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2 PrOblem FormUIation Inifinite-Dimensional Nonsmooth Optimization

Goal: Develop an efficient algorithm to solve the nonsmooth optimization problem,

l )r(nellr_ll f(x) + o(x). ]

H is a Hilbert space with inner product (-, -) and associated norm || - ||;
- f : H — R has Lipschitz continuous gradients on an open set containing dom ¢;

¢ H — [—o00,+00] is proper, closed and convex, but may be nonsmooth;
F := f 4+ ¢ is bounded below on domd.
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2 PrOblem FormUIation Inifinite-Dimensional Nonsmooth Optimization

Goal: Develop an efficient algorithm to solve the nonsmooth optimization problem,

Lneilr_} f(x) + o(x).

H is a Hilbert space with inner product (-, -) and associated norm || - ||;
- f : H — R has Lipschitz continuous gradients on an open set containing dom ¢;

¢ H — [—o00,+00] is proper, closed and convex, but may be nonsmooth;
F := f 4+ ¢ is bounded below on domd.

Key Requirements of Algorithm
1. Large-Scale Problems: Rapid convergence, mesh independence, and matrix free.

2. Leverage Inexactness: Converges even when f and Vf are computed inexactly via
adaptive discretization, reduced-order modelling, compression, etc.
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3l Inexact Computations wotivation

In infinite-dimensional optimization, the objective function and its gradient are often
impossible to compute without discretization, iteration, etc., leading to inexactness.
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3l Inexact Computations wotivation

In infinite-dimensional optimization, the objective function and its gradient are often
impossible to compute without discretization, iteration, etc., leading to inexactness.
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al Motivating Application  sparse control

Goal: Determine a control z that produces a state close to w and that has small support.

Given a domain Q C RY, a target state w € L?(Q), bounds a <0 < ba.e,,

and penalty parameters o, 5 > 0,
Optimal Control

min [ 15G)—wPGoax+ 5 [ Pax+n [ d0oax

z€L2(Q)
subject to a<z<b ae., e
0.4
where S(z) = u € H}(Q) solves 02
00 0.5 1
—Au+uP=z inQ x
u=0 inoQ

Challenges: Objective function is nonsmooth, nonconvex, and expensive.
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5 Sparse ContrOI Existing Methods
1. Subgradient and Bundle Methods: Iterates xx1 solve the optimization problem

t,

min 1% = el + sup{F () + &) + (VF() + 15 x = y)uh
JE€ I

xeH

where t, > 0and 7; € d¢(y;). Typically, convergence is slow (e.g., sublinear).
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Spa rse contrOI Existing Methods

1. Subgradient and Bundle Methods: Iterates xx1 solve the optimization problem

min = Sl + sup{f(y;) + o) + (VF) + mjox = yidu}s

where t, > 0and 7; € d¢(y;). Typically, convergence is slow (e.g., sublinear).

2. Proximal Gradient Methods: Iterates x,; solve the optimization problem

1
)r(nem (VF(xk), x — xx)H + WHX —xilf+o(x) = X = prox,,(x — WV (X))

PG methods are robust, but slow. Can use acceleration (Nesterov) or momentum (heavy balls).
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Spa rse contrOI Existing Methods

1. Subgradient and Bundle Methods: Iterates xx1 solve the optimization problem

min = Sl + sup{f(y;) + o) + (VF) + mjox = yidu}s

where t, > 0and 7; € d¢(y;). Typically, convergence is slow (e.g., sublinear).
2. Proximal Gradient Methods: Iterates x,; solve the optimization problem

1
)r(nem (VF(xk), x — xx)H + WHX —xilf+o(x) = X = prox,,(x — WV (X))

PG methods are robust, but slow. Can use acceleration (Nesterov) or momentum (heavy balls).

3. Proximal Newton-Type Methods: Iterates x;_; solve the optimization problem

1
min (VFf(xk),x — xk)n + =

xEH Q(Bk(X*Xk)’X*Xk)HJFQb(X)v

where By € L(X) approximates the Hessian of f. PN methods require positive definite By
(e.g., convexity) and nonstandard/nontrivial prox computations.

