May 2023

Sandia National Laboratories is a multimission laboratory
U.S. DEPARTMENT OF managed and operated by National Technology and Engineering

) ENERGY N‘ & s Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell

Nattonei Nuslaar Security Administration International Inc., for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE-NA0003525.

E] Sandia National Laboratories Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly
R owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract
@ENERGY NOISH DE-NA0003525.

CONTENTS

Lo OVRIVIEW ittt bbb bbb bbb 5
2. Digitally Unclonable Functions ProtOCOL ... 6
2.1, DUF OVEIVIEW ...ttt 6
2.2, DUF COMMISSIONINGoviiiiiiiiiiiiiiiiiiiiciisieisisssissssss st ssssssssssssssssssses 7
2.3, DUF OPEIatiOn ..ottt a s 7

3. Digitally Unclonable Functions Implementation Detailsccooieuviieinniciinicinnicenicceicennaes 8
310 DUF-TPMuciiiiiiiiiic ittt 8
3.1.1. DUF-TPM ISSULEScoiiiiiiiiii s sssanaes 8

3.1.2. QEMU OP-TEE Branch.......ccccoiiiiiiicnicccic e 9

3.1.2.1. Virtual Machine.......ccocvviviiiiiiiiiiicc s 10

3.1.2.2. OP-TEE....ciiiiiiiiiiiiciii s 10

3.1.2.2.1. OP-TEE Installation......ccccoccviviiiiniiiiiiiiicsccecnn, 10

3.1.2.2.2. DUF-GUIL...coiiiiriiiiiicicic s 12

3.1.2.2.2.1. DUF-GUI Installation......cccccocoveiiivinvnnicccncnnnnn 12

3.1.2.2.3. Running OP-TEE Branch........ccccooviiiinnnnniiccciie, 13

3.1.2.2.4. OP-TEE Branch ISSUESccccevvvininiiccicieiririricccceeeeeee 17

3.1.2.2.4.1. The OP-TEE Project......ccccccovverrinivcricrricirinnnnn. 18

3.1.2.2.4.2. RockPi4B v1.5 o, 18

3.1.2.2.5. ARM TTUSEZONE ..ot 19

3.2. DUF Physical ENVIFONMENT.....ciiiiiiiiiiiriiiiiiiiiiiissiicisssssesssssessssssesssssssssssssssssssssssssssns 19
3.2.1. ROCK PI SEUP...cuiiiiiiciiiiciicit s 19

3.2.2. Raspberty Pi SEtUP ...coiiiiiciiiciriicicce s 20

3.2.2.1. COMMISSIONINE c..oviviiiiiiaiiiicieieietrisiiecce et es 20

3.2.2.2. OPEIAtNGZ ...t 24

4. Conclusion and Future DIFECHONSc.ccueueiriririiiiiiiiciicciceee et 29

LIST OF FIGURES
Figure 1: The DUF protocol between two parties for a Secure Firmware-Over-the-Air (S-FOTA)

APPLCALION. oottt bbbt 6
Figure 2: The DUF process and flowchart of the algofrithm ... 9
Figure 3: Initialization of QEMU ENVIFONMENT ...t eiseiessieessssesessssssessssesesenans 14
Figure 45: The DUF client operation python implementationcccccceceieinininininiccceninsiiccenas 26
Figure 56: The results of the operation phase of a file validated by the DUF client.........ccccccceuvunnnce. 26
Figure 67: The DUF server operation python implementation ... 27
Figure 78: The results of the operation phase of a file validated by the DUF setver........cccccccvveunnceee 27

ACRONYMS AND DEFINITIONS

Abbreviation Definition
AHAAP Active High Assurance Authentication Protocol
CAC Common Access Card
C&C Command & Control
DER Distributed Energy Resource
GUI Graphical User Interface
0S Operating System
OTA Over-the-Air
PKI Public Key Infrastructure
RDP Randomized DUF Pattern
TEE Trusted Execution Environment
TLS Transport Layer Security
TPM Trusted Platform Module
QEMU Quick Emulator

1. OVERVIEW

The AHAAP Maturation Project involves maturation and evaluation of a patented zero-trust tampet-
resistant high-assurance session-less dynamic and active device authentication protocol that
simultaneously authenticates identity and provides integrity verification in a single step, substantially
reducing the risk of cyberattack, and eliminating the need for costly and complex conventional
communication security systems requirements (i.e., cryptography, Public Key Infrastructure (PKI),
and key management).

These cybersecurity attributes of the technology must be preserved when applying the technology to
different cybersecurity solutions, including Command & Control (C&C), Over-the-Air (OTA) update,
Common Access Card (CAC), and distributed energy resource (DER) implementations, among
others.

The technology research objective is to test and verify that the cybersecurity attributes of the
technology are not degraded in different cybersecurity applications. The primary technology
development objective is to build minimum viable products to demonstrate the technology addresses
today’s cybersecurity threats so that prospective investors, strategic partners, regulatory agencies, and
commercial customers can interact with and assess the protection assured by the technology. The
AHAAP Maturation Project goal is to develop, test, and validate one or more AHAAP
implementations.

The AHAAP Maturation Project tasks are: (i) engineer AHAAP implementation software, (i) build a
functional prototype that implements the AHAAP software for demonstration, testing, analysis, and
evaluation purposes, and (iii) generate a report detailing the results of the AHAAP C&C software and
hardware implementation.

The final project deliverables are: (i) AHAAP software implementation and prototype, (ii) a report
from Sandia National Laboratories detailing the results of the AHAAP implementations.

2. DIGITALLY UNCLONABLE FUNCTIONS PROTOCOL

The DUF protocol is a multi-party protocol to validate the integrity of data shared between two
parties. The protocol depends on a secret key that is stored within a tamper resistant device where
an XOR and a SHA512 hash can be performed (the red cylinder in Figure 1). The secret data stored
is called a Randomized DUF Pattern (RDP) and is generated by the user, independent of the system
manufacturer. The RDP can be based off a uset’s handwritten signature or a pin and can be derived
in conjunction with a true source of entropy. Both the manufacturer and the end device owner
would store a copy of the RDP. In Figure 1, the left side of the diagram represents a vehicle
manufacturer that may have occasional firmware updates. The right side of the diagram represents
the vehicle that will receive and validate the firmware update through the DUF protocol. The
manufacturer would process the firmware combined with meta-data (such as time, version, and
location information) through the DUF tamper-resistant chip to produce a DUF signature. The
firmware and meta-data would be communicated, in cleartext, along with the DUF signature to the
vehicle. The vehicle would then perform the same computation using its DUF chip with the secret
key to validate the integrity of the firmware update. If the signatures produced by the vehicle and
manufacturer match, then the firmware update is applied. Otherwise, the firmware update is
rejected. The DUF protocol operates in this fashion and can be applied to a broad range of
applications outside of electric vehicles. The DUF protocol is described in more detail in the
sections that follow.

Data Sent to
the Vehicle

Time,
Version #, [Firmware Time,
. Version #,
Location, -
| Tamper Location,
Firmware Resistant Firmware
Boundary

Digitized
Dynamic Data
XOR with]
Randomized DUF ||
Pattern (RDP) 1

s

011010001101010010 — Dynamig
| Data

U110
011p
0110

3D DUF Imprint

Figure 1: The DUF protocol between two parties for a Secure Firmware-Over-the-Air (S-FOTA)
application.

