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Machine Learning (ML) may appear to just be hype 
and lack rigor and accuracy. 
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https://analyticsindiamag.com/wp-
content/uploads/2017/06/20.jpg 

https://medium.com/@krishamehta/10-a-few-
useful-things-about-machine-learning-758e2c0149f0

We need some basic understanding of ML to ascertain its value.
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The goal of this presentation is to provide a brief introduction to ML 
for mechanics so you can appreciate and evaluate ML research.
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What is Machine Learning?
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A computer program is said to learn from experience E with respect to 
some class of tasks T and performance measure P, if its performance 
at tasks in T, as measured by P, improves with experience E.

- Tom Mitchell, 
Machine Learning, 1997

Task (T): Recognizing and classifying defects within SEM images

Performance measure (P):  Percent of defects correctly classified

Experience (E): A database of defects with labeled classifications in SEM images



The three main types of ML
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Image: 
https://www.ceralytics.com/3-

types-of-machine-learning/ 

Labeled 
Data

Unlabeled 
Data

Interaction 
with Its 

Environment
Experience:

https://www.ceralytics.com/3-types-of-machine-learning/
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Common ML Tasks
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Classification

Clustering

Regression

Anomaly Detection

Decision-Making

Data Generation

Ogoke, et. al. Additive Manufacturing 2022

Villarreal, et. al. CMAME 2023Frankel, et. al. CMAME 2022

Courtesy of Laura Swiler, SNL

DeCost, et. al. Acta Materialia 2017

Cho, et. al. J. Mater Process Tech, 2022

Pearlite 
Structures

WAAM Build Defects L-PBF Surface
L-PBF Metal Properties

Polymer 
Foam 
Mechanics



Many ML Methods (and Counting)
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Decision Trees

Neural Networks

Support Vector Machines

Genetic Algorithms

Bayesian Methods

K-means Clustering

Random Forest Algorithms



Common Features of ML Approaches
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Data / Experience

X = {x1, x2, …, xn} Y

Model

Y=f(x)

Loss Function

Learning Algorithm

Parameterized Model

Predictions & Evaluation



Common Terminology
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• Performance metric (notion of error between data and 
output)

• Number of cycles the algorithm takes during training

Loss Function

• Data used to train the ML algorithm parameters

Epoch

• Data used to tune hyperparameters of the algorithm (e.g. 
number of hidden layers in the neural network)

Training Data

• Data not used during training or tuning that is used to 
evaluate the error of the trained ML algorithm

Validation Data

Test Data



Common Algorithms: 
Support Vector Machine (SVM) and K-Means Clustering
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SVM 
• Finding the “decision boundary” that 

maximizes the distance from the nearest 
data points of all the classes

• Can be linear or nonlinear (using kernels)
• Supervised learning

https://www.freecodecamp.org/news/svm-machine-learning-tutorial-
what-is-the-support-vector-machine-algorithm-explained-with-code-
examples/#:~:text=SVMs%20are%20used%20in%20applications,use
%20SVMs%20in%20machine%20learning. 

K-Means Clustering 
• Grouping similar data points together in k-

number of clusters as to minimize the distance 
of each point to the centroid of a cluster

• The number of clusters k is a hyperparameter
• Unsupervised learning

https://www.javatpoint.com/k-means-clustering-algorithm-
in-machine-learning 

https://www.freecodecamp.org/news/svm-machine-learning-tutorial-what-is-the-support-vector-machine-algorithm-explained-with-code-examples/#:~:text=SVMs%20are%20used%20in%20applications,use%20SVMs%20in%20machine%20learning
https://www.freecodecamp.org/news/svm-machine-learning-tutorial-what-is-the-support-vector-machine-algorithm-explained-with-code-examples/#:~:text=SVMs%20are%20used%20in%20applications,use%20SVMs%20in%20machine%20learning
https://www.freecodecamp.org/news/svm-machine-learning-tutorial-what-is-the-support-vector-machine-algorithm-explained-with-code-examples/#:~:text=SVMs%20are%20used%20in%20applications,use%20SVMs%20in%20machine%20learning
https://www.freecodecamp.org/news/svm-machine-learning-tutorial-what-is-the-support-vector-machine-algorithm-explained-with-code-examples/#:~:text=SVMs%20are%20used%20in%20applications,use%20SVMs%20in%20machine%20learning
https://www.javatpoint.com/k-means-clustering-algorithm-in-machine-learning
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Common Algorithms:
Artificial Neural Networks
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http://wiki.pathmind.com/neural-network#define 

• A collection of neurons / nodes / perceptrons 
that each evaluate their local inputs and 
provides an output evaluation

• Terms:
• Weights: relative importance of an input
• Net Input function: sum of the weighted 

inputs
• Activation function: evaluates the input 

for an output (could be evaluated to 0)
• Layer: collection of nodes
• Hidden layer: the layers between the 

input and out layers
• Deep NN: more than three layers 

(including the input and output layers)
• Bias: a node added to each layer to 

correct systematic biases; only one per 
layer; a tuned parameter

• Supervised learning, but can be a element of 
a reinforcement learning algorithm

