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2 Problem Formulation Inifinite-Dimensional Nonsmooth Optimization

Goal: Develop an efficient algorithm to solve the nonsmooth optimization problem,

min
x∈H

f (x) + ϕ(x).

– H is a Hilbert space with inner product (·, ·) and associated norm ∥ · ∥;
– f : H → R has Lipschitz continuous gradients on an open set containing domϕ;
– ϕ : H → [−∞,+∞] is proper, closed and convex, but may be nonsmooth;
– F := f + ϕ is bounded below on domϕ.

Key Requirements of Algorithm
1. Large-Scale Problems: Rapid convergence, mesh independence, and matrix free.
2. Leverage Inexactness: Converges even when f and ∇f are computed inexactly via

adaptive discretization, reduced-order modelling, compression, etc.
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3 Inexact Computations Motivation

In infinite-dimensional optimization, the objective function and its gradient are often
impossible to compute without discretization, iteration, etc., leading to inexactness.
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4 Motivating Application Sparse Control

Goal: Determine a control z that produces a state close to w and that has small support.

Given a domain Ω ⊂ Rd , a target state w ∈ L2(Ω), bounds a ≤ 0 ≤ b a.e.,
and penalty parameters α, β ≥ 0,

min
z∈L2(Ω)

∫
Ω

|S(z)− w |2(x) dx +
α

2

∫
Ω

|z |2(x) dx + β

∫
Ω

|z |(x) dx

subject to a ≤ z ≤ b a.e.,

where S(z) = u ∈ H1
0 (Ω) solves

−∆u + u3 = z in Ω

u = 0 in ∂Ω

Optimal Control

Challenges: Objective function is nonsmooth, nonconvex, and expensive.
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5 Sparse Control Existing Methods

1. Subgradient and Bundle Methods: Iterates xk+1 solve the optimization problem

min
x∈H

tk
2
∥x − xk∥2H + sup

j∈Ik

{f (yj) + ϕ(yj) + (∇f (yj) + ηj , x − yj)H},

where tk ≥ 0 and ηj ∈ ∂ϕ(yj). Typically, convergence is slow (e.g., sublinear).

2. Proximal Gradient Methods: Iterates xk+1 solve the optimization problem

min
x∈H

(∇f (xk), x − xk)H +
1

2γk
∥x − xk∥2H + ϕ(x) ⇐⇒ xk+1 = proxγkϕ

(xk − γk∇f (xk)).

PG methods are robust, but slow. Can use acceleration (Nesterov) or momentum (heavy balls).

3. Proximal Newton-Type Methods: Iterates xk+1 solve the optimization problem

min
x∈H

(∇f (xk), x − xk)H +
1

2
(Bk(x − xk), x − xk)H + ϕ(x),

where Bk ∈ L(X ) approximates the Hessian of f . PN methods require positive definite Bk

(e.g., convexity) and nonstandard/nontrivial prox computations.
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6 Motivating Application Elastic Topology Optimization

Goal: Determine a binary ρ that is maximally stiff and that satisfies the volume constraint.

  

u=0

K(ρ):εn=T

Given a domain Ω ⊂ Rd and a volume fraction v ∈ (0, 1),

min
ρ∈L2(Ω)

∫
Γt

T (x) · [S(ρ)](x) dx

subject to

∫
Ω

ρ(x) dx ≤ v |Ω|, 0 ≤ ρ ≤ 1 a.e.,

where S(ρ) = u ∈ (H1(Ω))d solves

−∇ · (K (ρ) : ε) = 0, ε = 1
2 (∇u +∇u⊤) in Ω

K (ρ) : εn = T on Γt

u = 0 on Γd

Challenges: Objective function is expensive and highly nonconvex due to material models like
the Solid Isotropic Material with Penalization (SIMP).
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7 Elastic Topology Optimization Existing Methods

1. Optimality Criterion Method: A heuristic fixed-point iteration that is related to a projected
gradient method.
Bendsøe & Kikuchi, Generating optimal topologies in structural design using a homogenization method, CMAME, 1988.

2. Method of Moving Asymptotes: A sequential convex optimization approach that uses
rational approximations of the objective and constraints. The dual subproblem is commonly
solved using nonlinear CG. This method is inherently finite dimensional.
Svanberg, The method of moving asymptotes—A new method for structural optimization, IJNME, 1987.