2.1. DUF Overview

The DUF protocol consists of two stages:
1. Commissioning
2. Operating

The Commissioning stage creates a randomized Digitally Unclonable Function (DUF) Pattern
(RDP) that is stored on both the server and client systems. This stage only happens once at
initialization. Once the commissioning phase is complete, the next stage is the Operating stage
which executes the DUF protocol.

2.2, DUF Commissioning

For this implementation, the RDP is created by randomly generating 512-bit strings XOR'd together
continuously until the user presses a key. Once the user presses a key, the RDP is written to a file
named duf.txt by default. The content of the duf.txt file is then sent to the client system to also write
to the same file name by default. The communications are TLS encrypted using digital certificates.
The certificates are self-signed certificates for this implementation but can be substituted in for
certificates signed by a certificate authority.

2.3. DUF Operation

Once the RDP has been stored on both the client and server, the DUF protocol can be enabled and
advanced to the operating phase. The client system starts by listening for data to be received from
the client (such as a firmware update). Once the data is received by the client, the server will also
send a DUF signature of the data that will be validated using the duf.txt secret key that was
communicated during the commissioning phase of the protocol. The data also includes meta-data,
such as timestamp, version, and location information at the header. The client processes all data
(including meta-data) through the DUF protocol to confirm that the DUF signature matches the
signature communicated from the server. The communications are also TLS encrypted using the
same certificates as the commissioning stage. If the signatures match, then the data is trusted,
otherwise the data is not trusted. The use case for this implementation is a software update being
provided by the server (a vehicle manufacturer) to the client (an electric vehicle).

3. DIGITALLY UNCLONABLE FUNCTIONS IMPLEMENTATION
DETAILS

3.1. DUF-TPM

The initial idea was to use the TPM chip to create and store the Random DUF Pattern (RDP). The
TPM chip would randomly generate a secure 80-byte (640-bit) number into an array. Each set of 8
bytes (64 bits) of the 80-byte number would represent a pin digit value (0-9). The user would type
their own unique 8-digit pin into the user interface and submit it to the TPM chip. The user’s pin
would determine which set of 8-bytes from the 80-byte number were used and the order they would
be represented in. This resulting number makes up the 64-byte (512-bit) RDP. The RDP would then
be sent from the TPM chip to the factory and vehicle devices. In the factory device, the message
contents (containing the GPS, timestamp, and firmware) are hashed which creates HASH 1. The
RDP is then XOR-ed with HASH 1 and the result creates HASH 2. HASH 2 and HASH 1 are
stored in the TPM chip for safe keeping. In the vehicle device, HASH 1 and the RDP are sent over
from the TPM chip and are XOR-ed together. The result of the XOR creates HASH 3. HASH 2 is
then sent over from the TPM chip and compared with HASH 3. If the two hashes match, then there
is a successful update otherwise an error is recorded. The DUF-TPM process is shown in Figure 2,
however there were certain security concerns surrounding this process with the TPM chip.

3.1.1. DUF-TPM ISSUES

The TPM chip is a dedicated microcontroller that has numerous components that could be used to
implement DUF securely. Most notably, the TPM chip has a built-in random number generator,
persistent memory for key storage, and a SHA-1 hash generator. However, TPM chips are very
limited as they are fixed-function devices. TPMs are also primarily used for key storage, however,
they have a limited amount of persistent memory to store keys. This can be a problem because if a
user wanted to encrypt something with a key, they would need to take the key out of the TPM chip
and release back into memory which may have been compromised during this process. This became
an increased security risk throughout our analysis which prompted us to seek out more secure
avenues to execute the DUF protocol.

DUF-TPM Process

Factory

Message Contents

a 5 6

L (3 s
Firmware

e Randomized DUF Pattern

| HASH Function #1
s RDP
B _'1

Digitized Dynamic Data

we "o

HASH Function #2

I SHA512

1 :

. Vehicle HASH #1 |

I) —f— = —-i — — e — - —
o . HASH Function #1 | HASH #2 »

I Message Contents . CTo T T

I GPS : DUF Process
v
User Pin Input Timestamp : Randomly generate a secure 640-bit random number,

| o then sends it to Mono Develop to allocate 64 bits of

Firmware

: the 640-bit number to every pin number (0-9) within
I the GUL.

e User submits their 8-digit pin in the GUI which creates
BASH Ponction #3 HASH Pomction 42 | the 512-bit RDP which gets stored in the TPM.

SHAG12 SHA512 +---
In the factory device: Message contents are stored in
e HASH #1 which gets stored in TPM. The RDP from step
1 is XORed with HASH #1 and the output is stored in

HASH #2 which gets stored in the TPM.

In the vehicle device: This is the process done to

before a firmware update. The message contents are
compared with the RDP and XORed, like in step 3. The
output is stored in HASH #3. HASH #3 is then
compared to HASH #2 found in step 3.

o confirm that the firmware wasn't tampered with

If the two hashes match, then the firmware is allowed
to update, otherwise an error occurs.

Figure 2: The DUF process and flowchart of the algorithm

3.1.2. QEMU OP-TEE Branch

The OP-TEE branch contains multiple repositories that were designed to implement the complete
DUF protocol in a user intuitive process that included a Graphical User Interface (GUI) for DUF
RDP PIN registration. The OP-TEE branch utilizes several technologies to aid in developing with
ARM Trusted Zone technology like OP-TEE Operating System (OS) and MonoDevelop. OP-TEE
OS is the dedicated OS that runs inside ARM Trusted Zone and the OP-TEE driver that allows for
interaction between the Untrusted Execution Environment and the Trusted Execution
Environment. For simplicity these two technologies will be referred to as OP-TEE. OP-TEE is
currently developed by a company named Linaro and is overseen by the Trusted Firmware
Foundation. The OP-TEE framework was specifically developed using the Ubuntu Linux Operating

system. During the development for the OP-TEE specific implementation of the DUF protocol
OP-TEE proved to be quite challenging to develop a proper implementation. Due to a number of
challenges detailed in later sections, a successful implementation of the complete DUF Protocol was
not possible, only a partial implementation was able to be achieved. The current implementation
includes the DUF server running inside of OP-TEE in the ARM Trusted Zone environment and a
dedicated GUI application that is used for the registration of a unique RDP PIN sent from the GUI
and stored inside of the ARM Trusted Zone. The GUI application runs in the Untrusted Execution
Environment also referred to as Normal World. The GUI can be run from another computer on the
same network.

3.1.2.1. Virtual Machine

This project requires VMware Workstation Pro v16 or greater if on Windows and VMware fusion
pro 12 or greater if on mac. The Development Environment must be based on Ubuntu 22.04,
200GB of storage or higher, 16GB of ram and 8 CPU processor cores.

3.1.2.2. OP-TEE

OP-TEE is a Trusted Execution Environment (TEE) designed to be a companion to a non-secure
Linux kernel running on ARM Cortex-A cores using Trusted Zone technology. OP-TEE supports
both ARMv7 and ARMv8 architectures in both 32-bit and 64-bit. This project utilizes the ARMv7
32-bit architecture to implement the Quick Emulator (QEMU) version and is supported by the
Rock Pi 4B v1.5 board.