Single Perceptron / Node / Neuron

Neural Network

http://wiki.pathmind.com/neural-network#define


Common Algorithms:
Reinforcement Learning
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• An Agent interacting with an Environment in a 
trial-and-error fashion to learn the outcomes or 
State from Actions to maximize a Reward

• Terms:
• Environment — Physical world in which the 

agent operates
• State — Current situation of the agent
• Reward — Feedback from the environment
• Policy — Method to map agent’s state to 

actions
• Value — Future reward that an agent would 

receive by taking an action in a particular 
state

• Exploration vs Exploitation: When training the 
policy, the agent must balance the exploring 
new actions with trying to maximize the reward. 
Short-term sacrifices for long-term reward.

https://towardsdatascience.com/reinforcement-learning-101-e24b50e1d292 

https://towardsdatascience.com/reinforcement-learning-101-e24b50e1d292


Introduction to ML for Mechanics Topics

14

Basic Terms 
and ML Tasks

Evaluation 
Approaches

Mechanics 
Example



Best Practices in ML in Mechanics
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Brodnik, et. al. “Perspective: Machine learning in experimental solid mechanics.” JMPS (2023).



Common Objectives in Mechanics
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Process Refinement

Experiment Augmentation

Surrogate Models

Cross-Measurement 
Correlation

Inverse Problems

Data Generation

Ogoke, et. al. Additive Manufacturing 2022

Ni and Gao.  MRS Bulletin 2021Fuhg, et. al. JMPS 2022

Badran, et. al. J Compos. Sci, 2021

Gongora, et. al. Science Advances 2020

Schwenker, et. al. J. Small, 2022

Automated Testing of AM Structures

Fusing 
Simulations 

with 
Experiments

L-PBF surface and Internal VoidsIdentification of Fibers in Composites

Anisotropic Hyperelasticity Using Tensor-Basis NN

cGAN for 
Elasticity 

Identification

Original Synthetic



 Quantifiable Evaluation
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Suitable Error Metrics

Bootstrap

Hold-Out

Bias and Overfitting

Cross-Validation

Benchmarking Needed

Training-Validation-Test

Error Metric

Error Against Ground 
Truth If Possible

Metric Should Quantify 
the Objective

Distinct Bootstrap 
Datasets Sampled with 
Replacement Created 
and Used to Train the 

Model. Then the Original 
Dataset is Used to Test 

the Model for Error.
Olson, et. al. BioData Mining 2017



Well-Defined Extensibility
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Model Scope Knowledge Transfer

What salient features of 
the training data bound 

the use of the ML model? 
Extrapolation vs. 

Interpolation

Pre-training / Re-training 
and transfer learning may 
enable use of an existing 
ML model with additional 
data of a similar type to 

update the model.
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Using Physics-Informed Neural Networks (PINNs) to Calibrate 
Material Models with Full-Field Displacement Data
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Full-Field Displacement Data

Objective for PINNs: 
Inverse problem of calibrating hyperelastic models using full-field surface displacement data 
and global force-displacement measurements while satisfying kinematics and energy balance

Craig M. Hamel, Kevin N. Long, and Sharlotte L.B. Kramer, “Calibrating Constitutive Models with Full Field Data via Physics Informed Neural Networks,” special issue of Strain 
("New Trends in Machine Learning, Data-Driven Approaches, and High Performance Computing for Experimental Mechanics”),  http://doi.org/10.1111/str.12431

Hyperelastic model

PINN Architecture

http://doi.org/10.1111/str.12431


PINNs Architecture That Is Constrained by Mechanics
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Strain energy Energy due to 
body forces

Energy due to 
surface tractions

Trainable parameters



Benchmarking Performance Against Synthetic Data
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Synthetic FEM Training Data:
Only Surface DIC-like Data Used along with 

Global Force-Displacement

Neo-Hookean Model with 
Bulk and Shear Moduli, K and µ

Training and Error (<0.1%)



Extensibility of the PINNs Inverse Method
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Extensibility to Train for Different Values of Young’s 
Modulus and Poisson’s Ratio of a Neo-Hookean Model 

Also tested with Blatz-Ko and Gent Models

Here, ~5% of the 
correlated DIC points 
are picked at random 

for each image and fed 
into the PINN along with 

the global force-
displacement data. 

Hyperfoam Model for this Polyurethane Foam

Calibration with Experimental DIC Data 
of Foam Under Compression
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Thanks for your attention!
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https://www.solidsmack.com/engineering/things-to-stop-saying-i-know-
enough-to-be-dangerous/ 

https://www.solidsmack.com/engineering/things-to-stop-saying-i-know-enough-to-be-dangerous/
https://www.solidsmack.com/engineering/things-to-stop-saying-i-know-enough-to-be-dangerous/


Backups



Our PINNs approach to material model calibration utilizes 
heterogenous full-field data and global force data.27

Kinematics Standard shape 
functions for Hex8 

elements

Neural networkDisplacement BC

Total potential energy for time step n

Loss function for potential energy

For inverse problems we have the additional error terms for experimental data
Surface Displacements Global Force

Total loss function

Internal Force Vector


