

Exceptional service in the national interest

An Introduction to Machine Learning for Mechanics

Sandia National Laboratories

Charlotte Kramer

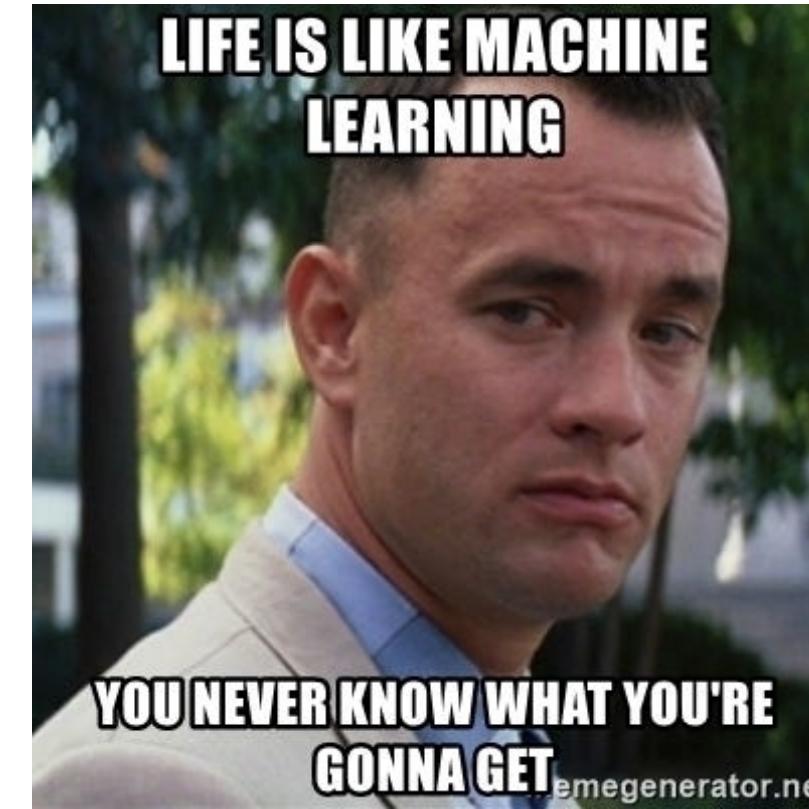
Society of Experimental Mechanics Annual Conference 2023

Orlando, FL

June 5, 2023

Machine Learning (ML) may appear to just be hype and lack rigor and accuracy.

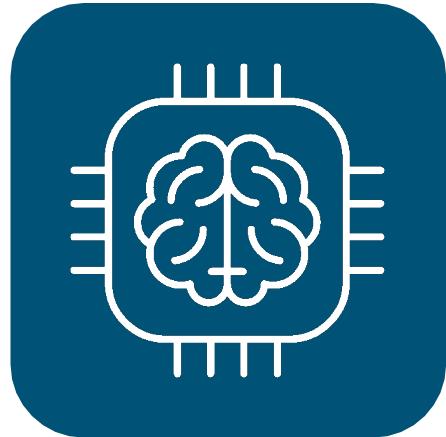
<https://analyticsindiamag.com/wp-content/uploads/2017/06/20.jpg>



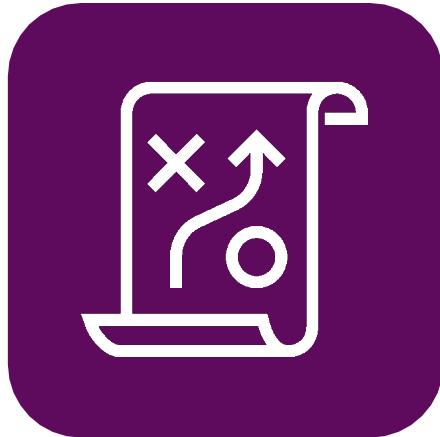
<https://medium.com/@krishamehta/10-a-few-useful-things-about-machine-learning-758e2c0149f0>

We need some basic understanding of ML to ascertain its value.

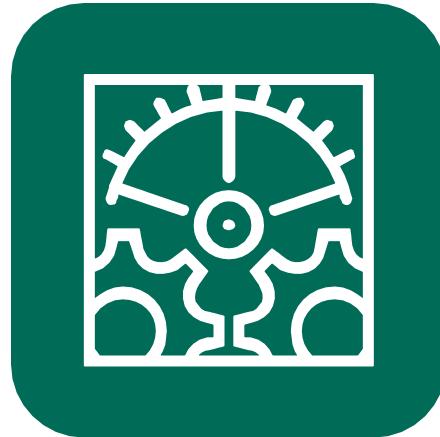
The goal of this presentation is to provide a brief introduction to ML for mechanics so you can appreciate and evaluate ML research.



Basic Terms
and ML Tasks

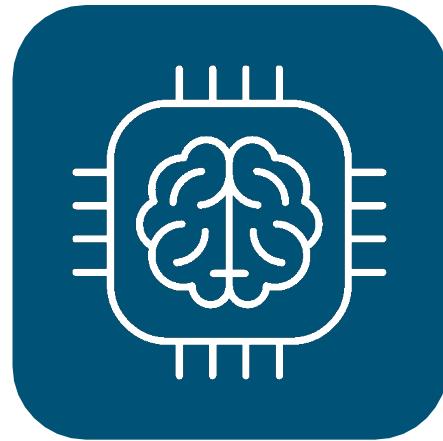


Evaluation
Approaches

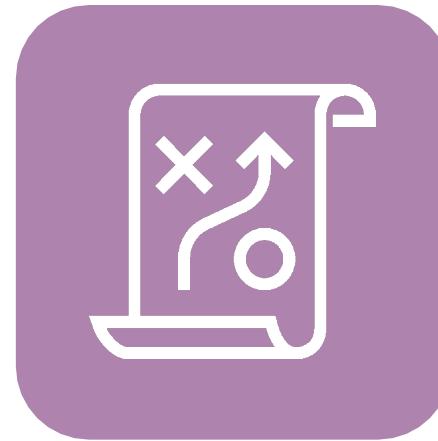


Mechanics
Example

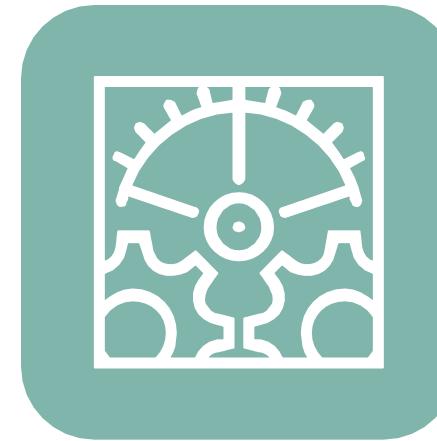
Introduction to ML for Mechanics Topics



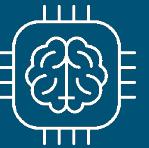
Basic Terms
and ML Tasks



Evaluation
Approaches



Mechanics
Example



What is Machine Learning?

- Tom Mitchell,

Machine Learning, 1997

A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P , if its performance at tasks in T , as measured by P , improves with experience E .

