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Abstract—A microgrid is characterized by a high R/X ratio,
making the voltage more sensitive to active power changes
unlike in bulk power systems where voltage is mostly regulated
by reactive power. Because of its sensitivity to active power,
control approach should incorporate active power as well. Thus,
the voltage control approach for microgrids is very different
from conventional power systems. The energy costs associated
with these power are different. Furthermore, because of diverse
generation sources and different components such as distributed
energy resources, energy storage systems, etc, model-based control
approaches might not perform very well. This paper proposes
a reinforcement learning-based voltage support framework for
a microgrid where an agent learns control policy by interacting
with the microgrid without requiring a mathematical model of the
system. A MATLAB/Simulink simulation study on a test system
from Cordova, Alaska shows that there is a large reduction in
voltage deviation (about 2.5-4.5 times). This reduction in voltage
deviation can improve the power quality of the microgrid.

Index Terms—Microgrids, reinforcement learning, soft actor-
critic, voltage dynamics, voltage support

I. INTRODUCTION

The rapid integration of renewable energy sources (RES)
into the power system is revolutionizing the energy landscape,
offering significant advantages such as reduced greenhouse
gas emissions and improved energy sustainability. However,
this integration also poses voltage stability challenges, includ-
ing fluctuations, harmonics, flickering, imbalanced loads, and
power oscillation. Microgrids face increased vulnerability to
voltage instability due to the presence of diverse generation
sources, reactive power limitations, and load dynamics [1]. In
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microgrids, voltage instability occurs in a major event like a
sudden change in power demand or output from RES or when
a generator stops working. Even small changes in demand
can cause voltage instability, especially in systems already
operating near their limits. In conventional power systems, the
R/X ratio of the transmission/distribution lines is lower, and
the voltage is sensitive to reactive power only; hence, reactive
power management techniques ensure a reliable power sup-
ply by reducing fluctuations. In contrast, microgrids typically
operate at low to medium voltage ranges and have a high
R/X ratio [2], resulting in high voltage sensitivity to both
active and reactive power. Depending on the ratio, the voltage
could be more sensitive to active power. Thus, the traditional
voltage control approach used in conventional power systems
is not applicable to microgrids. The control approach should
consider both active and reactive power as control signals. This
paper analyzes the potential of utilizing energy storage systems
(ESSs), which are systems of energy storage (usually batteries)
with an inverter that can absorb or inject the desired amount of
active/reactive power, to provide voltage support in microgrids.

Various voltage control methods have been proposed for
microgrids. Droop-based control [3], [4] is commonly used but
can lead to oscillatory behavior and sub-optimal performance.
H-infinity (H∞) [5] based control offers robust stability but
requires a precise system model and does not handle non-
linear constraints well. Linear quadratic regulators [6] and
model predictive control (MPC) [7] require system models
and face challenges in accurately modeling converter-based
resources, especially in microgrids with diverse generation
mix. Additionally, MPC requires complete state and parameter
information and incurs higher computational costs, which may
not be suitable for short control time steps involved with
microgrid voltage dynamics. Different model-free approaches
like Extremum-seeking (ES) control [8] utilize output mea-
surements to optimize power injections from distributed energy
resources (DERs) for voltage regulation. However, a significant
drawback of existing ES algorithms is the insufficient treatment
of constraints. Many ES methods either overlook constraints
for simplicity or indirectly penalize constraint violations in
the objective function. A reinforcement learning (RL) based
approach can provide an ideal framework in microgrids for
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voltage support. Data-oriented approaches learn directly from
historical data without assuming a specific model, enhancing
their robustness in noisy, complex environments [9]. However,
prior voltage control works using RL techniques such as deep
deterministic policy gradient (DDPG) focused on steady-state
voltage profiles, neglecting system dynamics [9]. In [10], a
time delayed deep deterministic policy gradient (TD3) approach
was proposed; however, it is sensitive to hyperparameters. To
address this, [11] introduced soft actor-critic (SAC) as an
improved alternative to DDPG and TD3. SAC has number of
advantages over other RL algorithm such as entropy regular-
ization ,which encourages policy to have higher entropy thus
maintaining exploration and preventing premature convergence
to sub-optimal solutions, and better learning speed.

In this paper, we propose a SAC-based voltage support
technique for a microgrid. The paper is organized as follows:
Section II presents the method used for voltage support. The
simulation setup is presented in Section III, with results and
findings summarized in Section IV. Section V concludes the
paper.