3. Augmented Lagrangian: Robust, yet minimizing the augmented Lagrangian penalty function
at each iteration can be expensive.

4. Interior Points: Primal-dual line-search methods have been used succesfully. However,
nonconvexity can lead to expensive inertia correction.

It is extremely difficult to handle inexact objective values and gradients in these methods!
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8 Nonsmooth Trust Regions Basic Algorithm

Require: An initial guess x1, initial trust-region radius ∆1 > 0, 0 < η1 < η2 < 1 and 0 < γ1 ≤ γ2 < 1
1: for k = 1, 2, . . . do
2: Model Selection: Choose a subproblem model fk of f near xk
3: Step Computation: Compute x+

k that approximately solves

min
x∈H
{mk(x) := fk(x) + ϕ(x)} subject to ∥x − xk∥ ≤ ∆k

4: Evaluate Objective: Compute the actual reduction aredk := F (xk)− F (x+
k )

5: if ρk := aredk
mk (xk )−mk (x

+
k
)
< η1 then

6: xk+1 ← xk and ∆k+1 ∈ [γ1∆k , γ2∆k ]
7: else
8: xk+1 ← x+

k

9: if ρk < η2 then
10: ∆k+1 ∈ [γ2∆k ,∆k ]
11: else
12: ∆k+1 ∈ [∆k ,∞)
13: end if
14: end if
15: end for
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9 Nonsmooth Trust Regions Subproblem

Trust-Region Subproblem: At each iteration, we approximately solve

min
x∈H

{mk(x) := fk(x) + ϕ(x)} subject to ∥x − xk∥ ≤ ∆k ,

where ∆k > 0 is the radius and fk : H → R is a model of the f near the iterate xk .

Recall: TR methods do not solve the subproblem, but rather use a Cauchy point to ensure
sufficient decrease of the trial iterate x+k .

We generalize the Cauchy point to nonsmooth problems using the proximal gradient path

x cp
k = pk(tk) with pk(t) := proxtϕ(xk − tgk),

where gk ≈ ∇f (xk) and the proximity operator is given by

proxtϕ(x) := argmin
y∈H

{
1
2t ∥y − x∥2 + ϕ(y)

}
.
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10 Nonsmooth Trust Regions Generalized Cauchy Point

We set x cp
k = pk(tk), where the step length tk satisfies both

1. Trust-Region Feasibility:

∥xcp
k − xk∥ ≤ ν1∆k

2. Sufficient Decrease:

mk (x
cp
k )−mk (xk ) ≤ µ1[(gk , x

cp
k − xk ) + ϕ(xcp

k )− ϕ(xk )]

and at least one of the following conditions:

tk ≥ ν2t
′
k or tk ≥ ν3,

where t′k either satisfies

mk (pk (t
′
k ))−mk (xk ) ≥ µ2[(gk , pk (t

′
k )− xk ) + ϕ(pk (t

′
k ))− ϕ(xk )]

or ∥pk (t′k )− xk∥ ≥ ν4∆k .
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11 Nonsmooth Trust Regions Generalized Cauchy Point

▶ CP Computation: Can compute x cp
k with finitely many evaluations of pk(t).

▶ Consequence of CP: There exists a trial iterate x+k that satisfies

∥x+k − xk∥ ≤ νrad∆k , νrad ≥ ν1

mk(xk)−mk(x
+
k ) ≥ µ3[mk(xk)−mk(x

cp
k )], 0 < µ3 ≤ 1.

▶ Trial Iterate Requirements: Avoid CP computation by ensuring that x+k satisfies

∥x+k − xk∥ ≤ νrad∆k

mk(xk)−mk(x
+
k ) ≥ κfcdhk min

{
hk

1 + ωk
,∆k

}
,

(FCD)

where hk := ∥pk(r0)− xk∥/r0 for fixed r0 > 0 and ωk ≥ 0 measures the curvature of fk .
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12 Nonsmooth Trust Regions Spectral Proximal Gradient Subproblem Solver