Drew Kouri Inexact Nonsmooth Trust Regions



6 Motivating Application Elastic Topology Optimization

Goal: Determine a bhinary p that is maximally stiff and that satisfies the volume constraint.

Given a domain Q C R? and a volume fraction v € (0, 1),

min / T(x) - [S(p)] (x) dx

PEL(Q)

subject to / p(x)dx <v|Q|, 0<p<1 ae,
Q

KprensT  where S(p) = u € (H*(Q))? solves
~V - (K(p):e)=0, e=3%(Vu+Vu') in Q
K(p) :en=T onTl,
u=20 only

Challenges: Objective function is expensive and highly nonconvex due to material models like
the Solid Isotropic Material with Penalization (SIMP).
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71 Elastic Topology Optimization existing vethods

1. Optimality Criterion Method: A heuristic fixed-point iteration that is related to a projected
gradient method.

Bendsge & Kikuchi, Generating optimal topologies in structural design using a homogenization method, CMAME, 1988.
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71 Elastic Topology Optimization existing vethods

1. Optimality Criterion Method: A heuristic fixed-point iteration that is related to a projected
gradient method.

Bendsge & Kikuchi, Generating optimal topologies in structural design using a homogenization method, CMAME, 1988.

2. Method of Moving Asymptotes: A sequential convex optimization approach that uses
rational approximations of the objective and constraints. The dual subproblem is commonly
solved using nonlinear CG. This method is inherently finite dimensional.

Svanberg, The method of moving asymptotes—A new method for structural optimization, JNME, 1987.
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71 Elastic Topology Optimization existing vethods

1. Optimality Criterion Method: A heuristic fixed-point iteration that is related to a projected
gradient method.

Bendsge & Kikuchi, Generating optimal topologies in structural design using a homogenization method, CMAME, 1988.

2. Method of Moving Asymptotes: A sequential convex optimization approach that uses
rational approximations of the objective and constraints. The dual subproblem is commonly
solved using nonlinear CG. This method is inherently finite dimensional.

Svanberg, The method of moving asymptotes—A new method for structural optimization, JNME, 1987.

3. Augmented Lagrangian: Robust, yet minimizing the augmented Lagrangian penalty function
at each iteration can be expensive.
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71 Elastic Topology Optimization existing vethods

1. Optimality Criterion Method: A heuristic fixed-point iteration that is related to a projected
gradient method.

Bendsge & Kikuchi, Generating optimal topologies in structural design using a homogenization method, CMAME, 1988.

2. Method of Moving Asymptotes: A sequential convex optimization approach that uses
rational approximations of the objective and constraints. The dual subproblem is commonly
solved using nonlinear CG. This method is inherently finite dimensional.

Svanberg, The method of moving asymptotes—A new method for structural optimization, JNME, 1987.

3. Augmented Lagrangian: Robust, yet minimizing the augmented Lagrangian penalty function
at each iteration can be expensive.

4. Interior Points: Primal-dual line-search methods have been used succesfully. However,
nonconvexity can lead to expensive inertia correction.
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71 Elastic Topology Optimization existing vethods

1. Optimality Criterion Method: A heuristic fixed-point iteration that is related to a projected
gradient method.

Bendsge & Kikuchi, Generating optimal topologies in structural design using a homogenization method, CMAME, 1988.

2. Method of Moving Asymptotes: A sequential convex optimization approach that uses
rational approximations of the objective and constraints. The dual subproblem is commonly
solved using nonlinear CG. This method is inherently finite dimensional.

Svanberg, The method of moving asymptotes—A new method for structural optimization, JNME, 1987.

3. Augmented Lagrangian: Robust, yet minimizing the augmented Lagrangian penalty function
at each iteration can be expensive.

4. Interior Points: Primal-dual line-search methods have been used succesfully. However,
nonconvexity can lead to expensive inertia correction.