3.1.2.2.1. OP-TEE Installation

Run the following command from the Linux terminal to install all the required packages for Ubuntu
22.04.

10

sudo apt install \
adb \
acpica-tools \
autoconf \
automake \
bc \
bison \
build-essential \
ccache \
cscope \
curl \
device-tree-compiler \
e2tools \
expect \
fastboot \
flex \
ftp-upload \
gdisk \
libattrl-dev \
libcap-dev \
libfdt-dev \
libftdi-dev \
libglib2.0-dev \
libgmp3-dev \
libhidapi-dev \
libmpc-dev \
libncurses5-dev \
libpixman-1l-dev \
libslirp-dev \
libssl-dev \
libtool \
libusb-1.0-0-dev \
make \
mtools \
netcat \
ninja-build \
python3-cryptography \
python3-pip \
python3-pyelftools \
python3-serial \
python-is-python3 \
rsync \
swig \
unzip \
uuid-dev \
xdg-utils \
xterm \
xz-utils \
zliblg-dev \
repo

Clone the OPTEE repo to the user’s home directory in Linux. Change the terminal location to the
newly created directory that was created during the cloning process, OPTEE. From this root folder
run the following commands one at a time until they complete. You may get configuration questions
asked about setting up google repo during the first command, just respond with yes.

11

repo init -u https://github.com/OP-TEE/manifest.git
repo sync
cd build

From the root of the repo, change directories to the build folder and run the following command.

make toolchains

This will build the tool chains required for the specific QEMU installation ARMv7 32-bit.

If your intention is to do debugging within OPTEE, ASLR must be disabled by setting the flag
CFG_CORE_ASLR=n in the Linux terminal. This can be done with the following command from
the Linux Terminal.

export CFG_CORE_ASLR=n

At this point, a complete compile of OPTEE is ready with the DUF server code. Run the following
command to start the lengthy compile.

make run

Once the compiling of OPTEE-OS finishes, the system will automatically start the QEMU
environment. Two additional terminal tabs labeled “Secret World” and “Normal World” will appear.

3.1.2.2.2. DUF-GUI

The DUF-GUI is a program that allows the user to input the unique RDP pin number to be stored
into the Arm Trusted Zone environment. It was developed using MonoDevelop and C# so that it
can run on any computing device that is supported, Windows, Linux, and Mac. This interface is
what the manufacture would use to install the secret code on to the target device running the DUF
server that must be verified in the DUF Protocol.

3.1.2.2.2.1. DUF-GUI Installation

Run the following lines from the Linux terminal. This will install the latest version of MonoDevelop
onto the Development system.

12

sudo apt install apt-transport-https dirmngr

sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv-keys
3FA7E0328081BFF6A14DA29AA6A19B38D3D831EF

echo "deb https://download.mono-project.com/repo/ubuntu vs-bionic main" | sudo tee
etc/apt/sources.list.d/mono-official-vs.list

sudo apt update

sudo apt install monodevelop

MonoDevelop should be successfully installed at this point.
Open the DUF-GUI project repo in MonoDevelop and press the play button to start the program.

3.1.2.2.3. Running OP-TEE Branch
From the OPTEE repo folder, change to the builds folder and run the following command.

make -j8 run

Once the system completes the task you should see two new terminal tabs in the terminal window,
Normal World and Secure World. Once all the text lines have stopped scrolling in the Normal
Wortld terminal, press the following key for the terminal prompt in the original terminal that you run
the previous command.

C

You will not see anything happen in the initial terminal, but you will see stuff happening in the
Secure World and Normal World terminals.

13

msstrob@ubuntu: ~/optee/build

msstrob@ubuntu: ~/optee/build Secure World Normal World

Kerne archfarm/boot/Image is ready
Kerne archfarm/boot/zImage is ready
make[1]: Leaving directory '/home/msstrob/optee/linux’
mkdir -p /home/msstrob/optee/build/../out/bin
1n -sf fhome/msstrobj/optee/build/../linux/arch/arm/boot/zImage /home/msstrob/optee/build/..fout/bin
make -C /home/msstrob/optee/build/../qemu
make[1]: Entering directory '/home/msstrob/optee/qemu’
changing dir to build for make ""..
Entering directory '/home/msstrob/optee/qemu/build’
ui/keycodemapdb meson tests/fp/berkeley-testfloat-3 tests/fp/berkeley-softfloat-3 dtc capstone slirp
[1/17] Generating gemu-version.h with a custom command (wrapped by meson to capture output)
make[2]: Leaving directory '/home/msstrob/optee/qemu/build’
changing dir to build for make ""...
make[2]: Entering directory '/home/msstrob/optee/qemu/build’
GIT ui/keycodemapdb meson tests/fp/berkeley-testfloat-3 tests/fp/berkeley-softfloat-3 dtc capstone slirp
[1/17] Generating gemu-version.h with a custom command (wrapped by meson to capture output)
Leaving directory '/home/msstrob/optee/qemu/build’
Leaving directory '/home/msstrob/optee/qemu’

make[1]: Entering directory '/home/msstrob/optee/build’
1n -sf fhome/msstrob/optee/build/.. fout-br/images/rootfs.cpio.gz /home/msstrob/optee/build/../out/bin/

QEMU is now waiting to start the cution
Start execution with either a 'c' followed by <enter> in the QEMU console or
attach a debugger and continue from there.

To run OP-TEE tests, use the xtest command in the 'Normal World' terminal
Enter 'xtest -h' for help.

Option is deprecated and might be removed in a later version of gnome-terminal.
Use to terminate the options and put the command line to execute after it.
option is deprecated and might be removed in a later version of gnome-terminal.
VE) to terminate the options and put the command line to execute after it.
cd /home/msstrob/optee/build/../out/bin && /home/msstrob/optee/build/../gemu/build/arm-softmmu/qemu-system-arm \
-nographic \
-serial tcp:localhost:54320 -serial tcp:localhost:54321 \
-smp 2\
-5 - machine virt,secure=on -cpu cortex-al5s \
-d unimp -semihosting-config enable=on,target=native \
-m 1857 \
-bios bll.bin \
-object rng-random,filename=/dev/urandom, i ng® -device virtio-rng-pci,rng=rng®,max-bytes=1024,period=1000 -n
etdev user,id=vmnic -device virtio-net-device,netd vmnic
QEMU 7.0.0 monitor - type 'help' for more information
(gemu) cf

Figure 3: Initialization of QEMU Environment

There will cause the system to initialize and quite a few lines will be show in the terminal windows.
Once the process is complete the Normal World will ask for the buildroot login.
Type in the username:

root

Press the enter key.