Model: For the SPG subproblem solver, we employ the models

fk(x) =
1
2 (Bk(x − xk), x − xk) + (gk , x − xk) and ϕk(x) =

{
ϕ(x) if ∥x − xk∥ ≤ ∆k

+∞ otherwise

Algorithm: Set xk,0 = x cp
k , sk,0 = xk,0 − xk to ensure (FCD) is satisfied and compute

xk,ℓ+1 = xk,ℓ + αk,ℓsk,ℓ with sk,ℓ = proxλk,ℓϕk
(xk,ℓ − λk,ℓ∇fk(xk,ℓ))− xk,ℓ,

where αk,ℓ ∈ [0, 1] minimizes the quadratic upper bound

qk,ℓ(t) := fk(xk,ℓ + tsk,ℓ) + t[ϕk(xk,ℓ + sk,ℓ)− ϕk(xk,ℓ)] + ϕk(xk,ℓ)

≥ fk(xk,ℓ + tsk,ℓ) + ϕk(xk,ℓ + tsk,ℓ) = mk(xk,ℓ + tsk,ℓ)

and λk,ℓ is the the safeguarded spectral step length given by

λk,ℓ = max

{
λmin,min

{
λmax,

(sk,ℓ−1, sk,ℓ−1)

(Bksk,ℓ−1, sk,ℓ−1)

}}
.

Birgin, et al., Nonmonotone spectral projected gradient methods on convex sets, SIOPT, 2000.
Kouri, A matrix-free trust-region Newton algorithm for convex-constrained optimization, Opt. Letters, 2022.
Baraldi & Kouri, A proximal trust-region method for nonsmooth optimization with inexact function and gradient evaluations, Math. Prog., 2022.
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13 Nonsmooth Trust Regions Inexact Algorithm

Require: An initial guess x1, initial trust-region radius ∆1 > 0, 0 < η1 < η2 < 1 and 0 < γ1 ≤ γ2 < 1
1: for k = 1, 2, . . . do
2: Model Selection: Choose a subproblem model fk of f near xk
3: Step Computation: Compute x+

k that approximately solves

min
x∈H
{mk(x) := fk(x) + ϕ(x)} subject to ∥x − xk∥ ≤ ∆k

4: Evaluate Objective: Compute the actual reduction aredk := F (xk)− F (x+
k )

5: if ρk := aredk
mk (xk )−mk (x

+
k
)
< η1 then

6: xk+1 ← xk and ∆k+1 ∈ [γ1∆k , γ2∆k ]
7: else
8: xk+1 ← x+

k

9: if ρk < η2 then
10: ∆k+1 ∈ [γ2∆k ,∆k ]
11: else
12: ∆k+1 ∈ [∆k ,∞)
13: end if
14: end if
15: end for
Drew Kouri Inexact Nonsmooth Trust Regions



13 Nonsmooth Trust Regions Inexact Algorithm

Require: An initial guess x1, initial trust-region radius ∆1 > 0, 0 < η1 < η2 < 1 and 0 < γ1 ≤ γ2 < 1
1: for k = 1, 2, . . . do
2: Model Selection: Choose a subproblem model fk of f near xk
3: Step Computation: Compute a trial iterate x+

k that satisfies (FCD)
4: Evaluate Objective: Compute the actual reduction aredk := F (xk)− F (x+

k )
5: if ρk := aredk

mk (xk )−mk (x
+
k
)
< η1 then

6: xk+1 ← xk and ∆k+1 ∈ [γ1∆k , γ2∆k ]
7: else
8: xk+1 ← x+

k

9: if ρk < η2 then
10: ∆k+1 ∈ [γ2∆k ,∆k ]
11: else
12: ∆k+1 ∈ [∆k ,∞)
13: end if
14: end if
15: end for

Drew Kouri Inexact Nonsmooth Trust Regions



13 Nonsmooth Trust Regions Inexact Algorithm

Require: An initial guess x1, initial trust-region radius ∆1 > 0, 0 < η1 < η2 < 1 and 0 < γ1 ≤ γ2 < 1
1: for k = 1, 2, . . . do
2: Model Selection: Choose a subproblem model fk of f near xk Inexact!
3: Step Computation: Compute a trial step x+

k that satisfies (FCD)
4: Evaluate Objective: Evaluate the computed reduction credk ≈ aredk Inexact!
5: if ρk := aredk

mk (xk )−mk (x
+
k
)
< η1 then

6: xk+1 ← xk and ∆k+1 ∈ [γ1∆k , γ2∆k ]
7: else
8: xk+1 ← x+

k

9: if ρk < η2 then
10: ∆k+1 ∈ [γ2∆k ,∆k ]
11: else
12: ∆k+1 ∈ [∆k ,∞)
13: end if
14: end if
15: end for