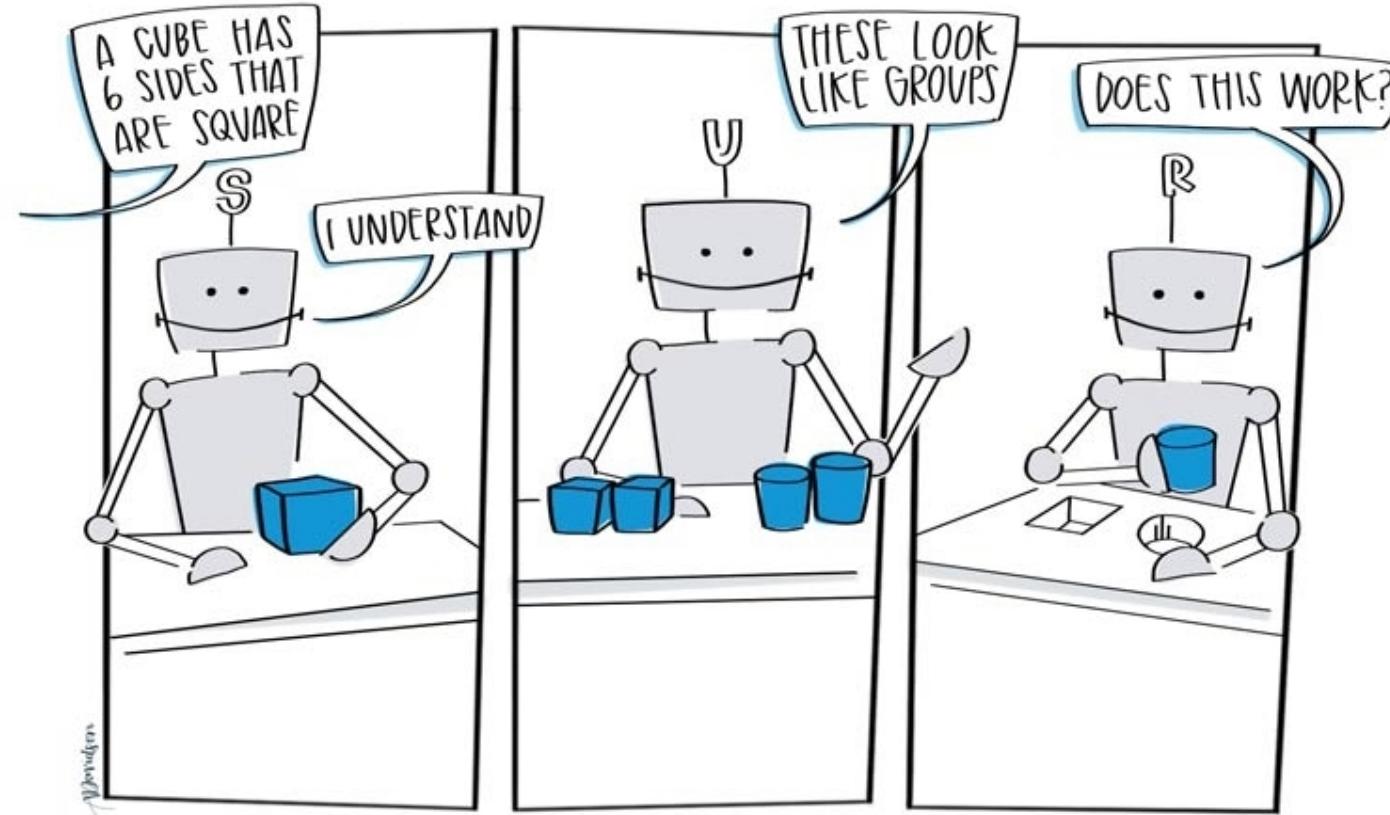
Task (T): Recognizing and classifying defects within SEM images

Performance measure (P): Percent of defects correctly classified

Experience (E): A database of defects with labeled classifications in SEM images



The three main types of ML



Experience:

Labeled
Data

Unlabeled
Data

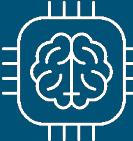
Interaction
with Its
Environment

SUPERVISED

UNSUPERVISED

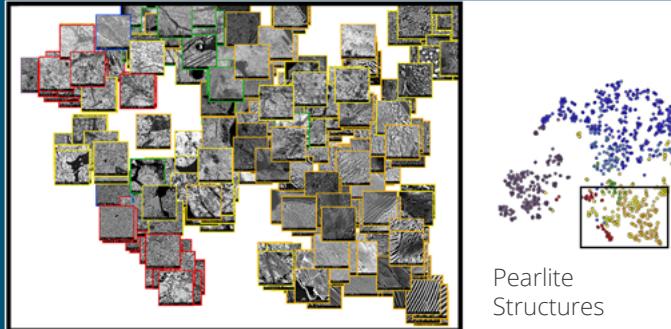
REINFORCEMENT

Image:
<https://www.ceralytics.com/3-types-of-machine-learning/>



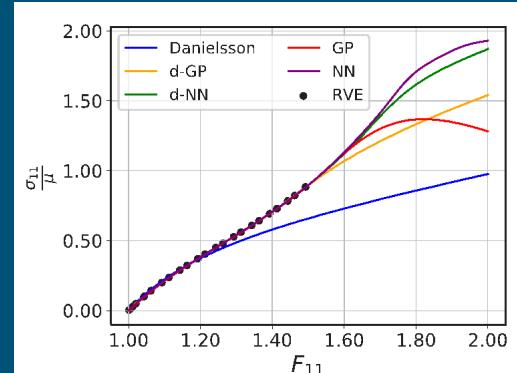
Common ML Tasks

Classification



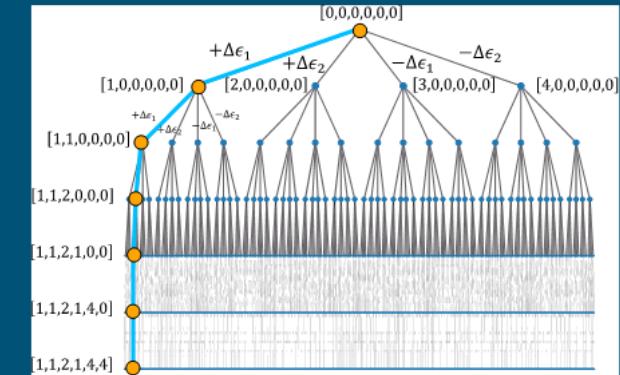
DeCost, et. al. Acta Materialia 2017

Regression



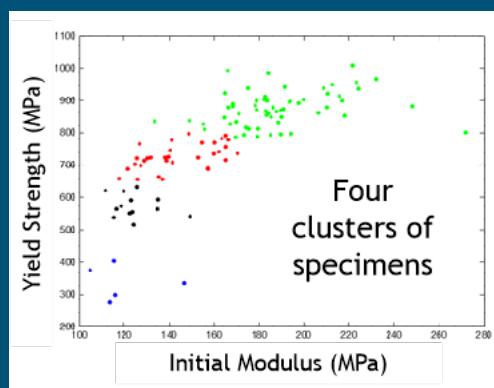
Frankel, et. al. CMAME 2022

Decision-Making



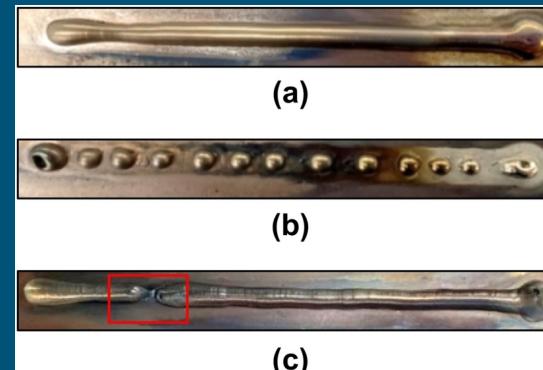
Villarreal, et. al. CMAME 2023

Clustering



L-PBF Metal Properties
Courtesy of Laura Swiler, SNL

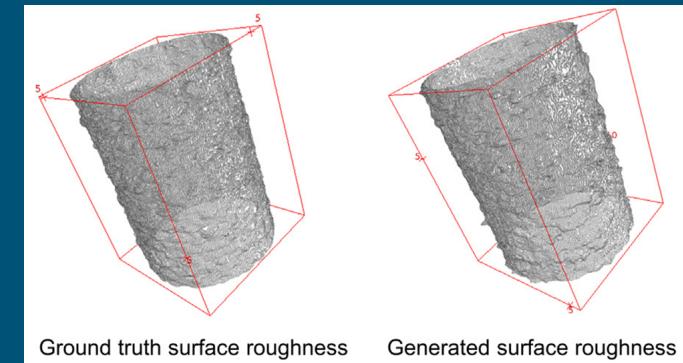
Anomaly Detection



WAAM Build Defects

Cho, et. al. J. Mater Process Tech, 2022

Data Generation



Ground truth surface roughness Generated surface roughness
L-PBF Surface
Ogoke, et. al. Additive Manufacturing 2022

Many ML Methods (and Counting)

Decision Trees

Neural Networks

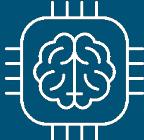
Support Vector Machines

Genetic Algorithms

Bayesian Methods

K-means Clustering

Random Forest Algorithms



Common Features of ML Approaches

Data / Experience

$X = \{x_1, x_2, \dots, x_n\}$	Y

Model

$$Y=f(x)$$

Loss Function

$$\varepsilon = \frac{1}{N} \sum_{i=0}^n g(f(x_i) - Y_i)$$

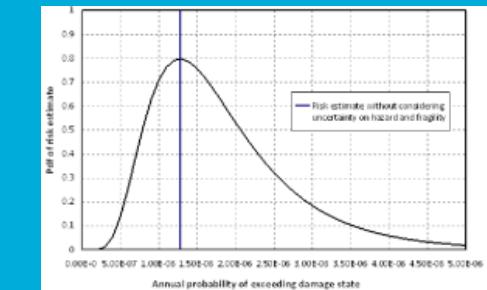
Learning Algorithm

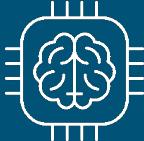
```
if (settings[0].compareTo("s")==0) {  
    if (name.compareTo("") !=0) {  
        name += "_";  
    }  
    name+= etr.getString(settings[1]);  
} else if (setting [0].compareTo("d") == 0){  
    if (name.compareTo("") !=0) {  
        name += "_";  
    }  
    name += DateUtils.format(etr.getDate(settings[ 1]))  
} else if (setting [0].compareTo("c") == 0){  
    if (name.compareTo("") !=0) {  
        name += "_";  
    }  
}
```