14

Normal World

msstrob@ubuntu: ~/optee/build Secure World Normal World

orkingset: timestamp_bits=30 max_order=19 bucket_order=0
Unpacking initramfs...
squashfs: version 4.0 (2009/01/31) Phillip Lougher
jffs2: version 2.2. (NAND) e 2001-2006 Red Hat, Inc.
9p: Installing v9fs 9p2000 file system support
io scheduler mg-deadline registered
io scheduler kyber registered
physmap-flash 4000000.flash: physmap platform flash device: [mem 0x04000000-0x07ffffff]
40000800.flash: Found 2 x16 devices at 8x@ in 32-bit bank. Manufacturer ID ©x000000 Chip ID ©x080000
Intel/Sharp Extended Query Table at 8x0831
Using buffer write method
Initramfs unpacking failed: invalid magic at start of compressed archive
Freeing initrd memor 7996K
usbcore: registered new interface driver usb-storage
rtc-ple31 9010000.ple31: registered as rtcod
rtc-ple31l 9010000.ple31: setting system clock to 2023-05-16T14:13:57 UTC (1684246437)
ledtrig-cpu: registered to indicate activity on CPUs
registered new interface driver usbhid

: USB HID core driver

probing fer conduit methed.

revision 3.20 (7723564b)

Asynchronous notifications enabled

dynamic shared memory is enabled

initialized driver
NET: Registered PF_PACKET protocol family
9pnet: Installing 9P20800 support

ing SWP/SWPB emulation handler
device list:
No soundcards found.

Freeing unused kernel image (initmem) memory: 1024K
Run /init as init process
Starting syslogd: 0K
starting klogd: OK
Running sysctl: OK
Saving random seed: random: crng init done
0K
Set permissions on /fdev/tee*: OK
Create/set permissions on /data/te oK
Starting tee-supplicant: Using device /dev/teeprive.
0K
Starting network: OK
Starting network (udhcpc): OK

Welcome to Buildroot, type root or test to login

buildroot login: root
Figure 4: Root Login into QEMU Normal World

If the login is successful, you will see the message in the Normal World Terminal “Made it here!”.
This will allow the user to begin execution of programs in the QEMU environment. Run the
following command in the Normal World terminal.

dufserver &

15

Normal World

msstrob@ubuntu: ~/optee/build Secure World Normal world

Unpacking initramfs...
squashfs: version 4.0 (2009/01/31) Phillip Lougher
jffs2: version 2.2. (NAND) e 2001-2006 Red Hat, Inc.
9p: Installing v9fs 9p2000 file system support
io scheduler mq-deadline registered
io scheduler kyber registered
physmap-flash 4000000.flash: physmap platform flash device: [mem 0x04000008-0x07ffffff]
4000000.flash: Found 2 x16 devices at @x8 in 32-bit bank. Manufacturer ID 8x800000 Chip ID ©x008600
Intel/sharp Extended Query Table at ©0x0031
Using buffer write method
Initramfs unpacking failed: invalid magic at start of compressed archive
Freeing initrd memory: 7996K
usbcore: registered new interface driver usb-storage
rtc-ple31 9010000.ple31: registered as rtcé
rtc-ple31 9010000.ple3l: setting system clock to 2023-85-16T14:13:57 UTC (1684246437)
ledtrig-cpu: registered to indicate activity on CPUs
usbcore: registered new interface driver usbhid
usbhid: USB HID core driver
e: probing for conduit methed.

revision 3.20 (7723564b)

Asynchronous notifications enabled

dynamic shared memory is enabled

initialized driver
NET: Registered PF_PACKET protocol family
9pnet: Installing 9P2086 support
Registering SWP/SWPB emulation handler
ALSA device list:

No soundcards found.

Freeing unused kernel image (initmem) memory: 1024K
Run /init as init process
Starting syslogd: OK
Starting klogd: 0K
Running sysctl: OK
Saving random seed: random: crng init done
oK
Set permissions on fdev/tee*: OK
Create/set permissions on /data/tee: OK
Starting tee-supplicant: Using device /dev/teeprive.
OK
Starting network: OK
Starting network (udhcpc): 0K

Welcome to Buildroot, type root or test to login
buildroot login: root
dufserver &

Figure 5: Launching Dufserver

This will start the dufserver running in QEMU in the Normal World. Note the terminating input
indicator will not appear anymore after this point. At this point you need to open the Ubuntu File
Browser and navigate to the cloned repo DUF-GUIL. Right Click the file “DUF_TrustedZone.sln”
and choose “Open With other Application” then choose “View All Applications”, select
MonoDevelop and Select at the top to open the project folder in the MonoDevelop IDE. Click the
big play button to launch the program. Once you see the interface, input your secret 8 digit PIN
number and press the “submit” button.

RDP Pin - o x

Please enter your 8 digit pin

Clear Submit

Figutre 6: DUF-GUI RDP Pin Input

16

It is time to go back to the Normal World Linux Terminal window and run the following command.
Note: if you see a popup window asking if you want to wait or close the DUF-GUI program before
you have run the command below, click wait before running the following command.

dufserver client 127.0.0.1 2000

Normal World

msstrob@ubuntu: ~/optee/build Secure World Normal World

probing for conduit method.
revision 3.20 (7723564b)
Asynchronous notifications enabled
ee: dynamic shared memory is enabled
ee: initialized driver
INET: Registered PF_PACKET protocol family
9pnet: Installing 9P2000 support
Registering SWP/SWPB emulation handler
ALSA device list:
No soundcards found.
Freeing unused kernel image (initmem) memory: 1024K
Run /init as init process
Starting syslogd: OK
[Starting klogd: OK
Running sysctl: OK
ISaving random seed: random: crng init done
0K
ISet permissions on [dev/tee*: OK
Create/set permissions on /data/tee: OK
[Starting tee-supplicant: Using device /dev/teeprive.
0K
Starting network: OK
Starting network (udhcpc): OK

Welcome to Buildroot, type root or test to login
buildroot login: root
dufserver &

-128-GCM-SHA256
RUNNING COMMAND CREATE C1 9
2 CLIENT PUBLIC KEY: 1758244149103995801505610569157642234337169995321217297105456131226560004917414821415612516468103
19930102214541461111436618519111318087991651731701341361600
1 CLIENT PUBLIC KEY: 1758244149103995801505610569157642234337169995321217297105456131226560004917414821415612516468103
199301022145414611114366185191113180799165173170134130100
RUNNING COMMAND CREATE_KEY_ECDH 5
1 SERVER PUBLIC KEY: 2626671203021924935402106422523118930109965722116721312713766116173193110157000159712391817229234
208163212157148692471562411924223821711841961201016653211182000
RUNNING COMMAND CREATE C2 16
2 SERVER PUBLIC KEY: 2626671203021924935402106422523118930109965722116721312713766116173193110157000159712391817229234
208163212157148692471562411924223821711841961201016653211182000
Have a nice day!
il |

Figure 7: Execution of DUF Server in local environment and successful register of RDP Pin
and HASH checking

If the communication is successful, the Normal World will show an end message “Have a nice day!”
and in the Secure World Terminal you will see the message “Contents Verified”. This means that the
RDP was successfully generated, and the resulting HASH comparisons match up. The Secure World
Terminal will show the RDP setup tables for verification.