II. SOFT ACTOR-CRITIC (SAC)-BASED VOLTAGE SUPPORT

A. Basics of Reinforcement Learning

Reinforcement learning is the training of a model to make a
sequence of decisions. The agent interacts with the environment
to learn the control policy. The policy maps states of the
environment to the control action. A reward is a scalar value
that represents how the agent is performing. A reward is
collected every time the agent interacts with the environment.
Q-value, represented mathematically as Qπ(st, at) represents
the predicted value of an accumulated reward an agent would
collect over the future when the agent takes action at at the
current timestep and policy π thereafter. The agent learns to
approximate the Q-value, which is often represented by a neural
network. In RL, the objective is to maximize accumulated
reward. Thus, the optimal control action is:

a∗t = argmax
at

Qπ(st, at). (1)

The above optimization problem might not be feasible to
solve for continuous action space since Q function is generally
nonlinear. Thus, the actor-critic method is used, which has a
separate neural network for mapping states to optimal action
(called actor-network) that is trained alongside the Q-network
(called critic-network).
B. Soft Actor-Critic Method

SAC is one of the types of actor-critic methods where the
objective is to maximize Q−value along with entropy. In SAC,
one NN for the actor and two NNs for a critic are used.
Two critics are used since critics are found to overestimate
the Q-value or expected reward. Thus, using two critics and
the smallest predicted Q-value of two networks for the target
Q-value mitigates the problem of overestimation. In SAC,
the policy is assumed to be stochastic, i.e., the actor-network
gives parameters of probability distribution (generally Gaussian
is used). Let at and st represent action and states of the

environment at discrete time t. Let πϕ(at|st) represent the
policy with ϕ being trainable parameters of the actor-network.
The policy gives the probability density of taking action at

given the system is in state st i.e., at ∼ N (µϕ(st),σϕ(st))
where N represents normal distribution. The sampled action is
passed to tanh function and scaling is performed to obtain
the final action. Let Qθ1

(st,at) and Qθ2
(st,at) represents

two Q-networks with θ1 and θ2 being trainable parameters
of critic networks. Further, two target networks (one for each
critic network) are used. The trainable parameters of the target
networks are represented by θ̄1 and θ̄2. Let D represent the
replay buffer that stores the experience (st,at, rt, st+1) tuple.
Let us define Qθ(st,at) := min(Qθ1

(st,at), Qθ2
(st,at)) and

V (st) as:

Vθ(s) := Eat∼π [Qθ(st,at)− α log π(at|st)] (2)

where α represents the entropy coefficient and action at is
sampled from the current policy. The critic loss is defined as:

JQ(θi) = E
(st,at,rt,st+1)

∼D

[(
Qθi

(st,at)− (rt + γVθ̄(st+1))
)2

]
∀ i ∈ {1, 2} (3)

with γ being a discount factor and i being the index for critic
networks. Now, the objective of the actor-network is to find
the action that maximizes the Q-value. In SAC, entropy should
also be maximized. Thus, the actor loss can be written as:

Jπ(ϕ) = E
st∼D,at∼πϕ

[α log(πϕ(at|st))−Qθ(st,at)] . (4)

Here, the action is sampled from a current policy with a re-
parameterization trick, which is a technique to back-propagate
the gradient through sampling. For example, sampling from a
normal distribution with mean µ and standard deviation σ is
equivalent to µ+σϵ where ϵ ∼ N (0, 1). In the latter case, it is
possible to differentiate sampled output with respect to µ and
σ. Additionally, the entropy coefficient is also adjusted so that
the entropy of policy is equal to the specified target entropy.
The loss for entropy tuning can be written as:

J(α) = E
st∼D,at∼π

[
− log(α)

(
log π(at, st) + H̄

)]
(5)

where H̄ is the target entropy. Finally, the soft update of the
target network is done as:

θ̄i ← τθi + (1− τ)θ̄i ∀ i ∈ {1, 2} (6)

where τ is the update factor for a soft update of the target
network. The SAC algorithm is summarized in Algorithm 1.
C. Voltage Support using SAC Method

To provide voltage support, an ESS is connected to one of the
buses in a microgrid. Instantaneous values of local quantities
(voltage vc, currents ig as shown in Fig. 1) are measured
and converted to dq-frame using voltage vc as reference. Let
vc,dq and ig,dq represent the voltage and current in dq-frame
respectively (with vc,dq being a vector of d and q components
of vc. Same for other variables). The dq-transformed variables



Algorithm 1: SAC Algorithm
Input: θ1,θ2,ϕ

θ̄1 ← θ1, θ̄2 ← θ2
D ← ∅

for each iteration do
at ∼ πϕ(st)
Apply action at to the environment at state st to
get st+1

D ← {(st,at, rt, st+1)}
for each gradient step do

θi ← θi − λQ∇θi
JQ(θi) for i ∈ {1, 2}

ϕ← ϕ− λπ∇ϕJπ(ϕ)
α← α− λα∇αJα(α)
θ̄i ← τθi + (1− τ)θ̄i for i ∈ {1, 2}

end
end

Fig. 1: Schematic showing ESS connection to a microgrid.

