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Argon gas puffs on Z are very reproducible, but still poorly understood. |
2 IDetailed spectral analyses can help answer outstanding questions.

=Argon (Ar) gas puffs regularly produce > 350 kJ of x-rays at > 3 keV. Many
outstanding questions regarding their fundamental physics can be answered through
detailed spectral analyses.

10 B
= A spectral Bayesian analysis tool provides us with the all the ability to determine 7
plasma gradients and compare different gas puff formation models. Fast spectral @
calculations are needed for this purpose. :
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Coupling Bayesian statistics and ML models should allow us to develop a better understanding of Ar gas puffs.

=We’re in the process of developing an MIL-based spectral model that outperforms
traditional interpolation approaches in both accuracy and efficiency.
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The Ar gas puff on the Z-machine couples the accelerator current to the
3 lexperimental gas.

Current return post *The Z-machine at Sandia National L.aboratories

supplies ~16 MA of current to the Ar gas puff
platform.

Wire mesh

“The outer gas shell conducts this current and begins
to implode onto the inner shell.

Harvey-Thompson et al. (2016), Phys. Plasmas

Outer gas nozzle plenum Inner gas nozzle plenum



4 1The resulting Ar gas implosion creates ~350 k] of x-rays at > 3 keV.
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Harvey-Thompson et al. (2016), Phys. Plasmas

*The Z-machine at Sandia National L.aboratories

supplies 16 MA of current to the Ar gas puff
platform.

“The outer gas shell conducts this current and begins
to implode.

"Both gas shells implode on-axis simultaneously to
create ~2 mm diameter, ~25 mm height pinch that
reliably produces ~350 kJ of > 3 keV x-rays.



‘Ar gas puff spectra reveal significant gradients in the experimental spectra that
5 imay imply fundamental performance limits for this platform.

Ar

outer

= 2.6 mm

\

Layer | T. [eV] | n; [cm™] | Contained mass
Inner | 2450 | 6.7 x 10" 27%
Outer 110 2.5 x 10" 73%

Jones et al. (2015), Phys. Plasmas

"Jones et al. (2015) used a 2-layer spectral model to

study Ar gas puffs and found that inner layer radiates
> 98% ot K-shell yield, but only contains ~27% of

mass.

=Other studies with similarly simple spectral
assumptions have found the same limits.

*This knowledge could be crucial in designing future
experiments and modeling this source at higher
currents.



Spectra also imply that the annular plasma picture is inaccurate. A plasma with
data better.
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Maron et al. (2022), ICOPS 2022 presentation

"Maron et al. found that fitting spectra with the
annular plasma assumption leads to significant
opacity disagreements, especially for strong lines.

"Higher-fidelity spectral analyses that capture
gradients can help solve several questions associated
with the dynamics of imploding loads on Z.



Many Z experiments are viewed as annular implosions. A Bayesian spectral
7 lanalysis tool could help improve understanding of all these systems.

“The fundamental physics of the Z-machine force
Platform | Elements needed .
almost all experimental platforms to rely on the
Gas puff Ar, Kr imploding plasma mechanism to produce their
Wire arrays Al Ti, Fe, Cu desired experimental outcomes.
MagLIF | Fe, Co, Ni, Cu, Zn "Imaging data captured for most Z experiments

capture plasmas that have hot and cool regions.
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It is therefore important that we make our spectral
model as general as possible so that it can be applied
to a large number of Z experiments.

Sinars et al. (2008), PRL
Knapp et al. (2022), Phys. Plasmas
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Bayesian inversion is a powerful tool, but requires an efficient spectral
g Icalculation model.

Bayes’ Theorem:

P(mod|dat, bac) =

P(dat|mod, bac)P(mod, bac)
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*The fundamental physics of the Z-machine force
almost all experimental platforms to rely on the
imploding plasma mechanism to produce their
desired experimental outcomes.

*Imaging data captured for most Z experiments
capture plasmas that have hot and cool regions.

It is therefore important that we make our spectral
model as general as possible so that it can be applied
to a large number of Z experiments.

"Bayesian inversion is a powerful framework to derive
plasma gradients and distinguish between different
plasma structure assumptions.

=A computationally efficient spectral model is needed
for Bayesian inversion.



The SCRAM" atomic modeling code can calculate the data needed for Bayesian |

9 linversion. Unfortunately, SCRAM is computationally inefficient. |
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' *The equation of radiative transfer can be written as
follows:
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= As the ray traverses each plasma region, its intensity
(I)) can get altered by opacity and emissivity.
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*The opacity and emissivity are dependent on the
plasma conditions in each region.
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emergent spectrum | ®*The more plasma layers we include in our model, the
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blanket *SCRAM" is a detailed atomic physics code that can

provide the needed input data.

*SCRAM i1s too slow for Bayesian inversion.

2.5 5.0 7.5 10.0 125 15.0 17.5 20.0
Energy [keV] “Hansen, (2011), Cclﬂ] Phys.