Parameterized Model

$$f(x) = \theta_1 x_1 + \theta_2 x_2 + \dots$$

Predictions & Evaluation





Common Terminology

Loss Function

- Performance metric (notion of error between data and output)

Epoch

- Number of cycles the algorithm takes during training

Training Data

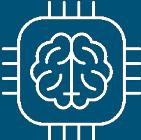
- Data used to train the ML algorithm parameters

Validation Data

- Data used to tune hyperparameters of the algorithm (e.g. number of hidden layers in the neural network)

Test Data

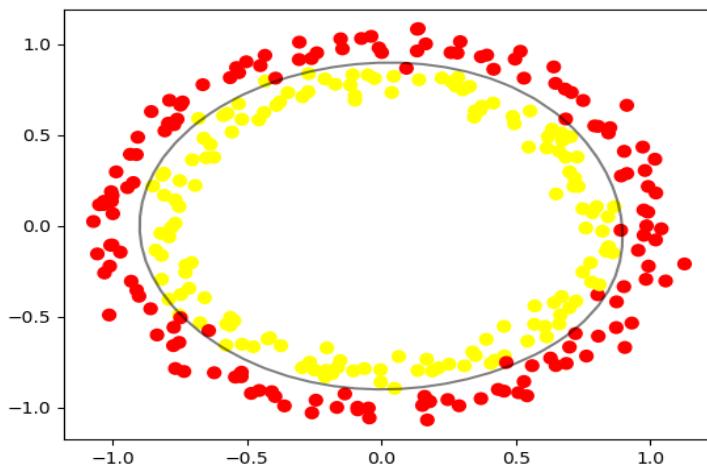
- Data not used during training or tuning that is used to evaluate the error of the trained ML algorithm



Common Algorithms: Support Vector Machine (SVM) and K-Means Clustering

SVM

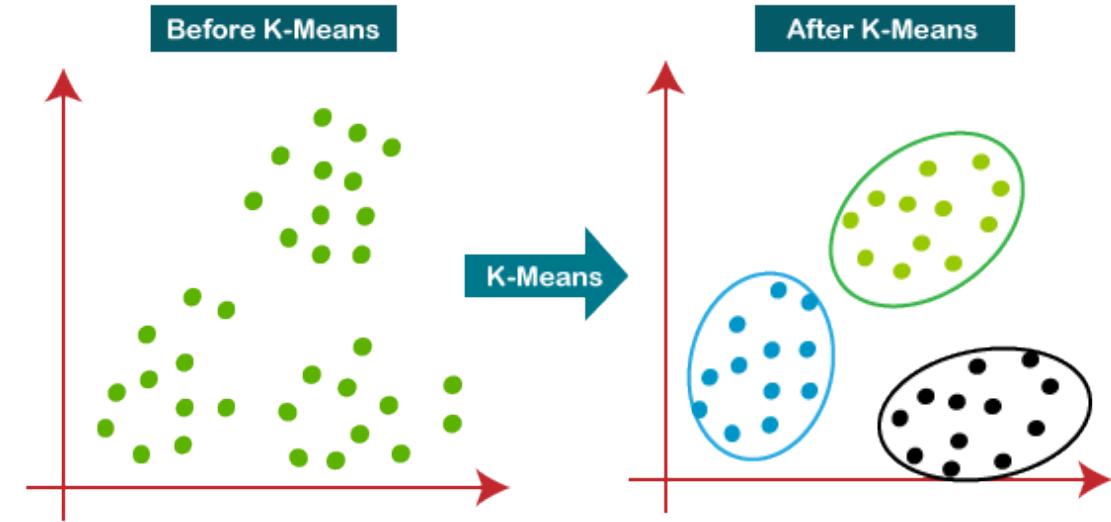
- Finding the “decision boundary” that maximizes the distance from the nearest data points of all the classes
- Can be linear or nonlinear (using kernels)
- Supervised learning



<https://www.freecodecamp.org/news/svm-machine-learning-tutorial-what-is-the-support-vector-machine-algorithm-explained-with-code-examples/#:~:text=SVMs%20are%20used%20in%20applications.use%20SVMs%20in%20machine%20learning.>

K-Means Clustering

- Grouping similar data points together in k-number of clusters as to minimize the distance of each point to the centroid of a cluster
- The number of clusters k is a hyperparameter
- Unsupervised learning

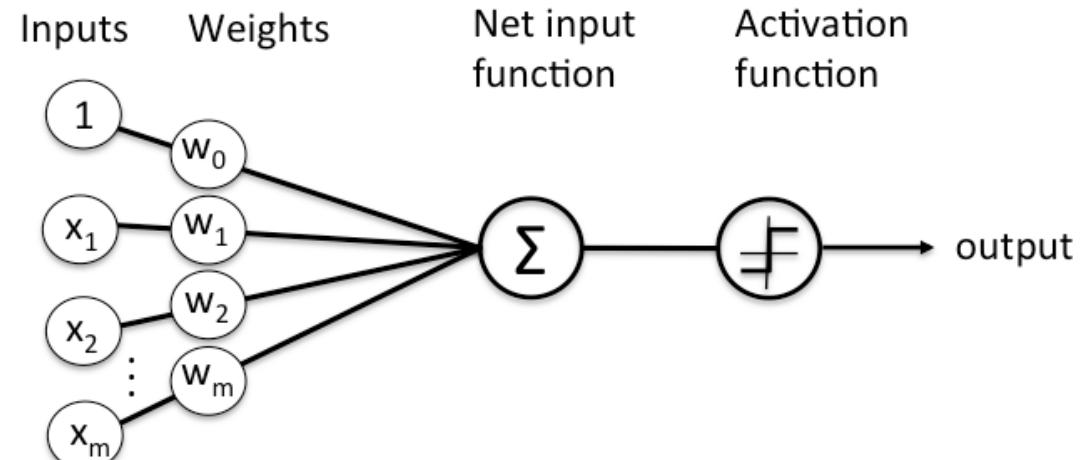


<https://www.javatpoint.com/k-means-clustering-algorithm-in-machine-learning>

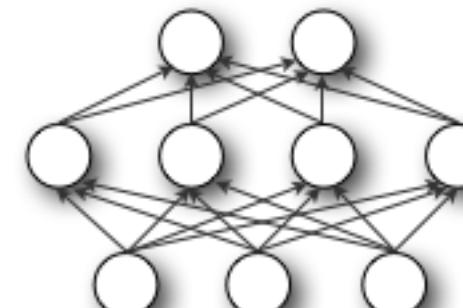
Common Algorithms: Artificial Neural Networks

- A collection of neurons / nodes / perceptrons that each evaluate their local inputs and provides an output evaluation
- Terms:
 - **Weights**: relative importance of an input
 - **Net Input function**: sum of the weighted inputs
 - **Activation function**: evaluates the input for an output (could be evaluated to 0)
 - **Layer**: collection of nodes
 - **Hidden layer**: the layers between the input and out layers
 - **Deep NN**: more than three layers (including the input and output layers)
 - **Bias**: a node added to each layer to correct systematic biases; only one per layer; a tuned parameter
- Supervised learning, but can be a element of a reinforcement learning algorithm

