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2 | Growing Need for Grid Storage
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s 1 Li-S Battery Design

* Increasing to grid scale requires a change

in cell design

Energy density plateaus beyond 5 mgg cm-?

S+ 2~ 4+ 2Li -'_—?Ligs Wu, J., et al. (2021). Adv Mater
33(26): e2101275.




+ I Flow Cell Design

« Hybrid design with solid Li metal anode

. catholyte » S is chemically reduced with RM
electrochemical cell reservoir

* Electrolyte containing RM* is pumped
into electrochemical cell where RM* is
reduced

Discharge:
RM Li*

N

Echem cell Reservoir
Felt: RM* + e~ -» RM 1)2RM + S —» 2RM™* + §2-
Metal anode: Li— Lit + e~ 2) $2~ 4 2Li* > Li,S

carbon felt U

RM*

Meyerson, M. L; Rosenberg, S. G.; Small, L. J., ACS Applied Energy Materials 2022, 5 (4), 4202-4211.



s | Flow Cell Design

Benefits:

_ catholyte
electrochemical cell reservoir

* Improved safety

» Separation of anode and cathode
decreases risk of thermal runaway

* Assembly in discharged state

 Decreased cost

* No need for ion selective separators
or excess carbon

« Scalability

* Increased S loading without
hindering diffusion

carbon felt

Meyerson, M. L.; Rosenberg, S. G.; Small, L. J,, ACS Applied Energy Materials 2022, 5 (4), 4202-4211.



I Cobaltocene and Decamethyl Ferrocene as Redox Mediators

DmFc |

Current (normalized)

2.0 | 25 | 3.0
Potential (V vs Li/Li")

CVs taken at 10 mV/s in 1M LiTFSI 1:1 DOL:DME, glassy carbon working
electrode, Pt counter electrode, Li reference electrode.

|deal Redox Mediator

Close to Li-S reaction (~2.4 V vs

Li/Li*)
+ Epe.=2.86V
Ecocp = 2.06 V

Good reaction kinetics
* kKo =4.33x 103 cm s
kOcocp2=3.14 x 10 cm s

Fast diffusion
Domeec = 523 x 106 cm? s
Dcocpz = 3.70 x 10° cm? 8™
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Flow Cell Cycling

High capacity

High coulombic and voltage efficiencies

Static cell

Flow cell

Voltage
Efficiency (%)

Coulombic
Efficiency (%)

Meyerson, M. L,; Rosenberg, S. G.; Small, L. J., ACS Applied Energy Materials 2022, 5 (4), 4202-4211.
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: | Flow Cell Cycling
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* High coulombic and voltage efficiencies
* Increasing S loading increases capacity

* >60 h discharge time shows viability for long

Capacity (mAh g

duration storage.

Li-S chemistry works in a flow cell

architecture.
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9 | Limitations of Planar Li Anodes: Dendrite formation

« Dendrites decrease battery life and
cause short circuits.

Li deposition

* Increased charge rate exacerbates
problems with dendrites.

* Ni foam with 97% porosity has ~10x the surface area of
planar Ni foil.

Increasing effective surface area decreases the local |
current density. Bare Ni foam




o 1 Controlling Li Nucleation

Hydrothermal synt _ : y BN T¢
* 100-150 nm wic Better wetting leads to lower surface area L. 7n0 on Ni Foam

 Uniform coverad

SEM of ZnO nanorods

Synthesis procedure: Sun, C; Li, Y, Jin,J; Yang, J; Meyerson, M.L; Maraschky, A.M.; Watt, J.; and Small, L.J. “Fast Cycling of "Anode-less”,
Wen, Z., J. Mater. Chem. A 2019, 7 (13), 7752-7759. Redox-mediated Li-S Flow Batteries,” submitted to J. Energy Storage.



1 | Increased Surface Area Allows Faster Charging

For planar deposition, charging above 1 mA cm- results in unstable cycling and shorting
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Using high SA foam, charge rate can be 10 times faster.

Meyerson, M.L.; Maraschky, A.M.; Watt, J.; and Small, L.J. “Fast Cycling of "Anode-less”, Redox-mediated
Li-S Flow Batteries,” submitted to J. Energy Storage.



12 | ZnQO Further Improves System

Nucleation overpotential decreases and CE increases compared to bare Ni foam at low current densities.
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ZnQO decreases the nucleation overpotential and improves coulombic

efficiency.

Meyerson, M.L.; Maraschky, AM.; Watt, J.; and Small, LJ. "Fast Cycling of "Anode-less”, Redox-mediated
Li-S Flow Batteries,” submitted to J. Energy Storage.
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i3 1 Flow Cells with ZnO on Ni foam
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« 1 “Anode-less” Flow Cells 150
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Volumetric energy density: 20.3 Wh L

Nifoam  carbon felt

Cells can be scaled up and assembled

iIn the safer Li-less state.

Meyerson, M.L,; Maraschky, A.M.; Watt, J.; and Small, L.J. “Fast Cycling of "Anode-less”, Redox-mediated Li-S Flow Batteries,” submitted toJ. Energy Storage.



s 1 Conclusions

 Redox mediation enables Li-S chemistry to be adapted to work in a flow cell architecture.
» High surface area scaffolds increase the maximum cycling current density 20x.
« Scaled battery increasing energy density to 20.3 Wh L.

* Energy density on par with VRBs with room for improvement.

“';’&\

Li-S is a promising chemistry to use for high capacity, long duration, grid-scale energy
storage.
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