Drew Kouri Inexact Nonsmooth Trust Regions



14 Nonsmooth Trust Regions Inexactness Conditions

When evaluating the of reduction of the objective function, we approximate

credk ≈ aredk := (f (xk) + ϕ(xk))− (f (xk+1)− ϕ(xk+1)),

where credk satsifies:

∃κobj > 0, ζ > 1, η < min{η1, 1− η2}, and θk ↘ 0 such that

|aredk − credk | ≤ κobj[ηmin{mk(xk)−mk(xk+1), θk}]ζ ∀ k.

We also require that the model gradient gk must satisfy:

∃κgrad > 0 such that ∥∇f (xk)− gk∥ ≤ κgrad min{hk ,∆k} ∀ k .

Can compute model gradient gk in finitely many iterations!
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When evaluating the of reduction of the objective function, we approximate

credk ≈ aredk := (f (xk) + ϕ(xk))− (f (xk+1)− ϕ(xk+1)),

where credk satsifies:

∃κobj > 0, ζ > 1, η < min{η1, 1− η2}, and θk ↘ 0 such that

|aredk − credk | ≤ κobj[ηmin{mk(xk)−mk(xk+1), θk}]ζ ∀ k.

We also require that the model gradient gk must satisfy:

∃κgrad > 0 such that ∥∇f (xk)− gk∥ ≤ κgrad min{hk ,∆k} ∀ k .

Can compute model gradient gk in finitely many iterations!
Drew Kouri Inexact Nonsmooth Trust Regions



15 Convergence Theory

Under the stated assumptions, the iterates produced by the TR algorithm satisfy

lim inf
k→∞

hk = 0 =⇒ lim inf
k→∞

h(xk , t) = 0 ∀ t > 0,

where hk := 1
r0
∥proxr0ϕ(xk−r0gk)−xk∥ and h(x , t) := 1

t ∥proxtϕ(x−t∇f (x))−x∥.

Finite Termination: ∀ τ > 0 ∃Kτ ∈ N such that hKτ ≤ τh1.

Tikhonov Regularization: If f (x) = f0(x) +
α
2 ∥x − x0∥2, where α > 0, x0 ∈ H , ∇f0 is

completely continuous and r0 ≥ α−1, then any weak accumulation point of {xk} is a
critical point of f + ϕ. See, e.g., sparse control.

Baraldi & Kouri, A proximal trust-region method for nonsmooth optimization with inexact function and gradient evaluations, Math. Prog., 2022.
Kouri, A matrix-free trust-region Newton algorithm for convex-constrained optimization, Opt. Letters, 2022.
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15 Convergence Theory

Under the stated assumptions, the iterates produced by the TR algorithm satisfy

lim inf
k→∞

hk = 0 =⇒ lim inf
k→∞

h(xk , t) = 0 ∀ t > 0,

where hk := 1
r0
∥proxr0ϕ(xk−r0gk)−xk∥ and h(x , t) := 1

t ∥proxtϕ(x−t∇f (x))−x∥.

Finite Termination: ∀ τ > 0 ∃Kτ ∈ N such that hKτ
≤ τh1.

Strong Local Convergence: Suppose f is strongly convex on a convex set U ⊆ H
with U ∩ domϕ ̸= ∅ and ∃K0 ∈ N such that xk ∈ U for k ≥ K0. If ∃ x̄ ∈ U satisfying
h(x̄ , t) = 0 ∀ t > 0, then xk → x̄ . That is, {xk} converges strongly to a critical point.

Baraldi & Kouri, A proximal trust-region method for nonsmooth optimization with inexact function and gradient evaluations, Math. Prog., 2022.
Kouri, A matrix-free trust-region Newton algorithm for convex-constrained optimization, Opt. Letters, 2022.
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15 Convergence Theory

Under the stated assumptions, the iterates produced by the TR algorithm satisfy

lim inf
k→∞

hk = 0 =⇒ lim inf
k→∞

h(xk , t) = 0 ∀ t > 0,

where hk := 1
r0
∥proxr0ϕ(xk−r0gk)−xk∥ and h(x , t) := 1

t ∥proxtϕ(x−t∇f (x))−x∥.

