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Argon gas puffs on Z are very reproducible, but still poorly understood. 
Detailed spectral analyses can help answer outstanding questions. 2

§Argon (Ar) gas puffs regularly produce > 350 kJ of  x-rays at > 3 keV. Many 
outstanding questions regarding their fundamental physics can be answered through 
detailed spectral analyses.

§A spectral Bayesian analysis tool provides us with the all the ability to determine 
plasma gradients and compare different gas puff  formation models. Fast spectral 
calculations are needed for this purpose.

§We’re in the process of  developing an ML-based spectral model that outperforms 
traditional interpolation approaches in both accuracy and efficiency. 

Coupling Bayesian statistics and ML models should allow us to develop a better understanding of  Ar gas puffs.
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The Ar gas puff on the Z-machine couples the accelerator current to the 
experimental gas.3

§The Z-machine at Sandia National Laboratories 
supplies ~16 MA of  current to the Ar gas puff  
platform.

§The outer gas shell conducts this current and begins 
to implode onto the inner shell.
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meanwhile drops in this region from !5 keV to <2 keV on
axis. The K-shell emissivity is strongly peaked on axis,
allowing the compressed jet material to contribute a signifi-
cant amount of the K-shell emission despite the relatively
small volume. These differences in the stagnation properties
should be readily observable in experiments using imaging
and spectroscopy diagnostics described in Section V C.

In the simulated configurations, the Magneto-Rayleigh-
Taylor (MRT) instability does not significantly disrupt the
pinch. As discussed in Section II, a benefit of the double-
shell-with-jet configuration is thought to be its relative
robustness to MRT instability growth. If the MRT instability
is not significantly degrading the yield in these configura-
tions, then the impact of the jet on mitigating MRT growth
may not be important. This may partially explain why the K-
shell yield is not dramatically higher for the with-jet configu-
rations than for the 1:1.6 no-jet configuration. This is dis-
cussed further in Section VI.

V. EXPERIMENTAL RESULTS

A. Implosion dynamics

Emission from the Ar gas puffs was imaged with a set of
three micro-channel plate (MCP) cameras26—two of which
use a multi-layer mirror (MLM) to produce time-gated (200
ps), monochromatic images at 277 eV or 528 eV (!400 lm
spatial resolution), and one of which is filtered without an
MLM to view photon energies >3 keV (!200 lm spatial res-
olution). Images of the pinch near to peak power (within
1 ns) for the four different configurations using the filtered
MCP are shown in Figures 7(a)–7(d). The shots without a jet
show a relatively broad, uniform emitting column at stagna-
tion that has not been severely disrupted by MRT growth. In
shots with a jet, the emitting column on axis is much nar-
rower, indicating an increased density.

GORGON qualitatively reproduces the measured MLM
images (Figure 7). These synthetic reconstructions show a nar-
rower pinch region for shots with an on-axis jet and a broader
stagnation column in shots with no jet, as expected from the
simulated profiles shown in Figures 5 and 6. The difference in
pinch diameter does not appear to be a result of disruptive
instabilities in the no-jet cases; the pinches appear to be rela-
tively uniform and persist for several ns. Instead, the differ-
ence in the emission profiles is due to the jet material being
both highly emissive and compressed to a much smaller radius
(and higher density) than the shell material in simulations.

In one 1:1.6 with-jet shot, a 0.8% by particle number Xe
dopant was added to the Ar in the jet plenum. During this shot,
a time-resolved MLM camera operating at 277 eV imaged the
imploding plasma through to stagnation (Figure 8). In other
shots without a Xe dopant, no emission was observed on this
camera prior to stagnation. This indicates that the diagnostic
was primarily imaging emission from the Xe dopant that was
present only in the jet gas, and hence, the images effectively
show the compression of only the jet material. The Xe dopant
was found to substantially suppress the K-shell yield in spite of
the small fraction used, reducing the K-shell yield to 129 kJ
from 373 kJ in the case with no dopant. This lower yield is
likely due to the increased emission from the dopant during the
jet compression, resulting in a stagnated-pinch temperature
that is too low for efficient K-shell production. This may
impact the final stagnation radius and temperature of the jet
material but should not significantly impact the velocity at
which the jet mass is compressed.

