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Machine Learning (ML) may appear to just be hype
and lack rigor and accuracy.

LIFE IS LIKE MACHINE
'LEARNING

A

- S - i;’ ‘ “
— ' ) |
DATASCIENCE IS MORE B T TOWRE

*W'T"'“" -+ - - g
: TH"H n H“Hw“ - .. E““_'£'n1egenerator.net

https://analyticsindiamag.com/wp- https://medium.com/@krishamehta/10-a-few-
content/uploads/2017/06/20.jpg useful-things-about-machine-learning-758e2c0149f0

We need some basic understanding of ML to ascertain its value.
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The goal of this presentation is to provide a brief introduction to ML
for mechanics so you can appreciate and evaluate ML research. N\

A\

Basic Terms Evaluation Mechanics
and ML Tasks Approaches Example
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Basic Terms Evaluation Mechanics
and ML Tasks Approaches Example




What is Machine Learning?

- Tom Mitchell,
Machine Learning, 1997

TN

A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P, if its performance
at tasks in T, as measured by P, improves with experience E.

Task (T): Recognizing and classifying defects within SEM images

Performance measure (P): Percent of defects correctly classified

Experience (E): A database of defects with labeled classifications in SEM images




The three main types of ML

n GUBE HAS (THESC LooK | e
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SUPERVISED  UNSVPERVISED  REWSORCCMENI

Interaction
_ Labeled Unlabeled .
Experience: with Its Image:
Data Data , . .
Enwronment https://www.ceralytics.com/3-

types-of-machine-learning/
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Common ML Tasks

Classification Regression

—— Danielsson — GP
oGP — NN Polymer
—— d-NN e RVE
Foam
Mechanics

Pearlite
Structures

Four
clusters of
specimens

Yield Strength (MPa)

@ w0 w0 20 Ground truth surface roughness  Generated surface roughness

Initial Modulus (MPa)
WAAM Build Defects L-PBF Surface

L-PBF Metal Properties
Courtesy of Laura Swiler, SNL Cho, et. al. J. Mater Process Tech, 2022 Ogoke, et. al. Additive Manufacturing 2022




Many ML Methods (and Counting)

Decision Trees

& Bayesian Methods
& K-means Clustering
: Random Forest Algorithms




Common Features of ML Approaches
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Common Terminology

L 0ss Function

Epoch -

Training Data
Validation Data

Test Data

+ Performance metric (notion of error between data and

AN

*,

output)

Number of cycles the algorithm takes during training

+ Data used to train the ML algorithm parameters

+ Data used to tune hyperparameters of the algorithm (e.g.

number of hidden layers in the neural network)

+ Data not used during training or tuning that is used to

evaluate the error of the trained ML algorithm

10




Common Algorithms:
g

SVM
+ Finding the “decision boundary” that
maximizes the distance from the nearest
data points of all the classes
« (Can be linear or nonlinear (using kernels)
« Supervised learning

1.0+

0.5 A

0o{ ®

—0.5

—1.0

—ll.l) —C|i.5 O.IO 0.|5 1.|0
https://www.freecodecamp.org/news/svm-machine-learning-tutorial-
what-is-the-support-vector-machine-algorithm-explained-with-code-
examples/#:~:text=SVMs%20are%20used%20in%20applications,use
%20SVMs%20in%20machine%20learning.

Support Vector Machine (SVM) and K-Means Clustering N\

AN

AN

LY

K-Means Clustering \
Grouping similar data points together in k-
number of clusters as to minimize the distance
of each point to the centroid of a cluster
The number of clusters k is a hyperparameter
Unsupervised learning

i °
..:l ...l ¢
.l' ..'-'
' >

>

https://www.javatpoint.com/k-means-clustering-algorithm-
in-machine-learning
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Common Algorithms:
Artificial Neural Networks

Single Perceptron / Node / Neuron

« A collection of neurons / nodes / perceptrons
that each evaluate their local inputs and
provides an output evaluation

 Terms:

«  Weights: relative importance of an input

« Net Input function: sum of the weighted
inputs

« Activation function: evaluates the input
for an output (could be evaluated to O)

 Layer: collection of nodes

« Hidden layer: the layers between the
input and out layers

« Deep NN: more than three layers
(including the input and output layers)

« Bias: a node added to each layer to
correct systematic biases; only one per -t
layer; a tuned parameter s input layer

« Supervised learning, but can be a element of
a reinforcement learning algorithm

. .

Inputs  Weights Net input Activation
function function

http://wiki.pathmind.com/neural-network#define
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Common Algorithms:
Reinforcement Learning

* An Agent interacting with an Environment in a =! Agent ||
trial-and-error fashion to learn the outcomes or state| |reward |
State from Actions to maximize a Reward S| R jcnon
- Terms: | i Rug ’
* Environment — Physical world in which the .t Environment ]“'_

agent operates
« State — Current situation of the agent
« Reward — Feedback from the environment
 Policy — Method to map agent’s state to
actions
« Value — Future reward that an agent would
receive py taking an action in a particular
state
 Exploration vs Exploitation: When training the
policy, the agent must balance the exploring
new actions with trying to maximize the reward.
Short-term sacrifices for long-term reward.

https://towardsdatascience.com/reinforcement-learning-101-e24b50e1d292

13



https://towardsdatascience.com/reinforcement-learning-101-e24b50e1d292

Introduction to ML for Mechanics Topics

Basic Terms Evaluation Mechanics
and ML Tasks Approaches Example

14




Best Practices in ML in Mechanics

AN

*,

Clear Objectives
Define model success for use case

'
Model @o
!