It is extremely difficult to handle inexact objective values and gradients in these methods!
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gl Nonsmooth Trust Regions  gasic aigorithm

Require: An initial guess xi, initial trust-region radius A; > 0,0 <7 < <land0 <y <2 <1
1. fork=1,2,...do

2:  Model Selection: Choose a subproblem model fx of f near x

3: Step Computation: Compute x,j“ that approximately solves

min {mi(x) 1= fi(x) + ¢(x)} subject to [Ix — xi|| < Ak
x€

4  Evaluate Objective: Compute the actual reduction ared, := F(xx) — F(x;")
5. if pg = #drrkw(xt) < 1 then

6: Xk+1 < Xk and Ak+1 S [’YlAk, ’YQAk]
7. else

8: X1 Xp

o if px < m2 then

10: AVERNS [’yzAk,Ak]

11: else

12: Ak+1 S [Ak,oo)

13: end if

14:  endif

15: end for

Drew Kouri Inexact Nonsmooth Trust Regions



ol Nonsmooth Trust Regions  susprobiem

Trust-Region Subproblem: At each iteration, we approximately solve

min {mi(x) := fi(x) + ¢(x)} subject to Ix — x|l < A,
xXe

where A, > 0is the radius and f, : H — R is a model of the f near the iterate x.
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ol Nonsmooth Trust Regions  susprobiem

Trust-Region Subproblem: At each iteration, we approximately solve

min {mi(x) := fi(x) + ¢(x)} subject to Ix — x|l < A,
xXe

where A, > 0is the radius and f, : H — R is a model of the f near the iterate x.

Recall: TR methods do not solve the subproblem, but rather use a Cauchy point to ensure
sufficient decrease of the trial iterate x,jL.
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ol Nonsmooth Trust Regions  susprobiem

Trust-Region Subproblem: At each iteration, we approximately solve

min {mi(x) := fi(x) + ¢(x)} subject to Ix — x|l < A,
xXe

where A, > 0is the radius and f, : H — R is a model of the f near the iterate x.

Recall: TR methods do not solve the subproblem, but rather use a Cauchy point to ensure
sufficient decrease of the trial iterate x,jL.

We generalize the Cauchy point to nonsmooth problems using the proximal gradient path

X =pe(te)  with  pe(t) := prox,,(xc — tgx),

where g ~ Vf(xx) and the proximity operator is given by

prox,(x) := arg min {Fly —xIP+o(y)} -
ye
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10 Nonsmooth Trust Regions Generalized Cauchy Point

We set x,” = pi(t«), where the step length t satisfies both
1. Trust-Region Feasibility:

I = xill < vl
2. Sufficient Decrease:
mi(x ") — mic(xi) < pal(gro < — x) + () — d(xi)]
and at least one of the following conditions:
te > ot or  ty > s,
where t,, either satisfies

my(pi () — mic(xi) > p2l(gi, pr(ty) — xi) + ¢(pe(tr)) — (i)

or  [lp(te) — xicll > valsy.

Drew Kouri

—a®
(= = mu(x) + 1 Qu(t)
-6 H= = m(w) + 2 Qx(t)
. B(1)

'
| Acceptable Intervall

0 02

06 08 1
t

The interval of acceptable t, is de-
picted by the green line on the hori-

zontal axis.

Inexact Nonsmooth Trust Regions



" Nonsmooth Trust Regions Generalized Cauchy Point

» CP Computation: Can compute x,ip with finitely many evaluations of p(t).
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" Nonsmooth Trust Regions Generalized Cauchy Point

» CP Computation: Can compute x,ip with finitely many evaluations of p(t).

> Consequence of CP: There exists a trial iterate xk+ that satisfies

”Xk+ — x| € VradDk;s  Vrad > 11

mic(xic) — mic(x ) > pa[mic(xi) — mi(x°)], 0 < ps < 1.
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" Nonsmooth Trust Regions Generalized Cauchy Point

» CP Computation: Can compute x,ip with finitely many evaluations of p(t).