(total of 6 variables) should be used as a state. The d-component
of vc, i.e., vcd, represents the instantaneous amplitude of the
voltage. Our objective is to keep this quantity as close to some
reference value (vref ) as possible. In other words, we want to
minimize (vcd−vref )

2 or maximize −(vcd−vref )
2. Similarly,

we want to achieve this goal with the minimum amount of
inverter current to reduce the energy cost as well as the size
of ESS required. Thus, we want to minimize i2invd and i2invq .
Hence, we use the following reward function:

rt = −
(
(vcd − vref)

2 +R1i
2
invd +R2i

2
invq

)
. (7)

The value of the reward increases when vcd approaches vref .
The values R1 and R2 set the relative priority of minimizing
the d and q components of inverter currents. Furthermore,
its value relative to 1 sets the relative priority of minimizing
voltage deviation and ESS utilization. The value of vref is set
externally (e.g., 1 p.u.), thus it is necessary to train the SAC-
agent for different values of vref . Hence, vref is also passed
to the SAC-agent along with other observations, making the
dimension of observations to be 7. Additionally, the above
reward should be normalized to ease the training. Normalization
requires mean and standard deviation, which are unknown
before interacting with the environment. Thus, running mean
and standard deviation are used. They are calculated using the
algorithm outlined in [12].
D. Recurrent Neural Network-based SAC

For the voltage support, the measurements from other buses
are not available making the voltage support problem partially
observable. Hence, the state st that is observed from the

environment does not contain full information. Thus, it is
necessary to incorporate past data to have more information
about the environment. To work efficiently with time-series
data, a recurrent neural network (RNN) can be used. In this
work, long short-term memory (LSTM) networks have been
used. Instead of passing just st at any time t, a sequence of
the most recent st of specified length L is passed. The LSTM
processes this data to give a compressed low-dimensional
representation of states, which is passed to a fully-connected
layer.

During inference, RNN states from previous timesteps and
the value of st at the current timestep can be used to compute
action. This allows us to avoid processing data of sequence
length L, and use just the st from current timesteps. This
reduces the size of data to be processed at any given timestep,
thereby making the inference computationally efficient.

III. SIMULATION SETUP
A. System Description

Fig. 2: Modified microgrid benchmark from Cordova, Alaska.
A simulation study was carried out to validate the ap-

proach. The setup is illustrated in Fig. 2 and was modeled in
MATLAB/Simulink. The microgrid benchmark considered is
modified from Cordova, Alaska where two substations ORCA
and HBC are considered. An ESS with power capacity of
30% of the total microgrid size is connected to the ORCA
substation. In this study, ideal DC source has been used thus
making ESS storage capacity infinite. A standard phase-locked
loop from Simulink was used to extract the instantaneous angle
of vc to perform dq-transformations. Gaussian noise of zero
mean and standard deviation of (10−2, 10−2, 10−2, 10−2) pu for
(igd, igq, vcd, vcq) is added to the available measurements [13].
The step-time of the agent is taken to be 100µs based on
the approximate time constant of the system. The SAC-agent
was implemented using the keras library, which is based on



Python. To make the Simulink model interact with the Python
environment, the C-code for the Simulink model is generated
using Simulink Coder. To make the API simple for Python,
interface codes were written. The generated and interface codes
are compiled to a shared library using the GCC compiler, which
is then imported to Python using the ctypes library. For
training, a base load of random value (denoted by PL) from
the range [0.2, 0.8] pu is connected with random load change
from the range [−0.2, 0.2] pu. The random value of vref from
a range [0.88, 1.1] is used based on the continuous operating
range provided by the IEEE 1547-2018 standard. The sampling
of these random values is done at the start of each episode.
Furthermore, iinv,dq is used as a control action and all variables
are converted to per-unit before passing them to the agent.

To check computational feasibility, the equivalent C-code
for the trained actor network was written. The linear algebra
required for implementing the network was implemented using
Basic Linear Algebra Subroutines for Embedded Optimization
(BLASFEO) library [14]. The compilation was done using GCC
compiler with level 3 optimizations.