Logarithmic interpolation has traditionally been used to efficiently derive the

10 Iplasma opacities and emissivities.
= Historically, logarithmic interpolation has been the
10-11F — ' ' ]  preferred tool for spectral interpolation.
! Kr IL-shell :

_ Kr K-shell "For experimental parameters found at Z, the
% 10-13} | W | r e | following table would be adopted for logarithmic
ME w [ interpolation:
o
§ 10-15 Parameter Range Steps
= T. 10-10,000 eV | 40
S 10-171 ] N; 1019 — 1022 30
iz hv 1-20,000 eV | 20,000
E 20 -3
= 10-19} —— 5000 eV, 8.5 X 102 c¢m _

1350 eV, 1.6 x 10! cm—3 "We calculate these 1200 spectra for krypton using

5% 10 15
Energy [keV] "Kr spectra are more complex than Ar spectra and

allow us to test limits of logarithmic interpolation.



Logarithmic interpolation has traditionally been used to efficiently derive the
plasma opacities and emissivities.

Gap 1 “We use a data distribution that leaves deliberate gaps:
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*These gaps are designed to provide a basis of
comparison between logarithmic interpolation and
machine learning accuracy.
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Logarithmic interpolation performance is uneven across the two gaps and any
12 lattempt to improve performance will result in higher computational costs.
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*We calculate the fractional difference between
interpolation and truth as:

|truth — interpolation|

Frac. Diff. = . :
|interpolation|

“Interpolation struggles to capture lower temperatures
correctly, but gets the T, = 4500 eV spectra correct
across all densities.

"Improving the accuracy of the interpolation would
require a larger input data files, which would make the
interpolating more unwieldy and slower.



Machine learning models provide an attractive alternative to logarithmic
13 | interpolation since they can potentially predict spectra with higher accuracy.

“Machine learning models can be trained off-line,
making them potentially superior of interpolation.

“We developed an autoencoder that compresses the
20,000 photon energy points down to 30 points.

“The latent dimension is constrained by the fact that
we have to relate T, and n; to the latent spectra.

*We train this network using 1200, 5000, 10000,
15000, and 30000 samples, comparing performance
to the interpolator at each step.




The autoencoder exceeds interpolator performance with > 10,000 training
14 Isets. This highlights a potential path forward.
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The autoencoder exceeds interpolator performance with > 10,000 training
15 Isets. This highlights a potential path forward.
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The autoencoder exceeds interpolator performance with > 10,000 training
16 Isets. This highlights a potential path forward.

1000}
Interpolator
500} e
1,200 training sets
1000}
500} o
5,000 training sets
& 1000}
=
o
O 500} o
10000 training sets
1000}
500}
1000}
500}
30000 training sets
0.00  0.05  0.10  0.15 _ 0.20 _ 0.25 _ 0.30

"To quantitatively estimate performance differences
between interpolator and autoencoder, we compare
histograms of fractional differences at each photon
energy averaged over the two test datasets.

"We find that interpolator and autoencoder

performance roughly match at ~10,000 training sets.

*With 30,000 training sets, the autoencoder
performance far exceeds the interpolator.
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The autoencoder struggles with reproducing lower energy spectral regions

around Kr L-shell lines.
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= Our autoencoder model predicts most spectral
regions very accurately, but struggles around the
strongest Kr I-shell lines in high-temperature regions.



The autoencoder also struggles with reproducing Kr K-shell lines at low
18 Itemperatures and high densities.
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= Our autoencoder model predicts most spectral
regions very accurately, but struggles around the

strongest Kr I-shell lines in high-temperature regions.

"In cooler regions, the autoencoder struggles to
properly capture the the K-shell lines, as well as the
continuum.

*Some of these oscillations can be traced back to the
scaling methodology used during the data preparation
process.
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(Frac. Diff.)

Despite the work left to be done on our spectral ML model, we are already
outperforming interpolation and can improve ML model performance.
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= A relatively simple autoencoder structure with a
modest amount of training data has enabled us
predict spectra more accurately than a log-
interpolation approach.

"We only attempted to roughly optimize the
autoencoder, so more performance gains could be
achieved.

"The autoencoder can also predict spectra more
quickly compared to the log interpolator.

"The fractional difference maps shown earlier can also
guide us which plasma parameter regions may require
more training data.

" Adding ‘training data’ to the interpolator is much
more difficult.
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Future work includes exploring convolutional networks, transfer learning, and
including radiation fields in our training data.

Q Hydrogenically

screened
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=Using convolutional networks may increase
computational performance and mitigate oscillations.

= All models in this presentation were trained on
hydrogenically screened data, but SCRAM also
produces more realistic spectra. Transfer learning may
be useful here.

=Radiation fields also have not been included in the
training data.

"We would also like to expand to other elements.

"Gluth et al. (2020), Vander Wal et al. (2021) have
tackled similar problems with success.

"We’re very interested in opening collaborations on
these 1ssues and look forward to further suggestions
from the audience.



Argon gas puffs on Z are very reproducible, but still poorly understood. |
21 IDetailed spectral analyses can help answer outstanding questions.

=Argon (Ar) gas puffs regularly produce > 350 kJ of x-rays at > 3 keV. Many
outstanding questions regarding their fundamental physics can be answered through
detailed spectral analyses.
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= A spectral Bayesian analysis tool provides us with the all the ability to determine 7
plasma gradients and compare different gas puff formation models. Fast spectral @
calculations are needed for this purpose. :
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Coupling Bayesian statistics and ML models should allow us to develop a better understanding of Ar gas puffs.

=We’re in the process of developing an MIL-based spectral model that outperforms
traditional interpolation approaches in both accuracy and efficiency.
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