> Consequence of CP: There exists a trial iterate xk+ that satisfies

”Xk+ — x| € VradDk;s  Vrad > 11

mic(xic) — mic(x ) > pa[mic(xi) — mi(x°)], 0 < ps < 1.

> Trial Iterate Requirements: Avoid CP computation by ensuring that x,j satisfies

”le_ - Xk” < Vrag A

FCD
,Ak}, o)

. h
i) = i) > mohimin { £

where hy := ||pk(ro) — xk||/ ro for fixed ry > 0 and wx > 0 measures the curvature of f.
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12 Nonsmooth Trust Regions Spectral Proximal Gradient Subproblem Solver
Model: For the SPG subproblem solver, we employ the models

d(x) if ||x — xk|| < Ag

A0 = HBulx —xx ) +gx ) and o) = { G0 Tl

Algorithm: Set xx o = x,”, sk.0 = Xk,0 — X« to ensure (FCD) is satisfied and compute

Xk, 0+1 = Xk, 0 + Qg ¢Sk,e with Sk,o = prOX)\k)(d)k(Xk’g = /\k,Zka(Xk,Z)) — Xk, 0,

where ay ¢ € [0, 1] minimizes the quadratic upper bound
Gre(t) = fi(xie + tske) + tlor(Xk,e + Sk.e) — Pr(xk,0)] + Pr(xk.0)
> fi(Xi,e + tsie) + Or(Xi,e + tske) = Mi(Xk e + tsk.e)
and A, ¢ is the the safeguarded spectral step length given by

Ak,e = max {)\m;n, min {)\m% ((Sk,eh Sk,t—1) }} '

BiSk,t—1, Sk,0—1)

Birgin, et al., Nonmonotone spectral projected gradient methods on convex sets, SIOPT, 2000.
Kouri, A matrix-free trust-region Newton algorithm for convex-constrained optimization, Opt. Letters, 2022.
Baraldi & Kouri, A proximal trust-region method for nonsmooth optimization with inexact function and gradient evaluations, Math. Prog., 2022.
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13 NonsmOOth Trust Regions Inexact Algorithm

Require: An initial guess xi, initial trust-region radius A; > 0,0 <7 < <land0 <y <2 <1
1. fork=1,2,...do

2:  Model Selection: Choose a subproblem model fx of f near x

3: Step Computation: Compute x,j“ that approximately solves

min {mi(x) 1= fi(x) + ¢(x)} subject to [Ix — xi|| < Ak
x€

4  Evaluate Objective: Compute the actual reduction ared, := F(xx) — F(x;")
5. if pg = #drrkw(xt) < 1 then

6: Xk+1 < Xk and Ak+1 S [’YlAk, ’YQAk]
7. else

8: X1 Xp

o if px < m2 then

10: AVERNS [’yzAk,Ak]

11: else

12: Ak+1 S [Ak,oo)

13: end if

14:  endif

15: end for
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13 NonsmOOth Trust Regions Inexact Algorithm

Require: An initial guess xi, initial trust-regionradius A; > 0,0 <m <m<land0<y <1 <1
1. fork=1,2,...do

2:  Model Selection: Choose a subproblem model f of f near x

3: Step Computation: Compute a trial iterate x;r that satisfies (FCD)
4 Evaluate Objective: Compute the actual reduction aredy := F(x) — F(x;")
5 if px = #‘% < m then

6: Xk+1 < Xk and Ay € ['ylAk,’y2Ak]

7. else

8: Xk41 < X:

9: if px < m2 then

10: AVIRS ['}/2Ak,Ak]

1 else

12: Apy1 € [Ak, 00)

13: end if

14:  endif

15: end for
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13 NonsmOOth Trust Regions Inexact Algorithm

Require: An initial guess xi, initial trust-regionradius A; > 0,0 <m <m<land0<y <1 <1
1. fork=1,2,...do

2: Model Selection: Choose a subproblem model f of f near x Inexact!
3: Step Computation: Compute a trial step x;’ that satisfies (FCD)

