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2 Motivation: multi-scale & multi-physics coupling

• Monolithic (Lagrange multipliers)
• Partitioned (loose) coupling
• Iterative (Schwarz, optimization)
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• Mesh-based (FE, FV, FD)
• Meshless (SPH,  MLS)
• Implicit, explicit
• Eulerian, Lagrangian…
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• PDEs, ODEs
• Nonlocal integral 
• Classical DFT 
• Atomistic, …

There exist established rigorous mathematical theories for 
coupling multi-scale and multi-physics components based on 

traditional discretization methods (“Full Order Models” or FOMs).




3 Motivation: multi-scale & multi-physics coupling

• Monolithic (Lagrange multipliers)
• Partitioned (loose) coupling
• Iterative (Schwarz, optimization)

M1 M2

M3 M4 N3

N4

N1 N2

N5

N3
N4
N5

N2N1

• PDEs, ODEs
• Nonlocal integral 
• Classical DFT 
• Atomistic, …

• Mesh-based (FE, FV, FD)
• Meshless (SPH,  MLS)
• Implicit, explicit
• Eulerian, Lagrangian, …

Complex System Model Traditional Methods Coupled Numerical Model

Ocean
(MPAS-

O)

Atmos.
(EAM)

Sea Ice
(MPAS-

SI)

Land 
Ice

(MALI)

Land
(ELM)

DMD=N3

ROM=N4

N1 PINN=N2

UDE=N5

Traditional + Data-Driven Methods

• PINNs
• Neural ODEs
• Projection-based ROMs, …

While there is currently a big push to integrate data-driven methods into modeling & 
simulation toolchains, existing algorithmic and software infrastructures are ill-equipped to 

handle rigorous plug-and-play integration of non-traditional, data-driven models!

There exist established rigorous mathematical theories for 
coupling multi-scale and multi-physics components based on 

traditional discretization methods (“Full Order Models” or FOMs).






4

Data-driven models: to be “mixed-and-matched” with each other and first-principles models
• Class A: projection-based reduced order models (ROMs)
• Class B: machine-learned models, i.e., Physics-Informed Neural Networks (PINNs)
• Class C: flow map approximation models, i.e., dynamic model                                 

decomposition (DMD) models

Coupling methods:
• Method 1: Alternating Schwarz-based coupling

• Method 2: Optimization-based coupling

• Method 3: Coupling via generalized mortar methods 
(GMMs)

Coupling Project, Models and Methods

fHNM (flexible Heterogeneous Numerical Methods) Project:                                               
aims to discover the mathematical principles guiding the assembly of standard and data-

driven numerical models in stable, accurate and physically consistent ways
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driven numerical models in stable, accurate and physically consistent ways

Talk by Paul Kuberry 
(IS03, Wed. June 6, 2PM)



7 Outline

• The Schwarz Alternating Method for Domain 
Decomposition-Based Coupling

• Extension to FOM*-ROM# and ROM-ROM Coupling

• Numerical Examples

Ø 1D Dynamic Wave Propagation in Hyperelastic Bar

Ø 2D Burgers Equation

• Summary & Future Work

*Full-Order Model.  #Reduced Order Model.
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9 Schwarz Alternating Method for Domain Decomposition
§ Proposed in 1870 by H. Schwarz for solving Laplace PDE on irregular domains.

H. Schwarz (1843–1921)

Crux of Method: if the solution is known in regularly shaped domains, use 
those as pieces to iteratively build a solution for the more complex domain.

Basic Schwarz Algorithm

2Lions, 1990. 3Zanolli et al., 1987. 

overlapping

non-overlapping

1Schwarz, 1870; Lions, 1988.  2Lions, 1990.  3Zanolli et al., 1987. 
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AS A PRECONDITIONER 
FOR THE LINEARIZED 
SYSTEM

AS A SOLVER FOR THE 
COUPLED
FULLY NONLINEAR 
PROBLEM

How We Use the Schwarz Alternating Method10



11 Time-Advancement Within the Schwarz Framework

Controller time stepper

Time integrator for W1

Time integrator for W2

Model PDE:
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Can use different integrators with 
different time steps within each domain!
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17 Time-Advancement Within the Schwarz Framework

Controller time stepper

Time integrator for W1

Time integrator for W2

Model PDE:

Time-stepping procedure is equivalent to doing 
Schwarz on space-time domain [Mota et al. 2022].
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• “Plug-and-play” framework:

Ø Ability to couple regions with different non-conformal meshes, different element types 
and different levels of refinement to simplify task of meshing complex geometries.