TABLE I: Summary of parameters used to train the agent.
Parameters Value Parameters Value

Buffer capacity (T ) 106 γ 0.99
Batch size (M) 256 τ 0.005
Target entropy -2.0 Initial entropy coefficient 0.1

Optimizer Adam Learning rate 3× 10−4

L 50 R1, R2 0.05, 0.005
Number of parameters (actor-network) 5714 Number of parameters (critic-network) 5842

B. SAC Training

Fig. 3: Structure of neural networks: (a) actor-network (b)
critic-network.

For both actor and critic networks, the LSTM layer with an
output dimension of 10 is used. The next two layers used are the
dense with an output dimension of 64 and an activation function
of relu. For the actor-network, two output layers are used each
with the dimension of 2 (for d and q components of inverter
current) and a linear activation function. The first output gives
a mean of the Gaussian distribution and the second output gives
the logarithm of the standard deviation for the policy. For the
critic network, one output layer of dimension 1 (Q-value is
scalar) and a linear activation function is used. The structure
of the neural network is shown in Fig. 3.

At every agent timestep, a control action is sampled from
πϕ, which is applied to the environment. The transition i.e.,
(st, at, rt, st+1) is stored in the buffer D. Furthermore, 256
(batch size) transitions are randomly sampled, and one step
update of the neural networks is performed. On the next agent
timestep, this process is repeated.

IV. RESULTS AND ANALYSIS
A. Training Metrics

The variation of training metrics as training proceeds is
given in Fig. 4(a-c). The training was performed multiple
times (starting with randomly initialized network parameters)
to check variance in training metrics (represented by shaded
region). Fig. 4(a) shows the variation of mean episodic reward.
Initially, the agent takes random action and hence, the reward is
very low. As training proceeds, the reward increases. Fig. 4(b)
shows the standard deviation of the policy for iinvd and iinvq.
The initial value for both was set to 1.0. As the training
proceeds, their values decrease. The σ for q-component is
higher than d-component because voltage is more sensitive to
iinvd and hence, the agent can easily learn the effect of iinvd.
Fig. 4(c) shows the entropy of stochastic policy. Th entropy
coefficient loss (equation (5)) sets the value of α such that
actual entropy is close to the target value.

B. Performance of Voltage Support
To evaluate the performance of voltage support, the base load

is set to 0.3 p.u. and the system is subjected to a load change
of 0.10 p.u. at 1.5 s. The performance of the trained agent is
shown in Figs. 4(d-f) where the variation of voltage and current
when no control (i.e., iinv,ref is set to 0 with no change in other
components of ESS) is used is compared against the case when
the trained agent is used. Fig. 4(d) shows that when the trained
agent is used, the oscillation in current igd is reduced. Fig. 4(e)
shows that the oscillation in voltage vcd is also reduced. From
Fig. 4(f), we can also see that a large magnitude of the q-
component of inverter current is utilized as compared to the
d-component. It is because we set the coefficient of the d-
component higher. Thus, the agent tries to provide voltage
support with a smaller magnitude of iinvd.

Further, the variation of maximum voltage deviation when
load change is varied is shown in Fig. 5(a). For any given
load change, the value of maximum voltage deviation is smaller
when the proposed approach is used than when no ESS is used.
This shows that the proposed approach can provide voltage
support for all the values of load change that the agent has been
trained on. The trained agent was able to reduce the voltage
deviation by 2.5 to 4.5 times depending on the value of load
change. Fig. 5(b) shows the maximum value of power provided
by ESS to provide voltage support for different values of load
change. A larger load change requires larger ESS power.

C. Computational Time
The equivalent C-code for the trained actor network was

compiled and run on a Windows 10 machine with an In-
tel® Core (TM) i9-11900 @ 2.50 GHz. The average and
maximum computational time was found to be 1.72 µs and
9 µs, respectively. This time is very small compared to the agent



Fig. 4: Performance of voltage support. The first row shows training metrics and the second row shows the performance of the
trained agent for load change of 0.1 pu.

step-time (100 µs). This shows that the proposed approach is
computationally feasible to operate in real-time.

Fig. 5: Variation of (a) maximum voltage deviation and (b)
maximum ESS power, with the value of load change.

V. CONCLUSIONS
In this paper, we used a SAC method-based approach for

dynamic voltage support of microgrids. The trained agent was
able to reduce the voltage deviation by about 2.5 to 4.5
times. Furthermore, the oscillation in instantaneous voltage
amplitude was also reduced. This helps to mitigate power
quality issues and improve the reliability of the grid. The
average computational time was found to be 1.72 µs showing
real-time applicability.
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