4:  Evaluate Objective: Evaluate the computed reduction credx = ared Inexact!
5 if px = #‘% < m then

6: Xk+1 < Xk and Ay € ['ylAk,’y2Ak]

7. else

8: Xk41 < X:

9: if px < m2 then

10: AVIRS ['}/2Ak,Ak]

11: else

12: Apy1 € [Ak, 00)

13: end if

14:  endif

15: end for
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14 Nonsmooth Trust Regions Inexactness Conditions

When evaluating the of reduction of the objective function, we approximate

credy ~ aredy = (f(x) + o(xk)) — (F(xur1) — S(xk41));

where credy satsifies:

Jkob; >0, ¢>1, n<min{n,l—mn}, and 6,0 suchthat

|aredk = credk| S I-iobj[’r] min{mk(xk) — mk(xk+1), 9;(}]C Y k.
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14 Nonsmooth Trust Regions Inexactness Conditions

When evaluating the of reduction of the objective function, we approximate

credy ~ aredy = (f(x) + o(xk)) — (F(xur1) — S(xk41));

where credy satsifies:

Jkob; >0, ¢>1, n<min{n,l—mn}, and 6,0 suchthat

|aredk = credk| S I-iobj[’r] min{mk(xk) — mk(xk+1), 9;(}]C Y k.

We also require that the model gradient g, must satisfy:

[ 3 Kgrad > 0 such that ||Vf(Xk) = ng < Kgrad min{hk, Ak} YV k. ]
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14 Nonsmooth Trust Regions Inexactness Conditions

When evaluating the of reduction of the objective function, we approximate

credy ~ aredy = (f(x) + o(xk)) — (F(xur1) — S(xk41));

where credy satsifies:

Jkob; >0, ¢>1, n<min{n,l—mn}, and 6,0 suchthat

|aredk = credk| S I-iobj[’r] min{mk(xk) — mk(xk+1), Gk}]C Y k.

We also require that the model gradient g, must satisfy:

[ 3 Kgrad > 0 such that ||Vf(Xk) = ng < Kgrad min{hk, Ak} YV k. ]

Can compute model gradient gy in finitely many iterations!
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151 Convergence Theory

s A
Under the stated assumptions, the iterates produced by the TR algorithm satisfy

Iikminf he=0 = liminf h(xx,t) =0 Vit >0,
—00

k—o0

where  hy = [lprox, ,(xk—rogk) = x| and h(x, t) := {[[prox,,(x—tVF(x))—x].
Finite Termination: V7 >0 3K, €N suchthat hk <7h;.

G
e \
Tikhonov Regularization: If f(x) = fy(x) + 4| lx — xo/|% where o > 0, x € H, Vfy is
completely continuous and r; > a1, then any weak accumulation point of {x;} is a

critical point of f + ¢. See, e.g., sparse control.
\ J

Baraldi & Kouri, A proximal trust-region method for nonsmooth optimization with inexact function and gradient evaluations, Math. Prog., 2022.
Kouri, A matrix-free trust-region Newton algorithm for convex-constrained optimization, Opt. Letters, 2022.
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151 Convergence Theory

s A
Under the stated assumptions, the iterates produced by the TR algorithm satisfy

liminf hy =0 = liminf h(xx,t)=0 Vit >0,
k—o00 k—00

where  hy = %Hprox,o(b(xk—rogk)—xkﬂ and h(x,t):= %Hproxtd)(x—tVf(x))—xH.
Finite Termination: V7 >0 3K, €N suchthat hkx < 7h;.

Strong Local Convergence: Suppose f is strongly convex on a convex set U C H
with U Ndom¢ # B and 3Ky € N such that x, € U for k > Kp. If 3x € U satisfying
h(x,t) =0Vt >0, then x, — X. Thatis, {xx} converges strongly to a critical point.