Ø Ability to use different solvers/time-integrators in different regions.

Model Solid Mechanics PDEs:

Quasistatic:

Dynamic:

Schwarz for Multiscale FOM-FOM Coupling in Solid 
Mechanics1

1 Mota et al. 2017; Mota et al. 2022.  2 https://github.com/sandialabs/LCM. 

2

https://github.com/sandialabs/LCM
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20 Projection-Based Model Order Reduction via the 
POD/Galerkin Method

20

Proper Orthogonal Decomposition (POD):

Solve ODE at different 
design points
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2. Learning

3. Projection-Based ReductionNumber of 
time steps
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Hyper-reduce 
nonlinear 
terms

Hyper-reduction/sample mesh

ROM = projection-based Reduced Order Model                                HROM = Hyper-reduced ROM    
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Proper Orthogonal Decomposition (POD):
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Choose ODE 
temporal 

discretization

Reduce the 
number of 
unknowns

Minimize 
residual

Hyper-reduction/sample mesh

* Least-Squares Petrov-Galerkin



22 Schwarz Extensions to FOM-ROM and ROM-ROM 
Couplings

22

Choice of domain decomposition
• Error-based indicators that help decide in what region of the domain a ROM can be viable should 

drive domain decomposition [Bergmann et al. 2018] (future work)
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24 Numerical Example: 1D Dynamic Wave Propagation 
Problem

24

This talk

This talk

Figure: POD energy 
decay for nonlinear 

Henky problem



25 Numerical Example: 1D Dynamic Wave Propagation 
Problem

25

Figure above: Symmetric Gaussian IC problem solution
Figure below: Rounded Square IC problem solution



26 Numerical Example: Reproductive Problem Results26

• Single-domain ROM and HROM are most 
efficient

• Couplings involving ROMs and HROMs 
enable one to achieve smaller errors

• Benefits of hyper-reduction are limited 
on 1D problem

• FOM-HROM and HROM-HROM couplings 
outperform the FOM-FOM coupling in 
terms of CPU time by 12.5-32.6%



27 Numerical Example: Reproductive Problem Results27

Figure left: FOM (green) – HROM (cyan) coupling 
compared with single-domain FOM solution 

(blue).  HROM has 200 modes.

Figure below: ECSW algorithm samples 253/400 
elements  



28 Numerical Example: Predictive Problem Results28



29 Numerical Example: Predictive Problem Results29

• Predictive single-domain ROM solution exhibits spurious oscillations in velocity and acceleration
• Predictive FOM-HROM solution is smooth and oscillation-free

Ø Highlights coupling method’s ability to improve ROM predictive accuracy



30 Numerical Example: Predictive Problem Results30
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Numerical Example: 2D Inviscid Burgers Problem



33 Numerical Example: 2D Inviscid Burgers Problem33

This talk



Single Domain ROM34
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Figure above: Reduced mesh of 
single domain HROM

Figure above: HROM and FOM 
results at various time steps



ROM-ROM-ROM-ROM Coupling35

0 100
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0

0

1 SD

Spurious oscillations do not impact coupled solution.

Subdomains
Wall Clock 
Time (s)

197 0.16 323

197 0.17 379

102 0.13 200

87 0.21 117

Total 1019



36
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0
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Spurious oscillations do not impact Schwarz coupling.