Single Perceptron / Node / Neuron



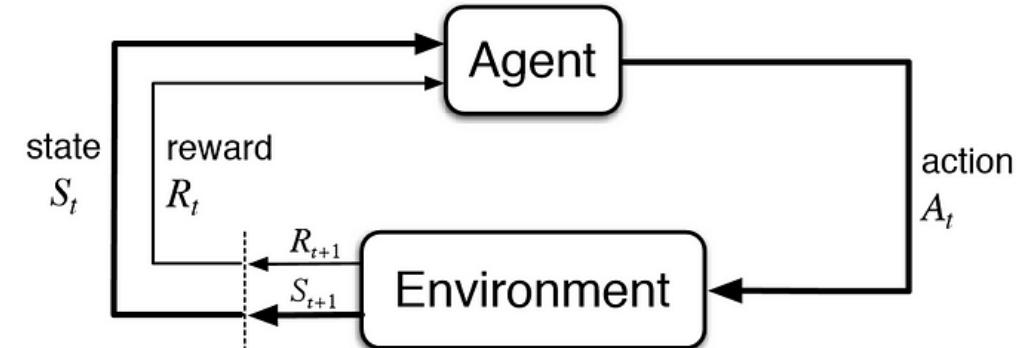
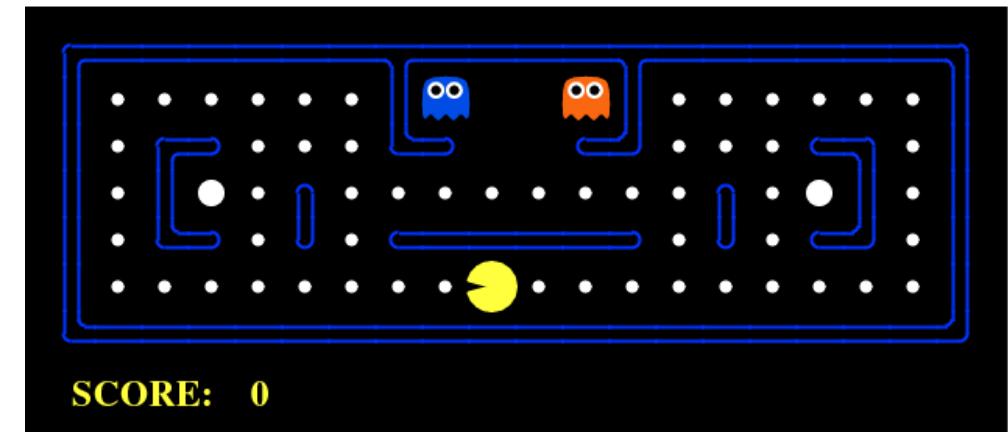
Neural Network



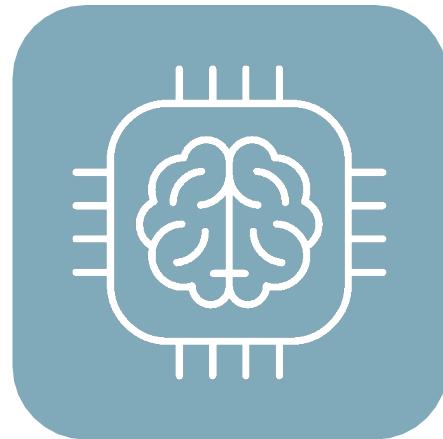
output layer
hidden layer
input layer

Common Algorithms: Reinforcement Learning

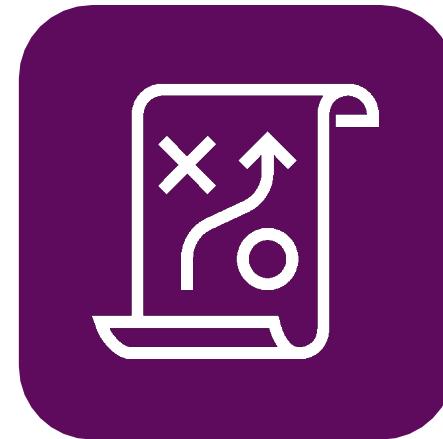
- An **Agent** interacting with an **Environment** in a trial-and-error fashion to learn the outcomes or **State** from **Actions** to maximize a **Reward**
- Terms:
 - **Environment** — Physical world in which the agent operates
 - **State** — Current situation of the agent
 - **Reward** — Feedback from the environment
 - **Policy** — Method to map agent's state to actions
 - **Value** — Future reward that an agent would receive by taking an action in a particular state
- **Exploration vs Exploitation:** When training the policy, the agent must balance the exploring new actions with trying to maximize the reward. Short-term sacrifices for long-term reward.