Baraldi & Kouri, A proximal trust-region method for nonsmooth optimization with inexact function and gradient evaluations, Math. Prog., 2022.
Kouri, A matrix-free trust-region Newton algorithm for convex-constrained optimization, Opt. Letters, 2022.
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151 Convergence Theory

e ™
Under the stated assumptions, the iterates produced by the TR algorithm satisfy

liminf hy =0 = liminf h(xx,t) =0 Vit >0,
k—ro0

k—o00

where  hy = rlo||prox,0¢(xk—rogk)—xk|\ and h(x,t):= %Hproxtd,(x—tVf(x))—xH.
Finite Termination: V7 >0 3K, €N suchthat hk < 7h;.

Convergence Rates: Further, suppose f is the quadratic model and V?f is Lipschitz.*
1. If %Hprox,w(x,f — nVi(x)) — x| < vh and 7% — 0, then x4 converges superlinearly.
2. Ife < -rhi*“ for 7 > 0and a > 0, then xx converges quadratically.
\ J

*Also requires modest assumptions on the iterates generated by the subproblem solver.

Baraldi & Kouri, A proximal trust-region method for nonsmooth optimization with inexact function and gradient evaluations, Math. Prog., 2022.
Kouri, A matrix-free trust-region Newton algorithm for convex-constrained optimization, Opt. Letters, 2022.
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16 Numerical ReSUItS Sparse Control

Goals: 1. Comparison of TR method with modern nonsmooth methods.
2. Demonstration of mesh independence for TR method.

LetQ = (0,1)2, w=—1,a= —25b=25a=10"*and 3 = 1072, and consider

min /Q|5(z)—W|2(x)dx+%/Q|z|2(x)dx+ﬁ/9|z\(x)dx

z€L?(Q)

subject to a<z<b ae,
where S(z) = u € H}(R) solves
“Au+uP=z inQ
u=0 1inoQ

Discretization: P1 FEM for state variables and piecewise constant for controls.
Problem Size: 131,072 control degrees of freedom.
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171 Numerical Results

Sparse Control

method iter fval grad hess phi prox time (s) ‘ TR speedup”
TR 4 5 5 39 57 142 22.88 1.0000
PG 59 149 60 0 149 209 498.
SPG 30 46 31 0 46 62 168.
R2 106 107 46 0 107 153 368.
nmAPG 93 194 186 0 194 196 1018.
iPiano 103 240 104 0 104 344 816.
FISTA 141 430 283 0 430 290 15632.
PANOC 83 285 108 0 272 287 948.
ZeroFPR 21 70 43 0 45 93 247.

Proximal Gradient Methods

Accelerated Methods

Proximal Quasi-Newton Methods

*TR speedup is the ratio of the wallclock time for TR divided by the times for the other methods.

Drew Kouri
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18 Numerical ReSUItS Sparse Control

Top le-4 le-6 le-8
mesh iter npde 1lpde prox | iter npde 1lpde prox | iter npde 1lpde prox
64x64 3 4 56 80 5 6 108 129 7 8 186 181
128x128 3 4 54 79 4 5 79 102 6 7 129 151
256x256 3 4 56 80 5 6 108 129 6 7 133 153
512x512 3 4 54 78 5 6 102 123 6 7 127 147

Trust-region algorithm demonstrates mesh independence with respect to
the number of iterations and the number of PDE solves!

Requires only modest additional computational work to achieve tight tolerances!
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191 Numerical Results ciastic Topology optimization

Goals: 1. Comparison of TR method with modern projected and AL methods.
2. Demonstration of TR inexactness control for 3D problems.

Let Q = (0,2) x (0,1)9,d = 1,2, and v = 0.4, and consider

Iy

min /r T(x) - [S()](x) dx

PEL2(Q)

L, subject to / p(x)dx=v|Q], 0<p<1 ae,
Q

where S(p) = u € (H}(Q))4*! solves

-V - (K(p):e)=0 in Q
ML €= 1(Vu—l—VuT) in Q
RAPID OPTIMIZATION LIBRARY 2
K(p) :en=T onl;
u=20 only
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20 N umerical ReSUItS 2D Elastic Topology Optimization

Formulation: SIMP power p = 3 with Helmholtz filtering (radius= 0.1).
Discretization: Q1 FEM for displacement variables and piecewise constant for density.