1 SD

HROM-FOM-FOM-FOM Coupling
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38 Summary and Future Work38

Summary:
• In a 1D solid mechanics and a 2D 

hyperbolic PDE setting, Schwarz has been 
demonstrated for coupling subdomains 
using both FOMs and (H)ROMs

• In both cases, computational gains can be 
obtained using HROMs, although the 
monolithic compute times are not bested

• Mitigation: additive Schwarz

Ongoing & future work: 
• Improving efficiency of coupling implementation
• Dynamically adapting domain partitioning and “on-the-fly” ROM-FOM switching
• Coupling nonlinear approximation manifold methods (quadratic, general nonlinear)
• Learning of “optimal” transmission conditions to ensure structure preservation
• Extension of coupling methods to coupling of Physics Informed Neural Networks (PINNs) (WIP)
• Journal paper in preparation.
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44 Spatial Coupling via Alternating Schwarz
Overlapping Domain Decomposition

Non-overlapping Domain Decomposition

• Dirichlet-Dirichlet transmission BCs 
[Schwarz 1870; Lions 1988; Mota et 
al. 2017; Mota et al. 2022]

This talk: sequential subdomain solves 
(multiplicative Schwarz).  Parallel subdomain 

solves (additive Schwarz) also possible.

Model PDE:



45 Numerical Example: 1D Dynamic Wave Propagation 
Problem

45

J. Barnett, I. Tezaur, A. Mota. "The Schwarz alternating method for the seamless coupling of 
nonlinear reduced order models and full order models", in Computer Science Research Institute 

Summer Proceedings 2022, S.K. Seritan and J.D. Smith, eds., Technical Report SAND2022-10280R, 
Sandia National Laboratories, 2022, pp. 31-55.  (https://arxiv.org/abs/2210.12551) 

Figure left: sample sample mesh for 
1D wave propagation problem

https://www.sandia.gov/ccr/csri-summer-programs/computer-science-research-institute-summer-proceedings-2022/
https://www.sandia.gov/ccr/csri-summer-programs/computer-science-research-institute-summer-proceedings-2022/
https://arxiv.org/abs/2210.12551


46 Numerical Example: Reproductive Problem Results46

Green shading highlights 
most competitive 
coupled models



47 Numerical Example: Predictive Problem Results47

• Start by calculating projection error for reproductive and predictive version of the Rounded Square IC problem:



S.G. Mikhlin 
(1908 – 1990)

S.L. Sobolev (1908 – 1989)

A. Mota, I. Tezaur, C. Alleman

Using the Schwarz alternating as a discretization method for 
PDEs is natural idea with a sound theoretical foundation.

Theoretical Foundation

P.- L. Lions (1956-)

48



Convergence Proof*

*A. Mota, I. Tezaur, C. Alleman. "The Schwarz Alternating Method in Solid Mechanics", CMAME 319 (2017), 19-51.

49



Schwarz Alternating Method for Dynamic Multiscale Coupling: Theory

*A. Mota, I. Tezaur, G. Phlipot. "The Schwarz alternating method for dynamic solid mechanics", IJNME, 2022.

50



Schwarz for Multiscale FOM-FOM Coupling in Solid 
Mechanics1

1 Mota et al. 2017; Mota et al. 2022.

Figure above: tension specimen simulation coupling 
composite TET10 elements with HEX elements in Sierra/SM.  

Figures right: bolted joint simulation coupling composite 
TET10 elements with HEX elements in Sierra/SM.

Schwarz

Schwarz

y-displacement EQPS



52 Numerical Example: Linear Elastic Wave Propagation 
Problem

52

• Linear elastic clamped beam with Gaussian initial condition.

• Simple problem with analytical exact solution but very stringent test for discretization/coupling 
methods.

• Couplings tested: FOM-FOM, FOM-ROM, ROM-ROM, implicit-explicit, implicit-implicit, explicit-
explicit.

Above: 3D rendering of clamped beam with Gaussian initial condition.  
Right: Initial condition (blue) and final solution (red).  Wave profile is 

negative of initial profile at time  T = 1.0e-3.