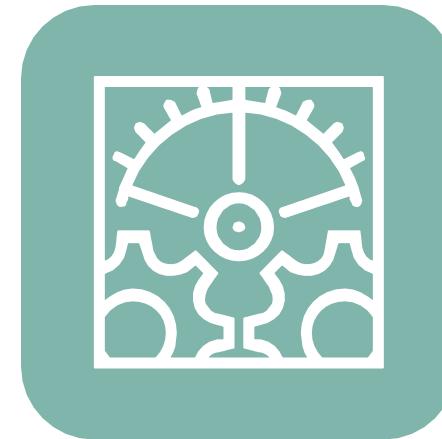
Introduction to ML for Mechanics Topics



Basic Terms
and ML Tasks



Evaluation
Approaches

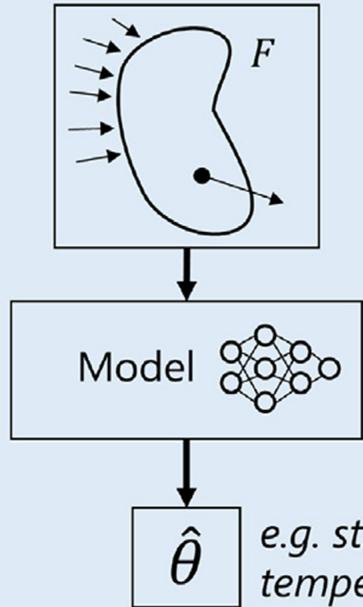


Mechanics
Example

Best Practices in ML in Mechanics

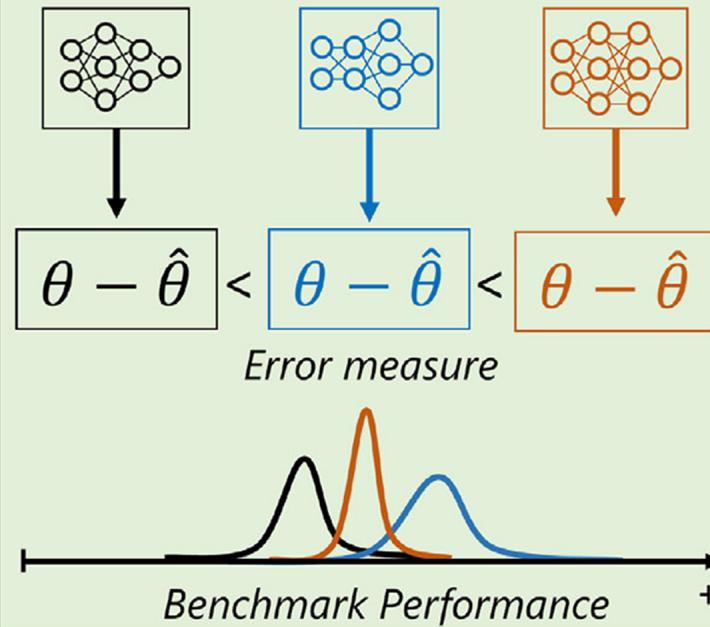
Clear Objectives

Define model success for use case



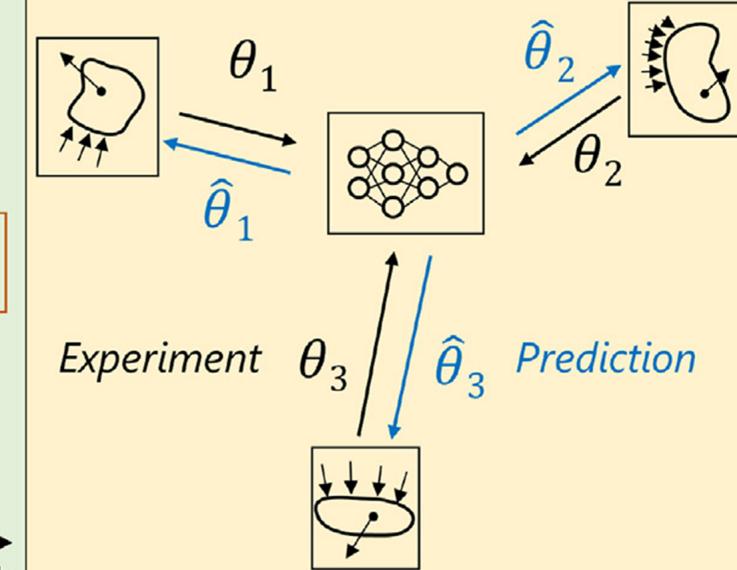
Quantifiable Evaluation

Quantify error for model output



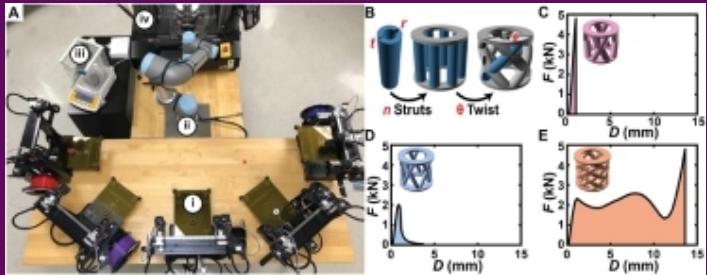
Well-Defined Extensibility

Communicate model scope and limitations



Common Objectives in Mechanics

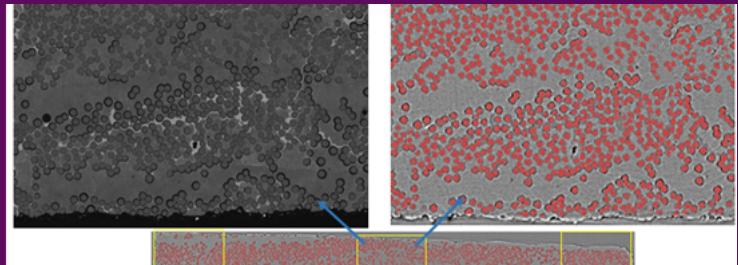
Process Refinement



Automated Testing of AM Structures

Gongora, et. al. Science Advances 2020

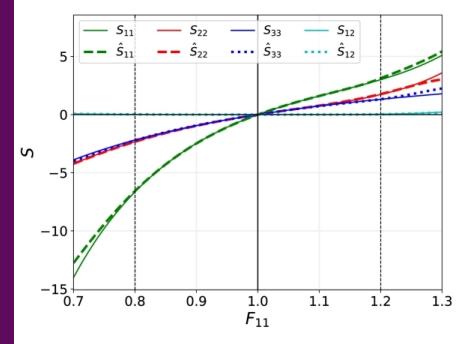
Experiment Augmentation



Identification of Fibers in Composites

Badran, et. al. J Compos. Sci, 2021

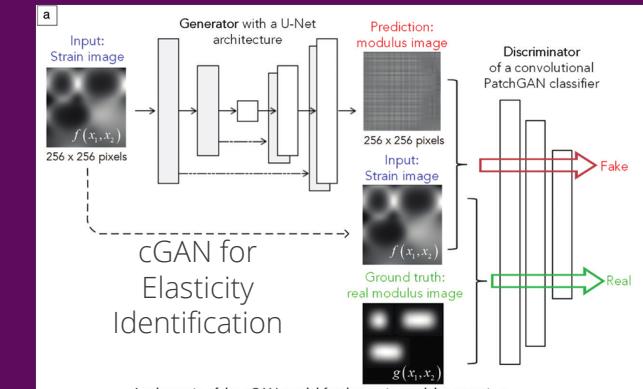
Surrogate Models



Anisotropic Hyperelasticity Using Tensor-Basis NN

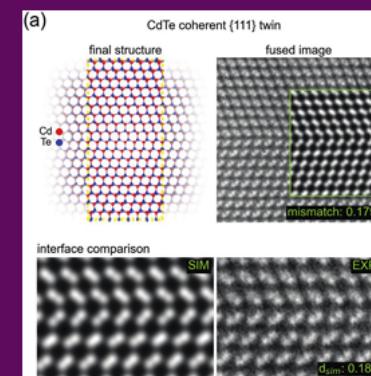
Fuhg, et. al. JMPS 2022

Inverse Problems



Ni and Gao. MRS Bulletin 2021

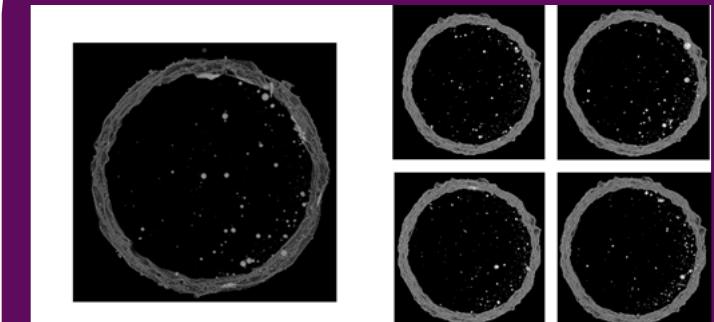
Cross-Measurement Correlation



Fusing Simulations with Experiments

Schwenker, et. al. J. Small, 2022

Data Generation



Original

Synthetic

L-PBF surface and Internal Voids

Ogoke, et. al. Additive Manufacturing 2022

Quantifiable Evaluation

Suitable Error Metrics

Error Against Ground Truth If Possible

Metric Should Quantify the Objective

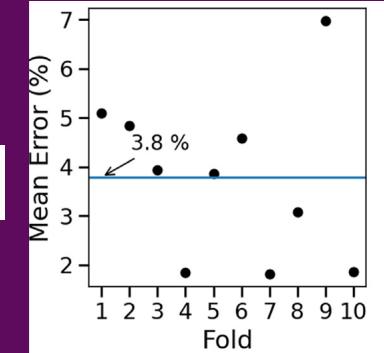
Hold-Out

Training-Validation-Test

Error Metric

Cross-Validation

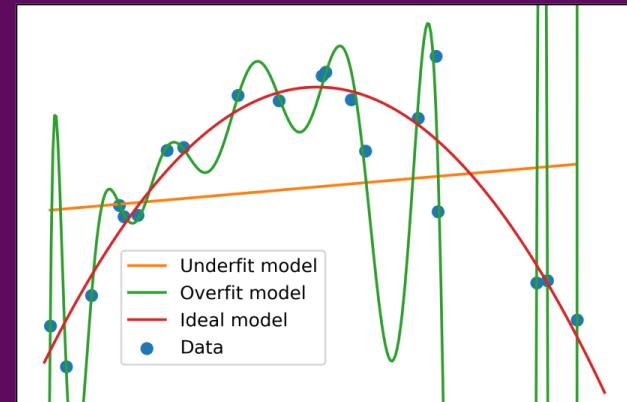
$$LOOCV = \frac{1}{n} \sum_{i=1}^n MSE_i$$



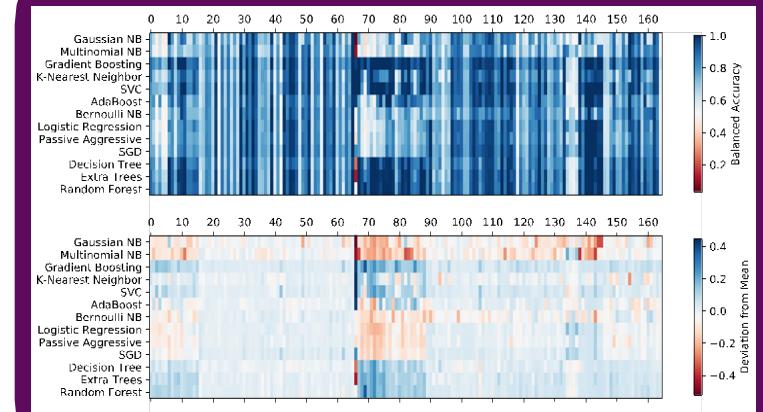
Bootstrap

Distinct Bootstrap Datasets Sampled with Replacement Created and Used to Train the Model. Then the Original Dataset is Used to Test the Model for Error.

Bias and Overfitting



Benchmarking Needed



Olson, et. al. BioData Mining 2017

Well-Defined Extensibility

Model Scope

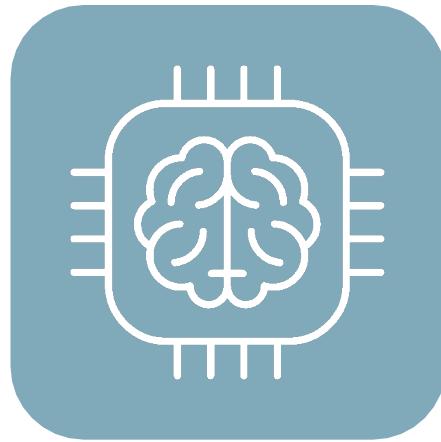
What salient features of the training data bound the use of the ML model?

Extrapolation vs.
Interpolation

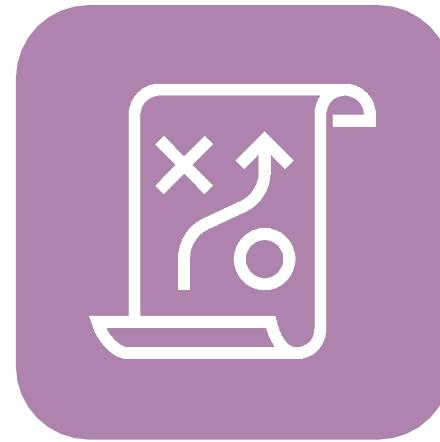
Knowledge Transfer

Pre-training / Re-training and transfer learning may enable use of an existing ML model with additional data of a similar type to update the model.