Finite Termination: ∀ τ > 0 ∃Kτ ∈ N such that hKτ
≤ τh1.

Convergence Rates: Further, suppose fk is the quadratic model and ∇2f is Lipschitz.∗
1. If 1

r0
∥proxr0ϕ(x

+
k − r0∇fk(x+

k ))− x+
k ∥ ≤ τkhk and τk → 0, then xk converges superlinearly.

2. If τk ≤ τh1+α
k for τ > 0 and α ≥ 0, then xk converges quadratically.

∗Also requires modest assumptions on the iterates generated by the subproblem solver.

Baraldi & Kouri, A proximal trust-region method for nonsmooth optimization with inexact function and gradient evaluations, Math. Prog., 2022.
Kouri, A matrix-free trust-region Newton algorithm for convex-constrained optimization, Opt. Letters, 2022.
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16 Numerical Results Sparse Control

Goals: 1. Comparison of TR method with modern nonsmooth methods.
2. Demonstration of mesh independence for TR method.

Let Ω = (0, 1)2, w ≡ −1, a ≡ −25, b ≡ 25, α = 10−4 and β = 10−2, and consider

min
z∈L2(Ω)

∫
Ω

|S(z)− w |2(x) dx +
α

2

∫
Ω

|z |2(x) dx + β

∫
Ω

|z |(x) dx

subject to a ≤ z ≤ b a.e.,

where S(z) = u ∈ H1
0 (Ω) solves

−∆u + u3 = z in Ω

u = 0 in ∂Ω

Discretization: P1 FEM for state variables and piecewise constant for controls.

Problem Size: 131,072 control degrees of freedom.
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17 Numerical Results Sparse Control

method iter fval grad hess phi prox time (s) TR speedup⋆

TR 4 5 5 39 57 142 22.88 1.0000

PG 59 149 60 0 149 209 498.56 21.79

SPG 30 46 31 0 46 62 168.26 7.35

R2 106 107 46 0 107 153 368.27 16.10

nmAPG 93 194 186 0 194 196 1018.66 44.52

iPiano 103 240 104 0 104 344 816.96 35.71

FISTA 141 430 283 0 430 290 1532.58 66.98

PANOC 83 285 108 0 272 287 948.04 41.44

ZeroFPR 21 70 43 0 45 93 247.39 10.81

Proximal Gradient Methods Accelerated Methods Proximal Quasi-Newton Methods

⋆TR speedup is the ratio of the wallclock time for TR divided by the times for the other methods.
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18 Numerical Results Sparse Control

τop 1e-4 1e-6 1e-8

mesh iter npde lpde prox iter npde lpde prox iter npde lpde prox

64x64 3 4 56 80 5 6 108 129 7 8 186 181

128x128 3 4 54 79 4 5 79 102 6 7 129 151

256x256 3 4 56 80 5 6 108 129 6 7 133 153

512x512 3 4 54 78 5 6 102 123 6 7 127 147

Trust-region algorithm demonstrates mesh independence with respect to
the number of iterations and the number of PDE solves!

Requires only modest additional computational work to achieve tight tolerances!
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19 Numerical Results Elastic Topology Optimization

Goals: 1. Comparison of TR method with modern projected and AL methods.
2. Demonstration of TR inexactness control for 3D problems.

  

Ω Γt

Γd

Let Ω = (0, 2)× (0, 1)d , d = 1, 2, and v = 0.4, and consider

min
ρ∈L2(Ω)

∫
Γt

T (x) · [S(ρ)](x) dx

subject to

∫
Ω

ρ(x) dx = v |Ω|, 0 ≤ ρ ≤ 1 a.e.,

where S(ρ) = u ∈ (H1(Ω))d+1 solves

−∇ · (K (ρ) : ε) = 0 in Ω

ε =
1

2
(∇u +∇u⊤) in Ω

K (ρ) : εn = T on Γt

u = 0 on Γd
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20 Numerical Results 2D Elastic Topology Optimization

Formulation: SIMP power p = 3 with Helmholtz filtering (radius= 0.1).

Discretization: Q1 FEM for displacement variables and piecewise constant for density.