é e.g. strain,
temperature

Quantifiable Evaluation
Quantify error for model output

1,\

<l — 0 |<

T
6 —0 6—06

Error measure

N

Well-Defined Extensibility

Communicate model scope and limitations

'D 0 i@

AN

Benchmark Performance

\ 4

T
= | gges

1

Experiment @, 2] . Prediction

%

Brodnik, et. al. “Perspective: Machine learning in experimental solid mechanics.” JMPS (2023).
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Common Objectives in Mechanics

Process Refinement

nSiruts & Twist

Automated Testing of AM Structures

Gongora, et. al. Science Advances 2020

Identification of Fibers in Composites

Badran, et. al. ] Compos. Sci, 2021

Surrogate Models

Anisotropic Hyperelasticity Using Tensor-Basis NN
Fuhg, et. al. JMPS 2022

Cross-Measurement
Correlation

{.a) CdTe coherent {117} twin

final structure
Fusing
Simulations
with
Experiments

Schwenker, et. al. J. Small, 2022

Generator with a U-Net

architecture
Discriminator

-
nput: T ge
e age of a convolutional
3 PatchGAN classifier
.
fi(x0 — 256 x 256 pixels

256 x 256 pixels Input:
! T Strain image

cGAN for
Elasticity
|dentification

Original Synthetic
L-PBF surface and Internal Voids
Ogoke, et. al. Additive Manufacturing 2022




Quantifiable Evaluation

Suitable Error Metrics

Error Against Grouna
Truth If Possible

Hold-Out

Training-Validation-Test

Metric Should Quantify
the Objective

Error Metric

Bootstrap

Distinct Bootstrap
Datasets Sampled with
Replacement Created
and Used to Train the

Model. Then the Original
Dataset is Used to Test
the Model for Error.

Bias and Overfitting

—— Underfit model
—— Overfit model
—— |deal model

123456782910
Fold

Olson, et. al. BioData Mining 2017




Well-Defined Extensibility

Model Scope

What salient features of
the training data bound

the use of the ML model?
Extrapolation vs.
Interpolation

Knowledge Transfer

Pre-training / Re-training
and transfer learning may
enable use of an existing
ML model with additional
data of a similar type to
update the model.

18
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Using Physics-Informed Neural Networks (PINNs) to Calibrate ™\
Material Models with Full-Field Displacement Data

b

N\

N
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Objective for PINNSs:

Inverse problem of calibrating hyperelastic models using full-field surface displacement data
and global force-displacement measurements while satisfying kinematics and energy balance

Craig M. Hamel, Kevin N. Long, and Sharlotte L.B. Kramer, “Calibrating Constitutive Models with Full Field Data via Physics Informed Neural Networks,” special issue of Strain
("New Trends in Machine Learning, Data-Driven Approaches, and High Performance Computing for Experimental Mechanics”), http://doi.org/10.1111/str.12431
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AN

PINNs Architecture That Is Constrained by Mechanics h
%% N\
Strain ener Energy dueto  Energy due to \ \
&Y body forces  surface tractions
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Internal Force
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Displacement Energy Global Force
Backpropagate Data Error Error
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Training and Error (<0.1%)

Synthetic FEM Training Data:

Only Surface DIC-like Data Used along with — S rvenoe
Global Force-Displacement — ;Tf;age
B p+/fo
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o

Z Displacement [mm]
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Extensibility to Train for Different Values of Young's
Modulus and Poisson’s Ratio of a Neo-Hookean Model

4.0
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Also tested with Blatz-Ko and Gent Models

Extensibility of the PINNs Inverse Method

AN

N\

Calibration with Experimental DIC Data
of Foam Under Compression

Here, ~5% of the °]

correlated DIC points -
are picked atrandom  §7
for each image and fed 27

into the PINN along with ™

—50 1

the global force-
displacement data.

A\

—— PINN -u
I PINN -0
L] Exp

—60 1

-05 -04

-03 -02 -0.1
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0.0

Hyperfoam Model for this Polyurethane Foam
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Thanks for your attention!
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_ Our PINNs approach to material model calibration utilizes \\
heterogenous full-field data and global force data.

N\
Kinematics / Displacement BC / Neural network Standard shape * \
B N functions for Hex8
uy (X, 1) =~ u (X, 1)+ f(X) N (X, 1) nodes ; I/elements
quf\/' = Z U\r & VXN
Ff =1+ Vxuf =
Total potential energy for time step n Internal Force Vector
Ne Nq aHN
M =Y > wy (det J9) v (Fy) by = ollw = 5=
e=1 qg=1

Total loss function L=pL,+7Ly+ 0Ly

Loss function for potential energy L, = [T + CY||5HN ||§cree
For inverse problems we have the additional error terms for experimental data
Surface Displacements N, Global Force
2
uN U_,L- il net n - net n
|| FXE )| Ilf (tn) |