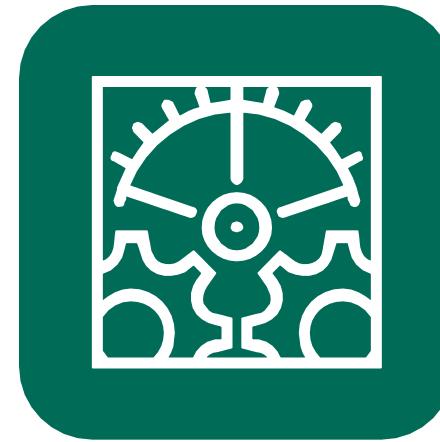
Introduction to ML for Mechanics Topics



Basic Terms
and ML Tasks



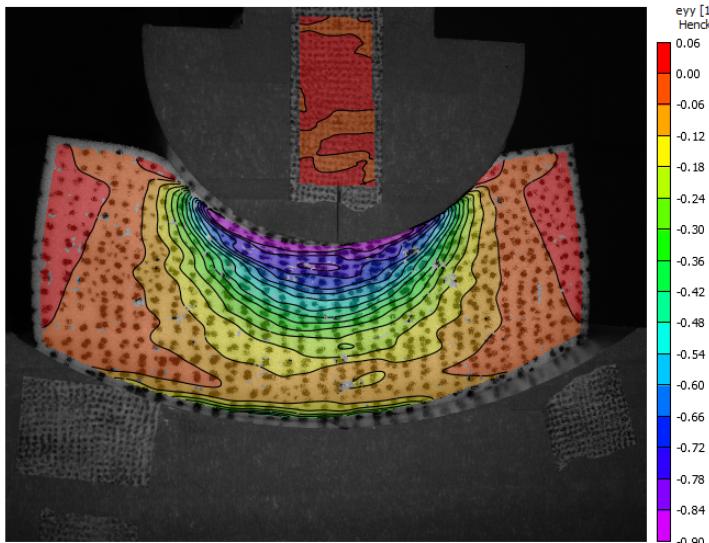
Evaluation
Approaches



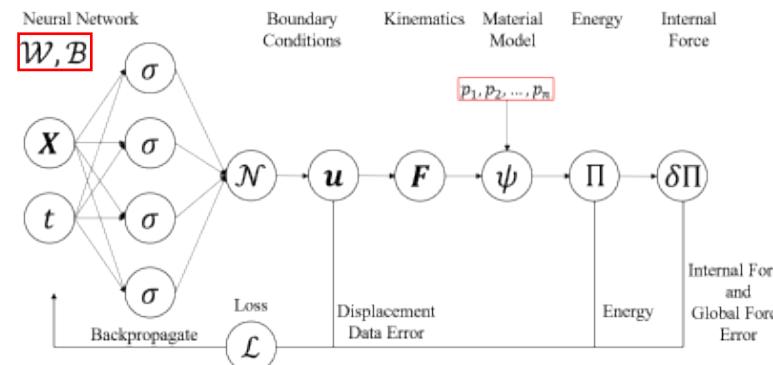
Mechanics
Example

Using Physics-Informed Neural Networks (PINNs) to Calibrate Material Models with Full-Field Displacement Data

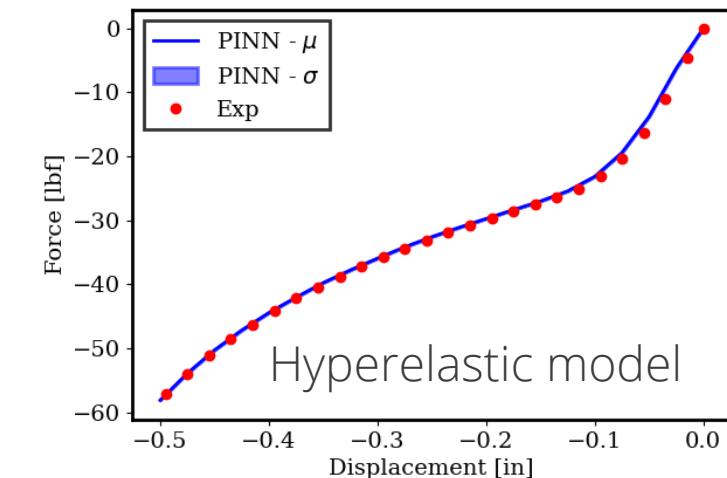
Full-Field Displacement Data



PINN Architecture



$$\psi^{eq}(\lambda_1, \lambda_2, \lambda_3) = \sum_i^N \frac{2\mu_i}{\alpha_i^2} \left[\lambda_1^{\alpha_i} + \lambda_2^{\alpha_i} + \lambda_3^{\alpha_i} - 3 + \frac{1}{\beta_i} (J^{-\alpha_i \beta_i} - 1) \right]$$



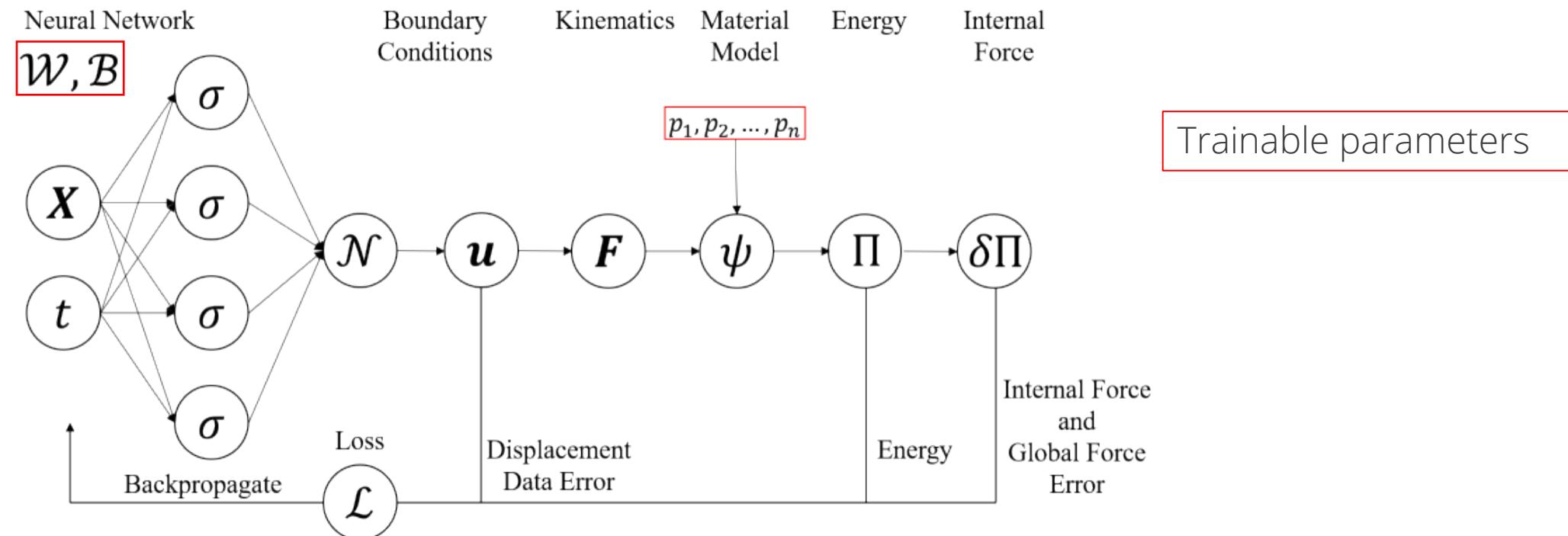
Objective for PINNs:

Inverse problem of calibrating hyperelastic models using full-field surface displacement data and global force-displacement measurements while satisfying kinematics and energy balance