Problem Size: 26,880 density degrees of freedom.

method iter fval grad hess proj time(s) TR speedup⋆

TR 9 10 10 236 1200 16.49 1.0000

LMTR 33 34 31 418 391 32.42 1.9660

PQN 126 235 127 0 4972 164.49 9.9751

SPG 84 90 85 0 170 52.36 3.1753

AL-TR 9 52 51 1153 0 61.98 3.7586

AL-LMTR 11 276 263 4368 0 280.77 17.0267

Projected Newton-Type Methods Spectral Projected Gradient AL Methods

⋆TR speedup is the ratio of the wallclock time for TR divided by the times for the other methods.
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21 Numerical Results 3D Elastic Topology Optimization

Formulation: SIMP power p = 3 with Helmholtz filtering (radius= 0.1).

Discretization: Q1 FEM for displacement variables and piecewise constant for density.

Problem Size: 221,184 density degrees of freedom.

Inexact Solves: Solve using CG with AMG preconditioning.
– Helmholtz Filter: Requires ∼8 iterations to achieve the relative error of ∼ 10−12

=⇒ Considered to be exact.

– Elasticity Equations: Trust-region algorithm controls accuracy of linear solver.

k F (xk ) hk ∥xk − xk−1∥ ∆k fval grad hess proj obj tol grad tol

0 1.0000 4.017e-2 --- 1e1 1 1 0 3 1.000e-2 1.000e-2

1 0.8157 1.927e-2 1.000e1 1e2 2 2 12 44 1.000e-2 1.000e-2

2 0.4716 1.279e-2 5.420e1 1e3 3 3 25 75 1.000e-2 1.000e-2

3 0.4144 6.280e-3 1.260e1 1e4 4 4 39 103 4.632e-3 1.000e-2

4 0.1600 3.101e-3 1.990e2 1e4 5 5 52 132 1.000e-2 1.000e-2

5 0.1300 1.226e-3 1.085e2 1e5 6 6 65 161 2.970e-3 1.000e-2

6 0.1262 1.242e-5 6.044e1 1e6 7 7 78 190 3.539e-4 1.000e-2

7 0.1254 6.590e-6 5.821e1 1e7 8 8 91 220 6.971e-5 6.590e-3

8 0.1251 3.221e-6 3.599e1 1e8 9 9 104 249 1.942e-5 3.221e-3
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Conclusions:
– Numerical solution of infinite-dimensional problems requires expensive approximations
– Often, the objective function and its gradient can only be computed inexactly
– Nonsmooth trust region is provably convergent even with inexact computations
– We can efficiently compute a trial step using the spectral proximal gradient method
– SPG trust-region subproblem solver is matrix free, but may require many prox computations

Future: Can we incorporate inexact prox computations? Can we handle nonconvex ϕ?
– Nonsmooth trust-region method outperforms existing nonsmooth methods!

References:
– R. J. Baraldi & D. P. Kouri, Local Convergence Analysis of an Inexact Trust-Region Method for

Nonsmooth Optimization, Submitted, 2023.
– R. J. Baraldi & D. P. Kouri, A proximal trust-region method for nonsmooth optimization with inexact

function and gradient evaluations, Math Programming, 2022.
– D. P. Kouri, A matrix-free trust-region Newton algorithm for convex-constrained optimization,

Optimization Letters, 2022.
– D. P. Kouri & D. Ridzal, Inexact trust-region methods for PDE-constrained optimization, Frontiers in

PDE-Constrained Optimization, 2018.
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23 Rapid Optimization Library rol.sandia.gov

Trilinos package for large-scale optimization. Uses: optimal design, optimal control and inverse problems in
engineering applications; mesh optimization; image processing.

Numerical optimization made practical:
Any application, any hardware, any problem size.

▶ Modern optimization algorithms.

▶ Maximum HPC hardware utilization.

▶ Special programming interfaces for
simulation-based optimization.

▶ Optimization under uncertainty.

▶ Hardened, production-ready algorithms for unconstrained, equality-constrained, inequality-constrained and
nonsmooth optimization.

▶ Novel algorithms for optimization under uncertainty and risk-averse optimization.
▶ Unique capabilities for optimization-guided inexact and adaptive computations.
▶ Geared toward maximizing HPC hardware utilization through direct use of application data structures, memory spaces,

linear solvers and nonlinear solvers.
▶ Special interfaces for engineering applications, for streamlined and efficient use.
▶ Rigorous implementation verification: finite difference and linear algebra checks.
▶ Hierarchical and custom (user-defined) algorithms and stopping criteria.
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