53
Linear Elastic Wave Propagation Problem: FOM-ROM and 
ROM-ROM Couplings

Single Domain FOM 3 overlapping subdomain     
ROM1-FOM2-ROM3

0 0.5
1

0.750.25

0 0.3

0.3 1

0 1



54 Linear Elastic Wave Propagation Problem: FOM-ROM and 
ROM-ROM Couplings

disp MSE6 velo MSE acce MSE

Overlapping ROM1-FOM2-ROM3 1.05e-4 1.40e-3 2.32e-2

Non-overlapping FOM4-ROM5 2.78e-5 2.20e-4 3.30e-3

6MSE=

Coupled models are reasonably accurate w.r.t. FOM-FOM coupled analogs and convergence 
with respect to basis refinement for FOM-ROM and ROM-ROM coupling is observed.



55 Linear Elastic Wave Propagation Problem: ROM-ROM 
Couplings

MSE in displacement for 2 
subdomain ROM-ROM coupling

Average # Schwarz iterations for 2 
subdomain ROM-ROM coupling

CPU times for 2 subdomain ROM-ROM 
coupling normalized by FOM-FOM CPU time



56 Linear Elastic Wave Propagation Problem: FOM-ROM 
CouplingsFOM-ROM coupling shows convergence with basis refinement.  FOM-ROM couplings are 10-
15% slower than comparable FOM-FOM coupling due to increased # Schwarz iterations.

MSE for 2 subdomain 
FOM-ROM coupling

Av
er

ag
e 

M
SE

 o
ve

r 
2 

su
bd

om
ai

ns

O
nl

in
e 

no
rm

al
iz

ed
 C

PU
 t

im
e

CPU times for 2 subdomain 
FOM-ROM coupling normalized 

by FOM-FOM CPU time

Av
er

ag
e 

# 
Sc

hw
ar

z 
it

er
s

Average # Schwarz iterations for 2 
subdomain couplings

WIP: 
understanding & 
improving FOM-
ROM coupling 
performance.



Single Domain, 10 mode POD

10 mode POD – 50 mode POD 10 mode POD – FOM 20 mode POD – FOM

10 mode POD – 10 mode POD

Accuracy can be improved by “gluing” 
several smaller, spatially-local models

Single Domain, FOM (truth)

Linear Elastic Wave Propagation Problem: FOM-ROM and 
ROM-ROM Couplings

Observation suggests need for 
“smart” domain decomposition.



Energy-Conserving Sampling and Weighting (ECSW)58



ECSW: Generating the Reduced Mesh and Weights59



60 Numerical Example: 1D Dynamic Wave Propagation 
Problem

60

Min # 
Schwarz 

Iters

Max # 
Schwarz 

Iters

Total # 
Schwarz 

Iters

1.10 3 9 59,258

1.00 1 4 24,630

0.99 1 5 35,384

0.95 3 6 45,302

0.90 3 8 56,114

• Model accuracy evaluated w.r.t. analogous FOM-
FOM coupling using mean square error (MSE): 