3.1.2.2.4. OP-TEE Branch Issues

The main framework that is used to work with ARM Trusted Zone technology is called OP-TEE.
This framework makes it possible to develop secure applications that work with ARM Trusted Zone
Technologies. When the DUF Project first started development of the QEMU implementation of
the DUF Protocol, the OP-TEE project was run by Linaros Community Development Division.
Over the life of this project Linaro donated the OP-TEE project to the Trusted Firmware
Foundations where developers completely rewrote the whole project. As new developers were
brought onto the DUF Project, it was discovered that it became technically infeasible to set up new

17

development environments for additional personnel and get the current project code operational in
new development environments. Extensive debugging and research were required to track down the
issues as the new owners of OP-TEE did not provide any change logs to the project. The following
issues were discovered during this extensive debugging and upgrading of the DUF Project code
from the old OP-TEE project to the new fully rewritten OP-TEE project released by the Trusted
Firmware Foundation. Extensive debugging was required to bring the project up to date and in line
with all the undocumented changes to the rewritten OP-TEE code base that is available today.

e OP-TEE project complete rewrite

e Required Ubuntu changed 18.04 to 22.04

e Old Package Requirements removed from APT Package Manager
e New Package Requirements

e Original OP-TEE source code was removed from GitHub

3.1.2.2.4.1. The OP-TEE Project

Throughout the development of the DUF Projects OP-TEE Branch, the OP-TEE project changed
hands from the original developer Linaro and its Community Division when they donated the
project to the Trusted Firmware Foundation. Trusted Firmware Foundation took ownership of the
OP-TEE project, and the projects code base was completely rewritten. The original source code
written by Linaro was removed from GitHub upon the first official release by the Trusted Firmware
Foundation. Trusted Firmware Foundations OP-TEE rewrite changed many of the package
requirements from the DUF Projects initial version of OP-TEE. The OP-TEE rewrite caused
complications as the change in packages requirements was not documented, only the message
“Older version of OP-TEE are no longer supported”.

The new version of OP-TEE required Ubuntu 22.04 over the original Ubuntu 18.04. Ordinarily this
is not an issue in Linux development, but the packages in the original OP-TEE requirements are no
longer on APT package manager, nor are the source codes for those packages available on GitHub.
The way forward was to update everything to the latest version of OP-TEE. The complete rewrite
caused unforeseen complications that took extensive investigation to correct errors caused by the
Trusted Firmware Foundations rewrite of OP-TEE Project.

3.1.2.2.4.2. RockPi 4B v1.5

A hardware implementation of the OP-TEE branch was targeted for the RockPi 4B v1.5 single
board computer. The official OP-TEE project documentation specifically lists this hardware as
being compatible with OP-TEE. There is zero documentation on the official OP-TEE
documentation on how to run OP-TEE on physical hardware for this hardware even though their
site explicitly states support for this piece of hardware. There is an installer to install OP-TEE onto
the hardware but there is no way to verify that OP-TEE is even running on the device or
instructions on how to launch an application that is compiled and installed with OP-TEE in the
Trusted Execution Environment. A special UART cable was used to gain terminal access through
the GPIO ports as listed on the hardware manufactures website, but the hardware provided zero
responses or output to attempts. The GPIO pins did not provide a signal that could be detected
using a multi-meter.

18

3.1.2.2.5. ARM TrustZone

ARM TrustZone architecture provides a security framework that separates execution into two
environments, the Normal World and the Secure World. The Secure World is where the user would
run any sensitive programs that they would want to protect from outside processes. Figure shows
the Secure and non-secure (Normal) worlds architecture for ARM TrustedZones.

!

Nomal Waorld Sacure World

Application

¥

i 1
Wendor Specific Library .'-ml!hﬂn'.uu-ﬂm}

'L o
Operating System [Trusted Application J
- &
s . b Trusted Exacution
| TrustZone Driver Environment kemel

Figure 8: ARM TrustedZone architecture
These two execution states exist on every core of the processor. For example, the user could have an
operating system, such as a Linux OS, which would run in the Normal World execution. In the
Secure World, the user could have another kernel, which would run trusted applications in the
Secure World.

3.2. DUF Physical Environment

The physical environment consists of two single board computers. The first single board computer
is a Rock Pi with ARM TrustZone support running Ubuntu 20 Server OS. The Rock Pi is acting as
the DUF server for our implementation. ARM TrustZone was not used for this implementation, but
the software is written such that the ARM TrustZone functions can be extracted and placed into the
ARM TrustZone Secure World. The second single board computer is a raspberry pi running
Raspberry Pi OS Lite. The Raspberry Pi is used to act as the DUF client for this implementation.

3.2.1. Rock Pi Setup

On the server system (Ubuntu 22.04.1 for these instructions but Windows should also work):
1. Configure a windows or Linux system with Python3 and openssl sudo apt-get
install python3 net-tools
2. Configure the IP address to the same subnet as the server. For this demonstration, the ip
address is configured to 10.36.1.50/24 sudo ifconfig etho 10.36.1.50/24

19

3. Generate the certificates and answer all questions that are prompted and set a password on
the private key sudo openssl req -x509 -days 365 -newkey rsa:2048 -
keyout /etc/ssl/private/server-selfsigned.key -out

/etc/ssl/certs/server-selfsigned.crt asshown below in Figure :
- [] adrchav — pi@raspberrypi: ~/DUF_CLIENT — ssh pi@192.168.0.64 — 117x69

pilraspberrypi:~/DUF_CLIENT $ sudo openssl req -x589 -days 365 -newkey rsa:2@848 -keyout /etc/ssl/private/server-selfs
igned.key -out /etc/ssl/certs/server-selfsigned.crt
Generating a RSA private key

writing new private key to '/etc/ssl/private/server-selfsigned.key"'

Enter PEM pass phrase:

Verifying - Enter PEM pass phrase:

You are about to be asked to enter information that will be incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Mame (2 letter code) [AU]:US

State or Province Name (full name) [Some-Statel:New Mexico

Locality Name (eg, city) []:Albuquerque

Organization Name (eg, company) [Internet Widgits Pty Ltd]:Sandia National Laboratories
Organizational Unit Name (eg, section) [J1:SNL-NM

Common Name (e.g. server FQDN or YOUR name) []:dufServer

Email Address []:dufServer@sandia.gov

pifraspberrypi:~/DUF_CLIENT $ sudo 1s -1 /etc/ssl/private/server-selfsigned.key
-rw------— 1 root root 1854 May 16 8@:53 /etc/ssl/private/server-selfsigned.key
pifraspberrypi:~/DUF_CLIENT $ sudo ls -1 /etc/ssl/certs/server-selfsigned.crt
-rw-r--r-- 1 root root 1521 May 16 @@:54 /etc/ssl/certs/server-selfsigned.crt
piQraspberrypi:~/DUF_CLIENT & [}

Figure 9: The DUF client key generation step to support encrypted communications using TLS

3.2.2. Raspberry Pi Setup

On the client system (Ubuntu 22.04.1 for these instructions but Windows should also work):

1. Configure a windows or Linux system with Python3 and openssl sudo apt-get
install python3 net-tools

2. Configure the IP address to the same subnet as the server. For this demonstration, the ip
address is configured to 10.36.1.193/24 sudo ifconfig etho 10.36.1.193/24

3. Generate the certificates and answer all questions that are prompted and set a password on
the private key sudo openssl req -x509 -days 365 -newkey rsa:2048 -
keyout /etc/ssl/private/client-selfsigned.key -out

/etc/ssl/certs/client-selfsigned.crt as shown below in Figure :
® [] adrchav — pi@raspberrypi: ~/[DUF_SERVER — ssh rock@192.168.0.65 — 194x121

4b:~/DUF_SERVERS sudo openssl req -x589 -days 365 -newkey rsa:2048 -keyout fetc/ssl/private/client-selfsigned.key -out /etc/ssl/certs/client-selfsigned.crt
A ey

t-selfsigned.key"

EM pass phrase

You are about te be asked to enter information that will be incorperated
into your certificate reguest

What you are about to enter is what is called a Distinguished Name or a ON.
There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter *.', the field will be left blank.