PINNs Architecture That Is Constrained by Mechanics

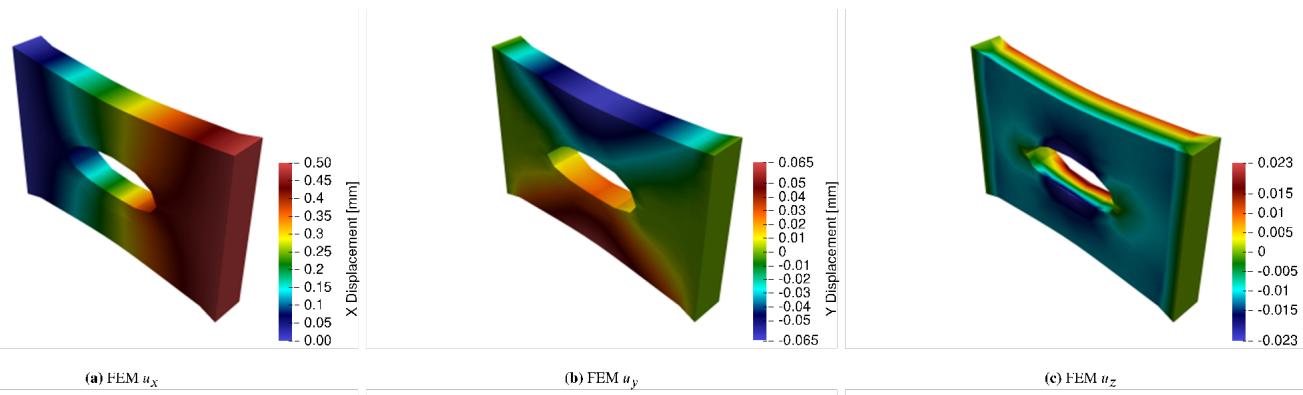
$$\min_{\mathbf{u} \in H^1(\mathcal{B}_0)} \Pi(\mathbf{u}) \longrightarrow \delta \Pi = \int_{\mathcal{B}_0} \delta \psi(\mathbf{E}) dv - \int_{\mathcal{B}_0} \mathbf{b} \cdot \delta \mathbf{u} dv - \int_{\partial \mathcal{B}_0^t} \tilde{\mathbf{t}} \cdot \delta \mathbf{u} da = 0,$$

Strain energy Energy due to body forces Energy due to surface tractions



Benchmarking Performance Against Synthetic Data

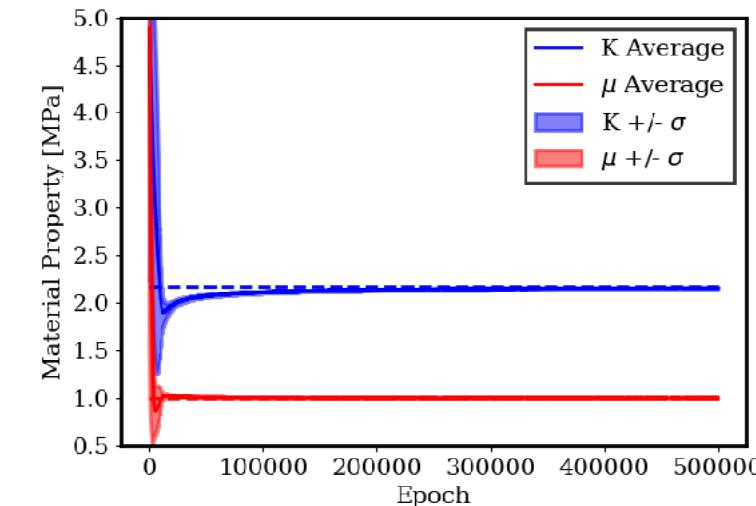
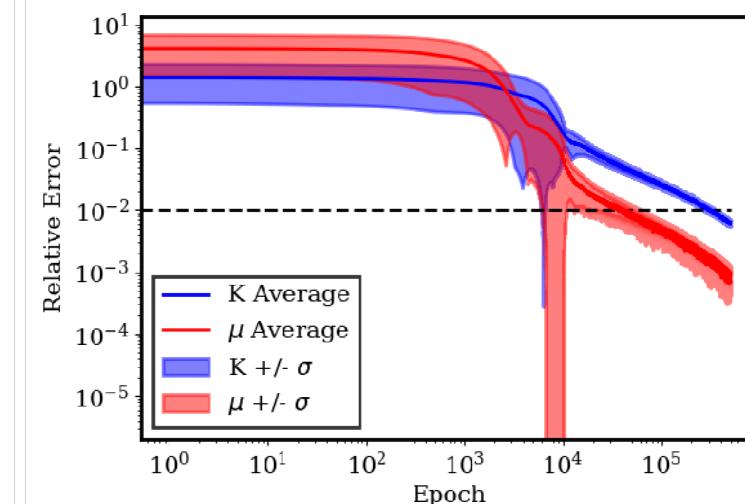
Synthetic FEM Training Data:
Only Surface DIC-like Data Used along with
Global Force-Displacement



Neo-Hookean Model with
Bulk and Shear Moduli, K and μ

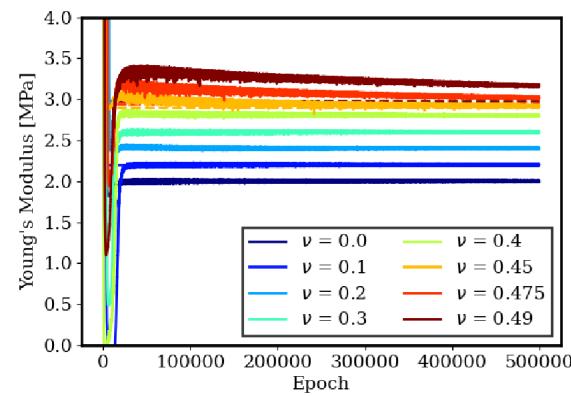
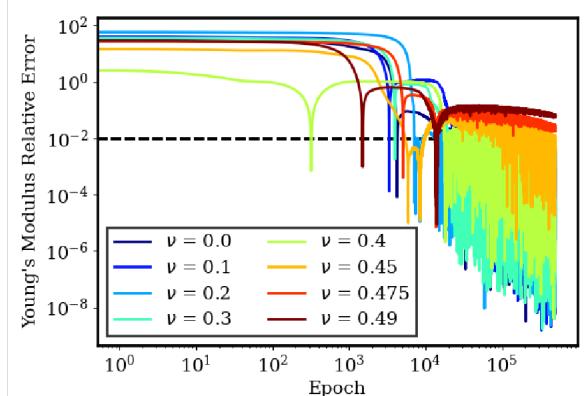
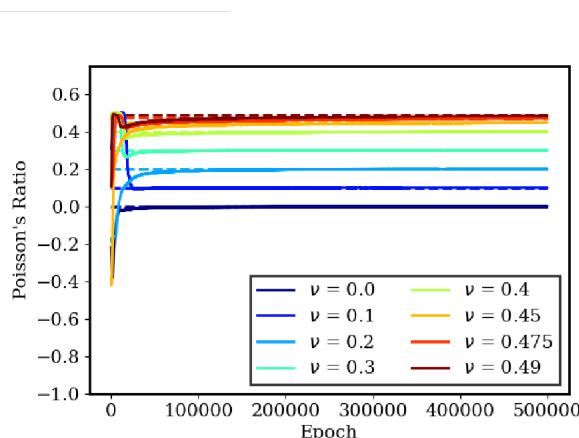
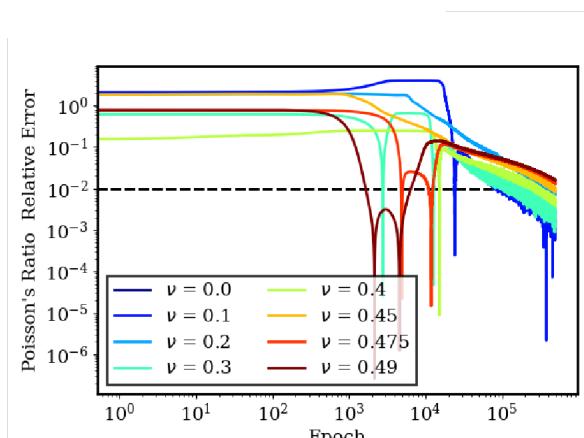
$$\psi(\mathbf{C}) = \frac{1}{2}K \left[\frac{1}{2} (J^2 - 1) - \ln J \right] + \frac{1}{2}\mu (\bar{I}_1 - 3),$$

Training and Error (<0.1%)



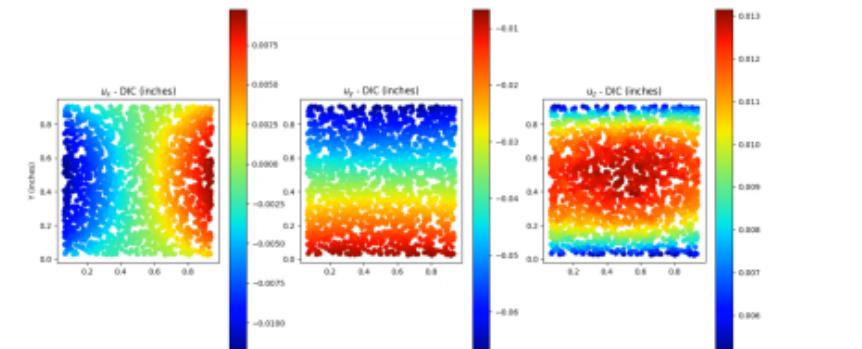
Extensibility of the PINNs Inverse Method