Problem Size: 26,880 density degrees of freedom.

method iter fval grad hess proj time(s) ‘TR speedup*

TR 9 10 10 236 1200 16.49 1.0000
LMTR 33 34 31 418 391 32.
PQN 126 235 127 0 4972 164.
SPG 84 90 85 0 170 52.
AL-TR 9 52 51 1153 0 61.

AL-LMTR 11 276 263 4368 0 280.

Projected Newton-Type Methods Spectral Projected Gradient AL Methods
*TR speedup is the ratio of the wallclock time for TR divided by the times for the other methods.
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211 Numerical Results  :p ciastic Topology Optimization
Formulation: SIMP power p = 3 with Helmholtz filtering (radius= 0.1).
Discretization: Q1 FEM for displacement variables and piecewise constant for density.
Problem Size: 221,184 density degrees of freedom.

Inexact Solves: Solve using CG with AMG preconditioning.
- Helmbholtz Filter: Requires ~8 iterations to achieve the relative error of ~ 10712

— Considered to be exact.

- Elasticity Equations: Trust-region algorithm controls accuracy of linear solver.

k F(xx) he  |Ixk — xk—1]] Ak fval grad hess proj obj tol grad tol
0O 1.0000 4.017e-2 --- lel 1 1 0 3 1.000e-2 1.000e-2
1 0.8157 1.927e-2 1.000e1 le2 2 2 12 44 1.000e-2 1.000e-2
2 0.4716 1.279e-2 5.420el 1e3 3 3 25 75 1.000e-2 1.000e-2
3 0.4144 6.280e-3 1.260e1 led 4 4 39 103 = 4.632e-3 1.000e-2
4 0.1600 3.101e-3 1.990e2 1e4 5 5 52 132 1.000e-2 1.000e-2
5 0.1300 1.226e-3 1.085e2 1eb 6 6 65 161  2.970e-3  1.000e-2
6 0.1262 1.242e-5 6.044el le6 7 7 78 190 3.539e-4 1.000e-2
7 0.1254 6.590e-6 5.821el 1le7 8 8 91 220 6.971e-5 6.590e-3
8 0.1251 3.221e-6 3.599e1 1e8 9 9 104 249 1.942e-5 3.221e-3

Drew Kouri Inexact Nonsmooth Trust Regions



22

Conclusions:

Numerical solution of infinite-dimensional problems requires expensive approximations
Often, the objective function and its gradient can only be computed inexactly

Nonsmooth trust region is provably convergent even with inexact computations

We can efficiently compute a trial step using the spectral proximal gradient method

SPG trust-region subproblem solver is matrix free, but may require many prox computations
Future: Can we incorporate inexact prox computations? Can we handle nonconvex ¢?

Nonsmooth trust-region method outperforms existing nonsmooth methods!
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Rapid Optimization Library .o sandia.gov

Trilinos package for large-scale optimization. Uses: optimal design, optimal control and inverse problems in
engineering applications; mesh optimization; image processing.

» Modern optimization algorithms.
» Maximum HPC hardware utilization.

> Special programming interfaces for

RAPID OPTIMIZATION LIBRARY simulation-based optimization.

Numerical optimization made practical: »> Optimization under uncertainty.
Any application, any hardware, any problem size.

Hardened, production-ready algorithms for unconstrained, equality-constrained, inequality-constrained and
nonsmooth optimization.

Novel algorithms for optimization under uncertainty and risk-averse optimization.
Unique capabilities for optimization-guided inexact and adaptive computations.

Geared toward maximizing HPC hardware utilization through direct use of application data structures, memory spaces,
linear solvers and nonlinear solvers.

Special interfaces for engineering applications, for streamlined and efficient use.
Rigorous implementation verification: finite difference and linear algebra checks.
Hierarchical and custom (user-defined) algorithms and stopping criteria.
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