Country Name (2 letter code) (AU):US

State or Province Name (full name) (Some-Statel:California

Locality Name (eg, city) []:Livermare

Organization Name (g, cospany) (Intemnet Widgits pry Lealisandis Natisnsl Laboratories
Organizationsl Unit Name (eg, section) (1t

Connon Nese [¢.g. server FIlk or YOUR nane) O1idurcitent

oot Ha
Kpi-&b:~/DUF_SERVERS I

Figure 10: The DUF server key generation step to support encrypted communications using TLS

3.2.2.1. Commissioning

1. On the client start the commissioning python3 script python3
dufClientCommission.py -h clientIP -p clientPort -k
/path/to/private/key -c /path/to/certificate -o

20

/path/to/dufSecretKeyFile (as shown below in Figure and Figure) whete clientIP
is the IP address of the client system (default 10.36.1.193) clientPort is the TCP port
number of the client system (default 12345) /path/to/private/key is the path to the
openssl private key file the client system (default /etc/ssl/private/client-selfsigned.key)
/path/to/certificate is the path to the openssl certificate file the client system (default
/etc/ssl/certs/client-selfsigned.crt) /path/to/dufSecretKeyFile is the key that would be
placed in a secure, tamper-resistant storage space (default ./duf.txt) You will be prompted
for the admin password initially and then the password for the private key. Ignore the
deprece:tion warning.

import getopt
import sys

HOST

"18.36.1.193"

PORT = 12345
USAGE = f"Usage: python3 {sys.argv[@]} [-h host_ip]l [-p host_port] [-k private_keyl [-c cert_file] [-o outputfilel]"

def parse(args):

HOST="10.36.1.193"

PORT = 12345

KEY = "/etc/ssl/private/client-selfsigned.key"
CERT = "/etc/ssl/certs/client-selfsigned.crt"
QUTFILE = "duf.txt"

options, arguments = getopt.getopt(args, 'h:p:kicio:', ["host=", “port=", “"key=", "cert=",

for o, a in options:
if o in ("-h", "--host"):

CERT = a
if o in ("-o", "--out"):
OUTFILE = a

try:
operands = [int(arg) for arg in arguments]
except ValueError:

raise SystemExit(USAGE)
return (HOST, PORT, KEY, CERT, OUTFILE)

__name__ == "__main

args :};ys.a;év[l:ii
(HOST, PORT, KEY, CERT, OUTFILE) = parse(args)
server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

server.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
server = ssl.wrap_socket(server, server_side=True, keyfile=KEY, certfile=CERT)

server.bind((HOST, PORT))
server.listen(e)

connection, client_address = server.accept()

#while True:

data = connection.recv(64)
binary_file = open(QUTFILE, "wb")
binary_file.write(data)
binary_file.closel()

if not data:

break
print(f“Successfully received and wrote Randomized DUF Pattern!")
print()

"out="])

print("Now you can receive DUF authenticated messages from the server by running python3 dufClient.py!")

Figure 11. The DUF client commissioning python program

21

r

pi@raspberrypi:~/DUF_CLIENT $ ifconfig
eth@: flags=4163<UP,BROADCAST, RUNNING,MULTICAST> mtu 158

inet 192.168.08.64 netmask 255.265.262.8 broadcast 192.168.3.255

ineté feB@::1c74:167f:eccf:7382 prefixlen 64 scopeid @x2@8<link>

ether e4:5f:01:8b:c4:89 txqueuelen 1808 (Ethernet)

RX packets 102336 bytes 13871873 (13.2 MiB)

RX errors @ dropped 1399 overruns @ frame @

TX packets 6202 bytes 986906 (963.7 KiB)

TX errors @ dropped @ overruns @ carrier @ collisions @
lo: flags=73<UP,LOOPBACK, RUNNING> mtu 65536

inet 127.8.8.1 netmask 255.0.8.0

ineté ::1 prefixlen 128 scopeid @x1@<host>

loop txqueuelen 1088 (Local Loopback)

RX packets 34 bytes 11359 (11.0@ KiB)

RX errors @ dropped @ overruns @ frame @

TX packets 34 bytes 11359 (11.@ KiB)

TX errors @ dropped © overruns @ carrier @ collisions @
pifraspberrypi:~/DUF_CLIENT $ sudo python3 dufClientCommission.py -h 192.168.0.64 -p 12345 -k /etc/ssl/private/client
-selfsigned.key -c /etc/ssl/certs/client-selfsigned.crt -o duf.txt
Enter PEM pass phrase:

Successfully received and wrote Randomized DUF Pattern!

Now you can receive DUF authenticated messages from the server by running python3 dufClient.py!
pi@raspherrypi:~/DUF_CLIENT $ cat duf.txt

[@R?2?32227q?%{?_?cLiVeq??a; 2?7Rz88N?

?a???t1?=?"?}pilraspberrypi:~/DUF_CLIENT $:

Figure 12: The DUF client results of the commissioning phase

2. On the server start the commissioning python3 script python3
dufServerCommission.py -h clientIP -p clientPort -k
/path/to/private/key -c /path/to/certificate -o
/path/to/dufSecretKeyFile (as shown below in Figure and Figure) where clientIP
is the IP address of the client system (default 10.36.1.193) clientPort is the TCP port
number of the client system (default 12345) /path/to/private/key is the path to the
openssl private key file the server system (default /etc/ssl/private/server-selfsigned.key)
/path/to/certificate is the path to the openssl certificate file the server system (default
/etc/ssl/certs/server-selfsigned.crt) /path/to/dufSecretKeyFile is the key that would be
placed in a secute, tamper-resistant storage space (default ./duf.txt) You will be prompted
for the admin password initially and then the password for the private key. Ignore the
deprecation warning.