The images show the jet material being compressed from
a diameter of !8 mm (c.f. !14 mm initial diameter) to a very

FIG. 5. Density plots taken from GORGON 3D MHD simulations at the
time of stagnation for (top) the 1:1.6 without jet and (bottom) the 1:1.6 with
jet configurations.

FIG. 6. Simulated radial profiles of plasma density, K-shell emissivity and
density-weighted electron temperature for the four configurations close to
peak K-shell emission. The profiles are taken from a single radial lineout
through the simulated domain. The K-shell emissivity is then multiplied by
2pr to illustrate which regions produce the majority of K-shell power.

101203-5 Harvey-Thompson et al. Phys. Plasmas 23, 101203 (2016)
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The resulting Ar gas implosion creates ~350 kJ of x-rays at > 3 keV.4

§The Z-machine at Sandia National Laboratories 
supplies 16 MA of  current to the Ar gas puff  
platform.

§The outer gas shell conducts this current and begins 
to implode.

§Both gas shells implode on-axis simultaneously to 
create ~2 mm diameter, ~25 mm height pinch that 
reliably produces ~350 kJ of  > 3 keV x-rays.
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Ar gas puff spectra reveal significant gradients in the experimental spectra that 
may imply fundamental performance limits for this platform.5

§Jones et al. (2015) used a 2-layer spectral model to 
study Ar gas puffs and found that inner layer radiates 
> 98% of  K-shell yield, but only contains ~27% of  
mass.

§Other studies with similarly simple spectral 
assumptions have found the same limits. 

§This knowledge could be crucial in designing future 
experiments and modeling this source at higher 
currents.

Jones et al. (2015), Phys. Plasmas

Δrouter = 2.6 mm 

rinner = 1.4 mm 

Layer Te [eV] ni [cm-3] Contained mass

Inner 2450 6.7 × 1019 27%

Outer 110 2.5 × 1019 73%
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6

Spectra are commonly simulated using 
uniform-cylinders for the pinch stagnation 

Such simulations give opacities τ ~ 30 for Fe Heα,
which somewhat fits the spectra very early at stagnation
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However, at peak power the apparent τ of 
Fe Heα is much smaller.

τ ∼ 30

Spectra also imply that the annular plasma picture is inaccurate. A plasma with 
multiple mini-pinches matches the data better.6

§Maron et al. found that fitting spectra with the 
annular plasma assumption leads to significant 
opacity disagreements, especially for strong lines. 

§Higher-fidelity spectral analyses that capture 
gradients can help solve several questions associated 
with the dynamics of  imploding loads on Z. M
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Many Z experiments are viewed as annular implosions. A Bayesian spectral 
analysis tool could help improve understanding of all these systems.7

§The fundamental physics of  the Z-machine force 
almost all experimental platforms to rely on the 
imploding plasma mechanism to produce their 
desired experimental outcomes. 

§Imaging data captured for most Z experiments 
capture plasmas that have hot and cool regions. 

§It is therefore important that we make our spectral 
model as general as possible so that it can be applied 
to a large number of  Z experiments. 

Platform Elements needed

Gas puff Ar, Kr

Wire arrays Al, Ti, Fe, Cu

MagLIF Fe, Co, Ni, Cu, Zn

yield when compared with the most accurate estimates
containing circuit models. The smaller GIK and TGS
CRs are in closer agreement with one another. An example
TGS spectrum from the 1.1 mg shot is shown in Fig. 5.
From this we see that the GIK and TGS data are represen-
tative of the bulk of the soft x-ray emission with a peak
near 450 eV, while the Be-filtered pinhole camera images
(> 1 keV bandpass) are representative of the high-energy
tail of the spectrum (about 16% of the total energy radi-
ated). This high-energy tail can be represented using a two-
Planckian fit to the data in which a high-temperature,
small-area blackbody radiates a comparable amount of
energy to that emitted by the lower-temperature blackbody
[13]. This high-energy tail and the axially peaked distribu-
tion of the self-emission might be consistent with the
compression of some of the plasma by the magnetic field
to small radii. Indeed, the time-integrated self-emission at

6.15 keV from these loads is generally confined to a sub-
mm diameter column on axis and comes from numerous
bright spots that are 50–300 !m in size. The example
image shown in Fig. 5(b) is roughly consistent with a
!340 eV, 0:12 mm2 plasma (though it is from a different
array mass). The maximum local diameter of the 6.15 keV
emission at any given height is 0.4–0.5 mm, for a
‘‘CR’’>40–50.