Overlapping Coupling, Nonlinear Henky MM, 2 Subdomains

Multiplicative Schwarz Additive Schwarz



Overlapping Coupling, Nonlinear Henky MM, 2 Subdomains

Additive Multiplicative

Total # Schwarz iters 24495 24211

CPU time 2.03e3s 2.16e3

MS difference in disp 6.34e-13/6.12e-13

MS difference in velo 1.35e-11/1.86e-11

MS difference in acce 5.92e-10/1.07e-9



Overlapping Coupling, Nonlinear Henky MM, 3 Subdomains

Additive Multiplicative

Total # Schwarz iters 26231 25459

CPU time 1.89e3s 2.05e3s

MS difference in disp 5.3052e-13/9.3724e-13/6.1911e-13

MS difference in velo 7.2166e-12/2.2937e-11/2.4975e-11

MS difference in acce 2.8962e-10/1.1042e-09/1.6994e-09



Non-overlapping Coupling, Nonlinear Henky MM, 2 Subdomains

Multiplicative Schwarz Additive Schwarz



Non-overlapping Coupling, Nonlinear Henky MM, 2 Subdomains

Additive Multiplicativ
e

Total # Schwarz iters 44895 24744

CPU time 1.87e3s 982.5s

MS difference in disp 4.26e-5/2.74e-5

MS difference in velo 1.02e-5/5.91e-6

MS difference in acce 5.84e-5/1.21e-5



Non-overlapping Coupling, Nonlinear Henky MM, 3 Subdomains

Additive Multiplicative

Total # Schwarz iters 53413 27509

CPU time 5.91e3s 2.87e3s

MS difference in disp 2.8036e-05/3.1142e-05/ 8.8395e-06

MS difference in velo 1.4077e-05/1.2104e-05/6.5771e-06

MS difference in acce 8.7885e-05/3.2707e-05/1.3778e-05



FOM-FOM Coupling: Differing Resolution67
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FOM-FOM Coupling: >2 Subdomains69
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FOM-FOM Coupling: >2 Subdomains70
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Subdomain Wall Clock 
Time (s) Total (s)

Monolithic 124 124

75

300
62

62

77

1 SD



71

1 SD

Domain HROM-FOM-FOM-FOM Wall 
Clock Time (s)

FOM-FOM-FOM-FOM Wall 
Clock Time (s) Speedup

76 1.5 30 68 2.3

Total 276 300 1.1

0 100

10
0

0

HROM-FOM-FOM-FOM Coupling



72 Summary72

• We have developed an iterative coupling formulation based on the Schwarz alternating 
method and an overlapping or non-overlapping DD

• Numerical results show promise in using the proposed methods to create heterogeneous 
coupled models comprised of arbitrary combinations of ROMs and/or FOMs  

Ø Coupled models can be computationally efficient w.r.t analogous FOM-FOM couplings

Ø Coupling introduces no numerical artifacts into the solution

• FOM-ROM and ROM-ROM have potential to improve the predictive viability of projection-
based ROMs, by enabling the spatial localization of ROMs (via DD) and the online 
integration of high-fidelity information into these models (via FOM coupling)

Opinion: hybrid FOM-ROM models are the future!



73
Comparison of Methods

73

Alternating Schwarz-based Coupling Method Lagrange Multiplier-Based Partitioned Coupling Method

• Can do FOM-FOM, FOM-ROM, ROM-ROM coupling
• Non-overlapping DD
• Monolithic formulation requiring hybrid 

formulation (more intrusive but more efficient)

• Can couple different mesh resolutions and 
element types

• Can use different explicit time-integrators with 
different time-steps in different subdomains

• Provably convergent variant requires interface 
bases

• Parallel subdomain solves if explicit or IMEX 
time-integrator is employed

• Extensions to PINN/DMD data-driven models are 
not obvious

• Can do FOM-FOM, FOM-ROM, ROM-ROM coupling
• Overlapping or non-overlapping DD 
• Iterative formulation (less intrusive but likely 

requires more CPU time)

• Can couple different mesh resolutions and 
element types 

• Can use different time-integrators with 
different time-steps in different subdomains

• No interface bases required

• Sequential subdomain solves in multiplicative 
Schwarz variant
Ø Parallel subdomain solves possible with 

additive Schwarz variant (not shown)

• Extensible in straightforward way to PINN/DMD 
data-driven model



74 Ongoing & Future Work74

• Extension/prototyping on more multi-D (2D/3D compressible flow1, 2D/3D solid mechanics2) and multi-physics 
problems (FSI, Air-Sea coupling)

• Implementation/testing of additive Schwarz variant, which admits more parallelism

• Analysis of method’s convergence for ROM-FOM and ROM-ROM couplings

• Learning of “optimal” transmission conditions to ensure structure preservation

• Extension of coupling methods to coupling of Physics Informed Neural Networks (PINNs) (WIP)

• Exploration of connections between iterative Schwarz and optimization-based coupling [Iollo et al., 2022]

• Development of smart domain decomposition approaches based on error indicators, to determine optimal 
placement of ROM and FOM in a computational domain (including on-the-fly ROM-FOM switching)

• Extension of couplings to POD modes built from snapshots on independently-simulated subdomains

• Journal article currently in preparation.

1 https://github.com/ Pressio/pressio-demoapps 
2 https://github.com/lxmota/norma

https://github.com/Pressio/pressio-demoapps
https://github.com/lxmota/norma

