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Introduction

* Aim: Devise a method to infer a spatial quantity, the spread-rate of a disease, using limited data
of epidemiological dynamics (case-count data)

* Dataset: COVID-19 case-counts in the counties of New Mexico
e Why?
* Novel outbreaks are detected by analyzing (very noisy) case-count time-series; detection often delayed

* Reporting errors, stochastic behavior in small populations (sparsely populated areas)

e Qutbreak detections (anomalous change in epidemiological dynamics) often uncertain; wait for case-counts to
increase

* Hypothesis: Detect new outbreaks using the latent spread-rate of a disease, not case-counts
* Technical challenges:

* How to infer the spread-rate field?

* How to impose the spatial correlations seen in data? What kind of spatial structures do we have?

* How to compute the spread-rate fast, in a parallel manner?



The practical problem — outbreak detection

Salmonella Montevideo, Germany 2009-2010

Two ways — temporal methods (SPC) & spatiotemporal method -
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* Data used: case-counts of a disease, disaggregated in time & space

Temporal methods: Fundamentally, anomaly detection

Mumber of cases
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* Using historical data, do a 2-week forecast of case-counts & :
uncertainty bounds (usually 95t percentile) ol
. . . h . 2003 M. Salmon é4F Euro Surv. 2016, 21(13)
* Wait for data; if 3 consecutive days > than 95™ percentile, alarm! Time (weeks)

Measles, Weser-Ems, Germany 2001-2002

Spatiotemporal methods: Use historical & neighborhood data
(autocorrelation) to make forecasts
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Shortcomings

* Need long time-series data, prefer to be high-count / low
variance

* Not really feasible for novel diseases

= —1.5 Meyeretal, JSS 2017




Approach

* Hypothesis:
e Use (latent) spread-rate to detect outbreaks, not case-counts directly
* Not affected by reporting errors & only depends on human mixing patterns (behavior)
* Inferring the spread-rate
* Pose and solve an inverse problem for the spread-rate in each NM county

e Spread-rates in counties are auto-correlated. Devise a Gaussian Markov Random Field (GMRF) model to
capture spatial pattern

* Reformulate a spatiotemporal inverse problem for spread-rates in M counties. Use GMRF to impose
autocorrelation

e Solve with MCMC (for accuracy) and Variational Inference (VI; approximate, but fast); compare
estimated spread-rates

* Test: Can disease detection be done with spread-rates, even the approximate VI one?



Formulating the temporal problem
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Reported New Cases on Date

Detecting change in epidemiological dynamics

* Model allows estimation of (past) infection-rate; forecasting with it assumes that it will not change

drastically

 |f forecasts are wrong, it implies a change in spread-rate (new variant, changes in human behavior etc.)

e Our insight: This could be formalized into a rigorous outbreak detector / change in epidemiological

dynamics
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The spatiotemporal problem

* Temporal estimation problem: The posterior distribution
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* @ is 4-dimensional; the inversion is 6 dimensional

Il"Il pprim-(e) , ' = diag(o, + JMyt("”S))
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* The spatiotemporal estimation problem:

. yt(obs)

contains case-counts for all times till t, from all areas A;,j = 1++]

* ['spans over all time t, and all A; and must enforce all spatial autocorrelations. What is it?
* Modeling the spatial problem:

* |s there any spatial correlation? What form does it take?

*» What does I' look like in a spatiotemporal inversion problem?



Spatial modeling

* Created a simple regression model for case-counts in NM B
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* ¢,: exogenous covariates of epidemiology/risk factors (population, - o
socioeconomic conditions, transport connectivity etc.) - -

* ¢ shows spatial correlations in epidemiological dynamics not explained by ke
exogenous covariates

* Clear spatial pattern

* Rio Grande valley (inhabited; blue) shows similar €
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* Further out, red counties have similar behavior

* Northwest / Southeast counties show max €
* To do:

* Clearly, clustered, but need to get significance via a statistical test

* Need to capture this pattern in a GMRF model
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I" for GMRF

Errors in exogenous model (normalized)

Existence of clusters determined by Moran’s | test

How far does autocorrelation extend in the (large) counties of NM?

* Also determined by Moran’s | test, computed with 1-hop and 2-hop
neighborhoods

* Finding: autocorrelation is only between nearest neighbors

- e 1 : :
Precision matrix "1 = = [I — AW], W is the nearest-neighbor
connectivity matrix, A is the strength of spatial autocorrelation
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* Y, = M(t; ©) predicts case counts on Day t

* O contains 4 X | parameters to infer, along with (7, 1); high-dimension even for ] = 3
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| Santa Fe; VI
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Speeding up with VI
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Curse of dimensionality: Dimensionality of the inverse problem grows
as ~ 4J, ) = # of areal units

* For NM, J = 33. Too high-dimensional for MCMC
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* Estimation now implies estimating (8, Var(8y)), k = 1...K (=4J)

* Test on Santa Fe county

Mathematical development 125

* Objective function (likelihood) to be maximized to estimate 100

(E! Var(ek))
* Parallel iterative methods to optimize (Adams)
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Effect of approximation: VI underestimates uncertainty

* Much faster & already parallelized




9-county inference with VI

Madel convergence
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Detecting the fall wave, 2020

* Detect the arrival of the Fall wave of 2020 in Valencia county

Process:

* |Infer spread-rate using data till Sept 15t ; forecast ahead w/ 95t

percentile; detect outliers

e Redo with negative binomial fit (RKI; Hohle & Paul, 2008)

Result:

* Our method detects the start of
the fall wave; RKI method fails

* RKlI’s time-series method needs
long training data (>2 months)

* We exploit knowledge of
incubation period &
parameterized infection-rate
profile
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Conclusions

* We have developed a VI method to infer a latent field, give indirect observations

* Our case: latent infection-rate or spread-rate field, from case-count data

e Requires a forward problem (epidemiological problem); spread-rate is smooth in space-time
* Algorithmic innovations: Estimation is high-dimensional; MCMC not up-to-the-task

e Requires a Gaussian Markov Random Field model to spatially regularize (enforce spatial auto-
correlation)

e Estimation performed using Variational Inference
* Tested on the counties of New Mexico, COVID-19 data

* Final use: Detect arrival of Fall wave in NM, posing it as an anomalous epidemiological behavior
* Detect better than conventional detectors that employ case-counts natively

* Better detection artefact of exploiting a smooth infection-rate, unaffected by reporting errors etc.
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