Extensibility to Train for Different Values of Young's Modulus and Poisson's Ratio of a Neo-Hookean Model

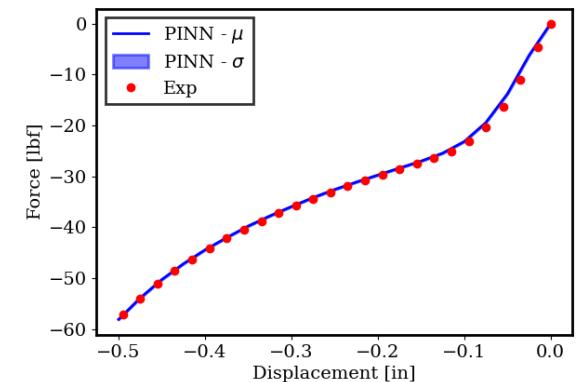


Also tested with Blatz-Ko and Gent Models

Calibration with Experimental DIC Data of Foam Under Compression



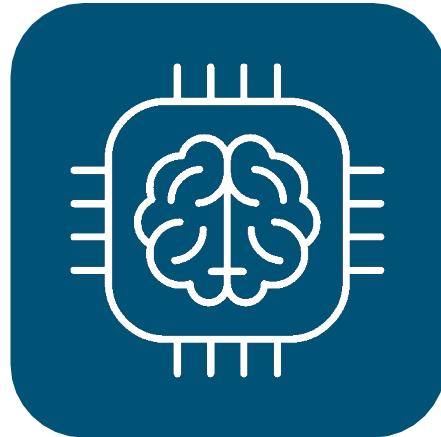
Here, ~5% of the correlated DIC points are picked at random for each image and fed into the PINN along with the global force-displacement data.



Hyperfoam Model for this Polyurethane Foam

$$\psi^{eq}(\lambda_1, \lambda_2, \lambda_3) = \sum_{i=1}^N \frac{2\mu_i}{\alpha_i^2} \left[\lambda_1^{\alpha_i} + \lambda_2^{\alpha_i} + \lambda_3^{\alpha_i} - 3 + \frac{1}{\beta_i} (J^{-\alpha_i \beta_i} - 1) \right]$$

A Brief Introduction to ML for Mechanics

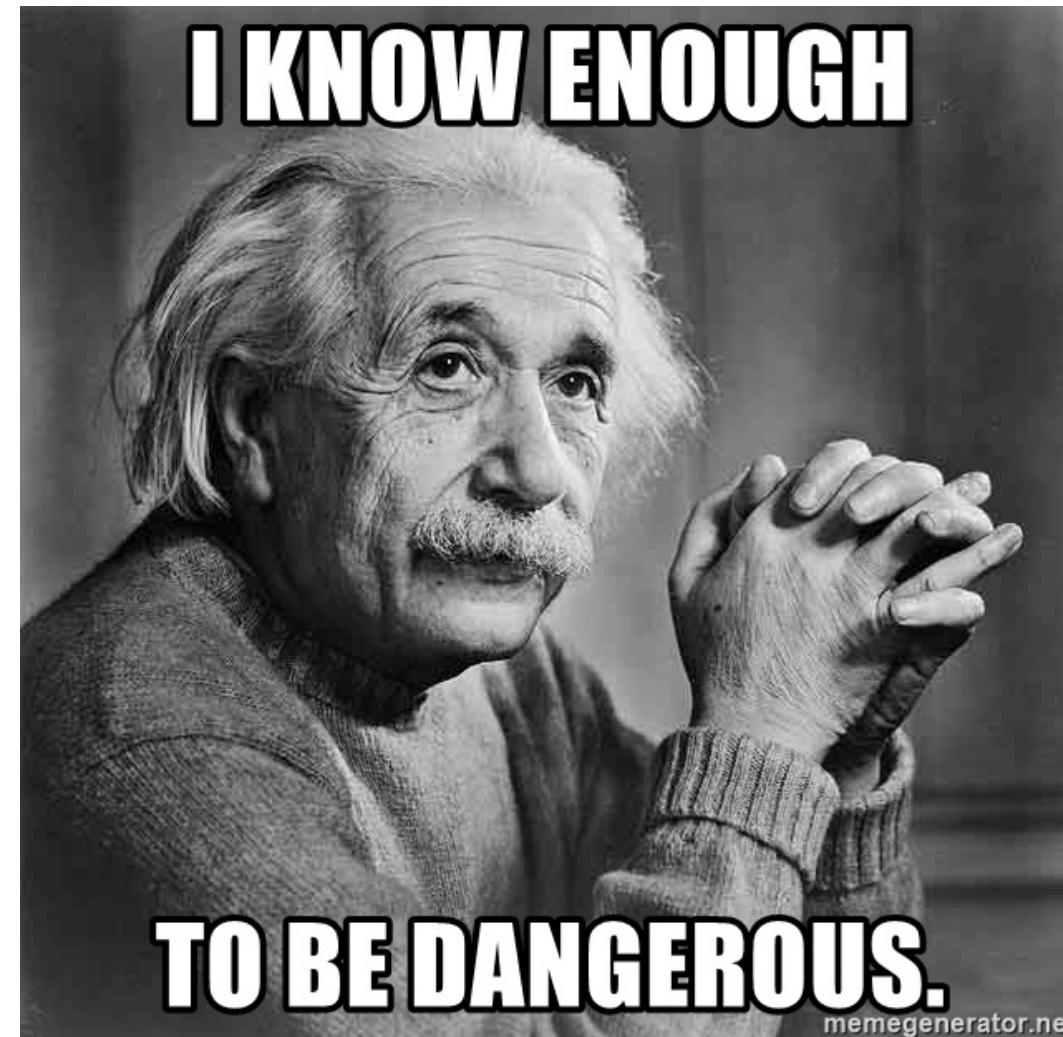


Basic Terms
and ML Tasks

Evaluation
Approaches

Mechanics
Example

Thanks for your attention!



<https://www.solidsmack.com/engineering/things-to-stop-saying-i-know-enough-to-be-dangerous/>

Backups

Our PINNs approach to material model calibration utilizes heterogenous full-field data and global force data.

Kinematics

$$\mathbf{u}_{\mathcal{N}}(\mathbf{X}, t) \approx \tilde{\mathbf{u}}(\mathbf{X}, t) + f(\mathbf{X}) \mathcal{N}(\mathbf{X}, t)$$

$$\mathbf{F}_{\mathcal{N}}^e = \mathbf{I} + \nabla_{\mathbf{X}} \mathbf{u}_{\mathcal{N}}^e$$

Displacement BC

Neural network

$$\nabla_{\mathbf{X}} \mathbf{u}_{\mathcal{N}}^e = \sum_{I=1}^{N_{nodes}} \mathbf{u}_{\mathcal{N}}^I \otimes \nabla_{\mathbf{X}} N^I$$

Standard shape
functions for Hex8
elements

Total potential energy for time step n

$$\Pi_{\mathcal{N}}^n = \sum_{e=1}^{N_e} \sum_{q=1}^{N_q} w_q (\det \mathbf{J}^e) \psi^e (\mathbf{F}_{\mathcal{N}}^e)$$

Internal Force Vector

$$\mathbf{f}_{\mathcal{N}} = \delta \Pi_{\mathcal{N}} = \frac{\partial \Pi_{\mathcal{N}}}{\partial \mathbf{u}_{\mathcal{N}}}$$

Total loss function

$$\mathcal{L} = \beta \mathcal{L}_r + \gamma \mathcal{L}_{\mathbf{u}} + \delta \mathcal{L}_f$$

Loss function for potential energy

$$\mathcal{L}_r = \Pi_{\mathcal{N}} + \alpha \|\delta \Pi_{\mathcal{N}}\|_{free}^2$$

For inverse problems we have the additional error terms for experimental data

$$\mathcal{L}_{\mathbf{u}} = \frac{1}{N_{\mathbf{u}}} \sum_{i=1}^{N_{\mathbf{u}}} \|\mathbf{u}_{\mathcal{N}}(\mathbf{X}_i^*, t_i^*) - \mathbf{u}_i^*(\mathbf{X}_i^*, t_i^*)\|^2$$

Surface Displacements

$$\mathcal{L}_f = \frac{1}{N_t} \sum_{n=1}^{N_t} \|f_{net}(t_n) - f_{net}^*(t_n)\|^2$$

Global Force