22

Brport _thread
import time
import sys
import os
inport socket
import ssl
import getopt

USAGE = f"Usage: python3 {sys.argv[@1} [-h host_ip] [-p host_port] [~k private_key] [-c cert_file] [-o outputfile]"

class _Getch:
"un Gets a single character from standard input. Does not echo to screen."'"
def __init__(self):
try:
self.impl = _Getchwindows()
except Importérror:
self.impl = _GetchUnix()

def __call__(self): return self.impl()

class _Getchunix:
nit__(self):
impert tty, sys

def __eall__(self):
import sys, tty, termios
fd = sys.stdin.filenol)
old_settings = termios.tcgetattr(fd)
tey:
tty. setraw(sys.stdin.fileno())
ch = sys.stdin.read(1)
finally:
termios.tesetattr(fd, termios.TCSADRAIN, old_settings)
return ch

class _GetchWindows:
def __init__(self):

import msvert

(self):

import msvert

mswert_char = msvert.getch()
return msvert_char.decode(utf-8")

def input_thread(key_press_list)
while char == ''

geteh = _Getch()

char = getch.impl()

key_press_list.append{ehar)

def quitScript():
os.system{'stty sane')
sys.exit()

def bxer(bl, b2):
result = bytearray(bi)
for i, b in enumerate(b2):
result(i] *= b
return bytes(result)

dof send_to_client(SERVER_HOST, SERVER_PORT, KEY, CERT, x):
client socket.socket(socket.AF_INET, socket.SOCK_STREAM)
client = ssl.wrap_socket{client, keyfile=KEY, certfile=CERT)
client.connect((SERVER_HOST, SERVER_PORT))
client.sendall(x)

def parselargs):

SERVER_HOST = "18.36.1.193"

SERVER_PORT = 12345
Jete/ss1/private/server-selfsigned. key"
CERT = "/etc/ssl/certs/server-selfsigned.crt”
QUTFILE = "duf.txt®

options, arguments = getopt.getopt(args, 'h:ip:kicio:’, ["hest=", "port=", "key=", "cert=", "out="])

SERVER_HOST

OQUTFILE
try:
operands = [int{arg) for arg in arguments]
except ValueError:
raise SystemExit(USAGE)
return (SERVER_HOST, SERVER_PORT, KEY, CERT, OUTFILE)

def main():
args = sys.argu(1:]
(SERVER_HOST, SERVER_PORT, KEY, CERT, OUTFILE) = parselargs}
key_press_list = []
_thread.start_new_thread{input_thread, (key_press_list,))
X = os.urandon{int(512/8))

print(“Generating Randomized DUF Pattern (RDP)....")
print(“Press any key to wtrite a random key")
while True:
x = bxor(x, os.urandom(int(512/8)))
if key_press_list:
binary_file = open(OUTFILE, “wb"
binary_file.write(x)
binary_file.closel)
key_press_list.clear()
send_to_client(SERVER_HOST, SERVER_PORT, KEY, CERT, x
print("Randomized DUF Pattern (RDP) has successfully completed and comsunicated to the client!™)
print()
print("Run python3 dufServer.py!")
quitSeript()

main()

Figure 13: The DUF server commissioning python program

23

. [] adrchav — pi@raspberrypi: ~/[DUF_SERVER — ssh rock@192.168.0.65 — 194x121

~/DUF_SERVERS ifeantig
3<UP, BROADCAST, RUNKING, MULTICAST> mtu 1560
45 netmask 255.255.252.8 broadcast 192,168.3.255
a:e528 prefixlen 64 scopeid Bx28<link»
b txqueuelen 1088 (Ethernet)
531918 bytes 67950191 (67.@ MB)
droy ane 0

dropped @ overruns r o collisions 0

lo: flags=73<UP,LOOPBACK, RUNNING> mtu 65536
inet 127.0.8.1 netmask 285.8.8.8
inets ::1 prefixlen 128 scopeid @x19<hosts

loop txqueuelen 1 (Local Loopback

RX p 9% b 3 Kk8)

.By =h 192.168.8.64 -p 12345 -k fetc/ssl/private/server-selfsigned.key -c /etc/ssl/certs/server-selfsigned.crt -o duf.txt

M pa

Randomized DUF Pattern (RDP) has successfully completed and communicated to the client
Run pytnan3 er.py

LOCKBrockpi- F_SERVERS caat ouf.tst
-bash: © mmand not found

rockfroc ~0uF_SERVERS I

Figure 14: The DUF server results of the commissioning phase

3. Both client and server should report a success message and there should also be a file named

duf.txt in the current working directory. This file contains a binary 512-bit cryptographic key
(as shown in Figure and Figure).

3.2.2.2. Operating

1.

On the client start the operating python3 script python3 dufClient.py -h
clientIP -p clientPort -k /path/to/private/key -c
/path/to/certificate -d /path/to/dufSecretKeyFile (as shown below in
Figure 4 and Figure 5) where clientIP is the IP address of the client system (default
10.36.1.193) clientPort is the TCP port number of the client system (default 12345)
/path/to/private/key is the path to the openssl private key file the client system (default
/etc/ssl/private/ client-selfsigned.key) /path/to/certificate is the path to the openssl
certificate file the client system (default /etc/ssl/certs/client-selfsigned.crt)
/path/to/dufSecretKeyFile is the key that would be placed in a secure, tampet-resistant
storage space (default ./duf.txt) You will be prompted for the admin password initially and
then the password for the private key. Ignore the deprecation warning.

24

import socket
import ssl
import getopt
import sys
import hashlib

HOST = "18.36.1.193"
PORT = 12345
USAGE = f"Usage: python3 {sys.argv[@]} [-h host_ip] [-p host_port] [-k private_key] [-c cert_file] [-d dufkeyfile]"

def parse(args):
HOST="18.36.1.193"
PORT = 12345
KEY = "[/etc/ssl/private/client-selfsigned.key"
CERT = "[etc/ssl/certs/client-selfsigned.crt"
DUFFILE = "duf.txt"

options, arguments = getopt.getopt(args, 'h:p:k:c:d:', ["host=", "port=", "key=", "cert=", "duf="])
for o, a in options:
if o in {"-h", "—=host"):
HOST = a
if o in ("-p", "——port"):
PORT = int(a)
if o in {"-k", "--key"):

KEY = a

if o in {"-c", "--cert"):
CERT = a

if o in {"-d", "——duf"):
DUFFILE = a

try:

operands = [int(arg) for arg in arguments]
except ValueError:

raise SystemExit(USAGE)
return (HOST, PORT, KEY, CERT, DUFFILE)

def bxor(bl, b2):
result = bytearray(bl)
for i1, b in enumerate(b2):
result[i] *= b
return bytes(result)

de’

=

equalbytes(bl, b2):
result = bytearray(bl)
for i, b in enumerate(b2):
if result[i] != b:
return False
return True

def duf(data, DUFFILE):
f = open(DUFFILE, "rb")
rdp = f.read()
f.close()
res = bxor(ddd, rdp)
sig = hashlib.shab12(res).digest()
return sig

if __name__ == "__main__":
args = sys.argv[l:]
(HOST, PORT, KEY, CERT, DUFFILE) = parse(args)
server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

server.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
server = ssl.wrap_socket(server, server_side=True, keyfile=KEY, certfile=CERT)

server.bind((HOST, PORT))
server.listen(@)

print("waiting for data from server...")
connection, client_address = server.accept()
data = connection.recv(4896)

print("Data received!")

data_no_sig = datal:-64]
data_sig = data[-64:]
ddd = hashlib.shaS12(data_no_sig).digest()
print("Checking DUF signature passes...")
sig = duf(ddd, DUFFILE)
print()
if equalbytes(data_sig, sig):
print("The DUF signatures matches, the software has been securely communicated!")
else:
print("The DUF signatures do NOT match!!! The software has been tampered with, do NOT proceed to install!!!")

25

Figure 45: The DUF client operation python implementation

r
.

pilraspberrypi:~/DUF_CLIENT $ sudo python3 dufClient.py -h 192.168.0.64 -p 12345 -k /etc/ssl/private/client-selfsigne
d.key -c /etc/ssl/certs/client-selfsigned.crt -d duf.txt

Enter PEM pass phrase:

Waiting for data from server...