The plasma and magnetic CRs are limited to 20 initially
in shots using 1-mm rods. The 1.1 mg shot (z1611) radiated
195 kJ during the main pulse and had a CR " 14 (from the
pinhole camera). Its energy vs CR curves (not shown but
similar to z1099) indicate about 310 kJ of magnetic work
for CR # 14, so the 195 kJ on z1611 can be explained by
the observable ~j$ ~B energy. The difference (115 kJ) is
likely energy lost in heating up the rod as noted later. The
same conclusion holds for the other two array-on-rod tests,
which had comparable CRs to z1611.

Considering only the main radiation pulse, the emission
data on bare-axis tests shows a discrepancy between the
observed final plasma compression and that required for
the ~j$ ~B force to have done sufficient work to equal the
radiated energy. This is an important point, since previous
work (e.g., Ref. [8]) focused on the entire radiation pulse.
After the main radiation pulse, when still more energy is
radiated over a longer time scale, the plasma starts to go
unstable and the magnetic field can do work as it drives
two- and three-dimensional instabilities [16,17]. Even dur-
ing the main pulse when the plasma is relatively stable,

FIG. 5 (color). (a) One- and two-Planckian fits to
transmission-grating spectrometer data from a 1.1-mg array.
(b) Example time-integrated 6.15 keV emission image
(! 20 !m resolution).

FIG. 6. Radiography data from the 1.1 mg array-on-rod test
(z1611). (a) Image in transmission units (0–100%, black-to-
white). (b) Inferred axial line density showing axial mass trans-
port. (c) Timing of the radiograph relative to x-ray power.
(d) Density inferred from an Abel inversion of the radiograph
along with a running mass integral starting at r # 6 mm. The
negative density implies a violation of the cylindrical symmetry
assumption, but the amount of mass involved is small.

FIG. 4 (color). Data from a 1.1 mg array implosion (z1099).
(a) Gated pinhole camera data (12:7 !m Be filter, 200 !m
pinhole,!400 !m resolution). (b) Pinhole image timing relative
to x-ray diode signal. (c) Streaked grazing-incidence mirror
camera data showing axially averaged, radially resolved emis-
sion in the 375–450 eV range. (d) Time-resolved power inferred
from a transmission-grating spectrometer.

PRL 100, 145002 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
11 APRIL 2008

145002-3

The recorded data exhibit significant variations in the horizontal direc-
tion which we cannot capture with our model. To remove these varia-
tions, we first determine the maximum intensity location in each pixel
row and center the pixel row on that position, producing the image
shown in panel (b). Horizontal variations have been significantly
reduced in the shifted image, but further processing is needed since
several pixel rows still exhibit asymmetries in the x-direction. This is
especially evident when examining the top half of the image in panel
(b). We remove these remaining asymmetries by comparing the regu-
lar and horizontally flipped versions of each pixel row. If the pixel row
under investigation is dominated by a single-peaked intensity profile,
the difference between the regular and flipped pixel rows is small. The
regular pixel row is adopted as final in this case. If, however, the pixel
row contains an intensity profile with multiple peaks, we isolate the
dominant peak, scale it to the total pixel row intensity, and adopt the
result as final. We show an example of a single-peaked intensity profile
in the top panel of Fig. 6 and a multi-peaked profile in the bottom
panel of that figure. This process gives rise to panel (c), the “cleaned”
image, in Fig. 5. The cleaned image is then cut intoN¼ 3 slices, shown

for illustrative purposes as red dashed boxes in Fig. 5 panel (c), all of
which are then vertically integrated. The final image shown in panel
(d) results.

An ensemble of 50 instances of the double helix model was gen-
erated to validate the use of the cylindrical model in obtaining bulk
stagnation information. Each instance was used to generate the full
suite of data including the crystal image, processed as discussed
above, TIPC, PCD yields, neutron yield, and the nTOF. All infer-
ences were made using a three-slice model. The results are summa-
rized in Fig. 7, where the true values from the model are plotted
against the inferred values for pressure (a), temperature (b), fuel vol-
ume (c), liner areal density (d), and beryllium mix percentage (e). In
each plot, the dashed line corresponds to perfect agreement between
the truth and posterior values. The error bars along the abscissa rep-
resent the 2r confidence interval of the posterior, while the error
bars along the ordinate represent the 2r interval of the distribution
of true values in the model. All values from the double helix model
and the posterior are x-ray emissivity weighted so that we can make
an accurate comparison between the model and inference. Emissivity
weighting is computed as

FIG. 5. (a) Crystal image obtained on shot z3040. (b) The same image as shown in
(a) after the straightening procedure was applied. Dashed red boxes indicate the
regions over which the image will be averaged to produce the three-slice represen-
tation of the data. (c) The result of averaging the image over the three regions
shown in (d).

FIG. 6. Top row shows a symmetric pixel row, requiring no modification. Bottom
row shows a pixel row that contains multiple peaks and asymmetry. The initial pro-
file (red) and the flipped profile (dotted blue) are significantly different in this case.
The dashed black line shows the modified pixel row adopted as final in this
instance.

FIG. 7. Plots of the true model values vs the inferred values for (a) pressure, (b) temperature, (c) fuel volume, (d) liner areal density, and (e) Be mix percent. The dashed line
in each plot indicates perfect agreement. The error bars along the abscissa represent the 2r confidence interval computed from the posterior, and the error bars along the ordi-
nate represent the 2r variation in parameters along the length of the column. All parameters are emissivity weighted as described in the text.
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𝑃 mod dat, bac =
𝑃 dat mod, bac 𝑃(mod, bac)

𝑃(dat, bac)

Bayesian inversion is a powerful tool, but requires an efficient spectral 
calculation model. 8

§The fundamental physics of  the Z-machine force 
almost all experimental platforms to rely on the 
imploding plasma mechanism to produce their 
desired experimental outcomes. 

§Imaging data captured for most Z experiments 
capture plasmas that have hot and cool regions. 

§It is therefore important that we make our spectral 
model as general as possible so that it can be applied 
to a large number of  Z experiments. 

§Bayesian inversion is a powerful framework to derive 
plasma gradients and distinguish between different 
plasma structure assumptions.

§A computationally efficient spectral model is needed 
for Bayesian inversion. 

Bayes’ Theorem:
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§The equation of  radiative transfer can be written as 
follows:

𝐼! = 𝐼! 0 𝑒"#! +	2
$

#!"

𝑒"#!"
𝑗!
𝜅!
𝑑𝜏!%

§As the ray traverses each plasma region, its intensity 
(𝐼!) can get altered by opacity and emissivity.

§The opacity and emissivity are dependent on the 
plasma conditions in each region. 

§The more plasma layers we include in our model, the 
more complicated/expensive these calculations 
become. 

§SCRAM* is a detailed atomic physics code that can 
provide the needed input data.

§SCRAM is too slow for Bayesian inversion.

The SCRAM* atomic modeling code can calculate the data needed for Bayesian 
inversion. Unfortunately, SCRAM is computationally inefficient. 9

*Hansen, (2011), Can. J. Phys.
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Logarithmic interpolation has traditionally been used to efficiently derive the 
plasma opacities and emissivities.  10

§Historically, logarithmic interpolation has been the 
preferred tool for spectral interpolation.

§For experimental parameters found at Z, the 
following table would be adopted for logarithmic 
interpolation:

§We calculate these 1200 spectra for krypton using 
SCRAM. 

§Kr spectra are more complex than Ar spectra and 
allow us to test limits of  logarithmic interpolation.

Parameter Range Steps

Te 10 – 10,000 eV 40

Ni 1019 – 1022 30

h𝜈 1 – 20,000 eV 20,000

Kr L-shell
Kr K-shell
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Logarithmic interpolation has traditionally been used to efficiently derive the 
plasma opacities and emissivities. 11

§We use a data distribution that leaves deliberate gaps:

§These gaps are designed to provide a basis of  
comparison between logarithmic interpolation and 
machine learning accuracy.

Gap Ni range Te range Steps

1 1019 – 1022 4500 eV 30

2 4 × 1021 10 – 10,000 eV 40

Gap 2

Gap 1



Logarithmic interpolation performance is uneven across the two gaps and any 
attempt to improve performance will result in higher computational costs.  12

§We calculate the fractional difference between 
interpolation and truth as:

§Interpolation struggles to capture lower temperatures 
correctly, but gets the Te = 4500 eV spectra correct 
across all densities.