Data received!

Checking DUF signature passes...

The DUF signatures matches, the software has been securely communicated!
piGraspberrypi:~/DUF_CLIENT §

Figure 56: The results of the operation phase of a file validated by the DUF client
2. On the server start the operating python3 script python3 dufServer.py -h

clientIP -p clientPort -k /path/to/private/key -c
/path/to/certificate -t timestamp -v version -1 location -i
/path/to/inputfile -d /path/to/dufSecretKeyFile (as shown below in
Figure 6 and Figure 7) where clientIP is the IP address of the client system (default
10.36.1.193) clientPort is the TCP port number of the client system (default 12345)
/path/to/private/key is the path to the openssl private key file the server system (default
/etc/ssl/private/server-selfsigned.key) /path/to/ certificate is the path to the openssl
certificate file the server system (default /etc/ssl/certs/server-selfsigned.crt) timestamp is a
string of the timestamp used for the meta-data transferred to the client (default is current
date and time) version is a string of the version number of the data that will be sent to the
client which is part of the meta-data transferred to the client (default "2.0.0") location is a
string of the physical location of the data that will be sent to the client which is part of the
meta-data transferred to the client (default "Albuquerque, NM, USA") /path/to/inputdata
is the file of data that will be transferred to the client (default is this program "dufSetrver.py")
/path/to/dufSecretKeyFile is the key that would be placed in a secure, tamper-resistant
storage space (default ./duf.txt) You will be prompted for the admin password initially and
then the password for the private key. Ignore the deprecation warning.

26

import time
import sys
import os
import socket
import ssl
import getopt
import hashlib
import datetime

USAGE = f"Usage: python3 {sys.argv[e]} [-h host_ip] [-p host_port] [-k private_key] [-c cert_file] [-t time] [-v version] [-1 location] [-i inputfile] [-d dufkeyfile]"

def bxor(bl, b2):
result = bytearray(bl)
for i, b in enumerate(b2):
result[i] *= b
return bytes(result)

def duf(data, DUFFILE):
f = open(DUFFILE, "rb")
rdp = f.read()
f.close()
res = bxor(data, rdp)
sig = hashlib.sha512(res).digest()
return sig

def send_to_client(SERVER_HOST, SERVER_PORT, KEY, CERT, x):
client = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
#context = ssl.SSLContext(ssl.PROTOCOL_TLS_CLIENT)
#context.load_verify_locations(CERT)
#context.load_cert_chain(CERT, KEY)

#ssock = context.wrap_socket(client, server_hostname=SERVER_HOST)
#ssock.connect ((SERVER_HOST, SERVER_PORT))

#ssock.sendall(x)

client = ssl.wrap_socket(client, keyfile=KEY, certfile=CERT)
client.connect((SERVER_HOST, SERVER_PORT))

client.sendall(x)

def parse(args):
SERVER_HOST = "18.36.1.193"
SERVER_PORT = 12345
KEY = "/etc/ssl/private/server-selfsigned.key"
CERT = "/etc/ssl/certs/server-selfsigned.crt"
TIME = str(datetime.datetime.now())
VERSION = "2.8.8"
LOCATION = "Albuquerque, NM, USA"™
INFILE = sys.argv[e]
DUFFILE = "duf.txt"

options, arguments = getopt.getopt(args, 'h:p:k:c:t:v:l:i:d:', ["host=", "port=", "key=", "cert=", "time=", "version=", "location=", "in=", "duf="])
for o, a in options:
if o in ("-h", "--host"):

SERVER_HOST a
if o in ("-p", port"):
SERVER_PORT = int(a)

if o in (" . "——key"):
KEY = a
if o in (" "—-cert"):
"—-time"):
"--version"):
VERSION = a
if o in ("-1", "--location"):
LOCATION = a
if o in ("-i", “"—-inputfile"):
INFILE = a
if o in ("-d", "--dufkeyfile"):

DUFFILE = a
try:
operands = [int(arg) for arg in arguments]
except ValueError:
raise SystemExit(USAGE)
return (SERVER_HOST, SERVER_PORT, KEY, CERT, TIME, VERSION, LOCATION, INFILE, DUFFILE)

def main():
args = sys.argvli:]
(SERVER_HOST, SERVER_PORT, KEY, CERT, TIME, VERSION, LOCATION, INFILE, DUFFILE) = parse(args)

print("Generating Digitized Dynamic Data....")
content = TIME + VERSION + LOCATION

f = open(INFILE, "r")

content += f.read()

f.close()

ddd = hashlib.sha512(bytes(content, "utf-8")).digest()
sig = duf(ddd, DUFFILE)

content = bytes(content, "utf-8") + sig

send_to_client(SERVER_HOST, SERVER_PORT, KEY, CERT, content)

print()
print("Sent data to client along with the DUF signature")

main()

Figure 67: The DUF server operation python implementation

® (] adrchav — pi@raspberrypi: ~/DUF_SERVER — ssh rock@192.168.0.65 — 194x121

rock@rockpi-4b:~/DUF_SERVERS date

Tue May 16 83:58:58 UTC 2023

rock@rockpi-4b:~/DUF_SERVER$S sudo python3 dufServer.py -h 192.168.8.64 -p 12345 -k /etc/ssl/private/server-selfsigned.key -c /etc/ssl/certs/server-selfsigned.crt -d duf.txt -t "Tue May 16 @3:58:
58 UTC 2823" -v "2.8.8" -1 "Albuquerque, NM, USA" -i dufServerCommission.py

[sudo] password for rock:

Generating Digitized Dynamic Data....

Enter PEM pass phrase:

Sent data to client along with the DUF signature
rock@rockpi-4b:~/DUF_SERVERS

Figure 78: The results of the operation phase of a file validated by the DUF server

27

Both client and server should report a success message and there should be a message on the
client that the DUF signature matched as shown in Figure 5 and Figure 7. This step
completes the demonstration that the client can successfully validate the DUF signature of
data transferred from a server system.

28

4, CONCLUSION AND FUTURE DIRECTIONS

The DUF technology being matured and evaluated was awarded US Patent # 10,541,996 B1. Sandia
National Laboratory and Active Assurance Inc. entered into an exclusive license agreement effective
June 22, 2021, under which Active Assurance can commercialize the technology. The technology
was selected by Sandia National Laboratories to compete in the 2021 R&D Awards competition,
which was successfully won by the team.

The DUF technology is a zero-trust tamper-resistant high-assurance session-less dynamic and active
device authentication protocol that simultaneously authenticates identity and provides integrity
verification in a single step, substantially reducing the risk of cyberattack, and eliminating the need for
costly and complex conventional communication security systems requirements (i.e., cryptography,
PKI, and key management).

Preliminary proof of concept software and hardware have been developed. The technology requires
additional software and hardware development, an independent security assessment, and validation
testing. The prototype software does not leverage a truly tamper-resistant hardware device for the
RDP. The technology may also require additional certification for use in regulated industries.
Maturation outcomes include a laboratory validated technology and operational prototypes tested in
a real-world environment.

Several prospective strategic partners and commercial customers have expressed interest in the

technology, and the expected development and maturation of the technology will greatly advance
the commercialization of the technology and the opportunity to raise capital.

29