§Improving the accuracy of  the interpolation would 
require a larger input data files, which would make the 
interpolating more unwieldy and slower.
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Machine learning models provide an attractive alternative to logarithmic 
interpolation since they can potentially predict spectra with higher accuracy.13

§Machine learning models can be trained off-line, 
making them potentially superior of  interpolation.

§We developed an autoencoder that compresses the 
20,000 photon energy points down to 30 points. 

§The latent dimension is constrained by the fact that 
we have to relate Te and ni to the latent spectra. 

§We train this network using 1200, 5000, 10000, 
15000, and 30000 samples, comparing performance 
to the interpolator at each step.
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The autoencoder exceeds interpolator performance with > 10,000 training 
sets. This highlights a potential path forward.  14
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The autoencoder exceeds interpolator performance with > 10,000 training 
sets. This highlights a potential path forward.  15
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The autoencoder exceeds interpolator performance with > 10,000 training 
sets. This highlights a potential path forward. 16

§To quantitatively estimate performance differences 
between interpolator and autoencoder, we compare 
histograms of  fractional differences at each photon 
energy averaged over the two test datasets. 

§We find that interpolator and autoencoder 
performance roughly match at ~10,000 training sets.

§With 30,000 training sets, the autoencoder 
performance far exceeds the interpolator. 

Interpolator

1,200 training sets

5,000 training sets

10000 training sets

15000 training sets

30000 training sets
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The autoencoder struggles with reproducing lower energy spectral regions 
around Kr L-shell lines.17

§ Our autoencoder model predicts most spectral 
regions very accurately, but struggles around the 
strongest Kr L-shell lines in high-temperature regions. 

SCRAM 

Autoencoder 

SCRAM 

Autoencoder 

Te: 4500 eV
ni: 1.17 × 1021 cm-3
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The autoencoder also struggles with reproducing Kr K-shell lines at low 
temperatures and high densities.18

§ Our autoencoder model predicts most spectral 
regions very accurately, but struggles around the 
strongest Kr L-shell lines in high-temperature regions. 

§In cooler regions, the autoencoder struggles to 
properly capture the the K-shell lines, as well as the 
continuum.

§Some of  these oscillations can be traced back to the 
scaling methodology used during the data preparation 
process.

SCRAM 

Autoencoder 

SCRAM 

Autoencoder 

Te: 840 eV
ni: 4 × 1021 cm-3



Despite the work left to be done on our spectral ML model, we are already 
outperforming interpolation and can improve ML model performance.19

§A relatively simple autoencoder structure with a 
modest amount of  training data has enabled us 
predict spectra more accurately than a log-
interpolation approach. 

§We only attempted to roughly optimize the 
autoencoder, so more performance gains could be 
achieved.

§The autoencoder can also predict spectra more 
quickly compared to the log interpolator.

§The fractional difference maps shown earlier can also 
guide us which plasma parameter regions may require 
more training data.

§Adding ‘training data’ to the interpolator is much 
more difficult.Case Time per prediction [ms]

interpolation 2.99 ± 0.14

autoencoder 2.03 ± 0.09 

SCRAM 3 × 105 – 2 × 106
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Future work includes exploring convolutional networks, transfer learning, and 
including radiation fields in our training data.20

§Using convolutional networks may increase 
computational performance and mitigate oscillations.

§All models in this presentation were trained on 
hydrogenically screened data, but SCRAM also 
produces more realistic spectra. Transfer learning may 
be useful here. 

§Radiation fields also have not been included in the 
training data. 

§We would also like to expand to other elements.

§Gluth et al. (2020), Vander Wal et al. (2021) have 
tackled similar problems with success. 

§We’re very interested in opening collaborations on 
these issues and look forward to further suggestions 
from the audience.
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Argon gas puffs on Z are very reproducible, but still poorly understood. 
Detailed spectral analyses can help answer outstanding questions. 21

§Argon (Ar) gas puffs regularly produce > 350 kJ of  x-rays at > 3 keV. Many 
outstanding questions regarding their fundamental physics can be answered through 
detailed spectral analyses.

§A spectral Bayesian analysis tool provides us with the all the ability to determine 
plasma gradients and compare different gas puff  formation models. Fast spectral 
calculations are needed for this purpose.

§We’re in the process of  developing an ML-based spectral model that outperforms 
traditional interpolation approaches in both accuracy and efficiency. 

Coupling Bayesian statistics and ML models should allow us to develop a better understanding of  Ar gas puffs.
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