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Overview

▶ Phase field methods are a widely used set of techniques used to capture
several different types of phenomena

▶ Initially developed for tracking physical phase changes
▶ Modified to use a continuous damage variable to track crack propagation in

continuum models
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Origins of phase field fracture

▶ Derived from Griffith brittle
fracture

▶ Represent discrete cracks
as “smeared” continuum
damage models

▶ Length scale converts
infinitesimal crack into
finite-width region

▶ Fracture problem
reformulated as coupled
PDE system

Borden et al. (2014)

Amiri et al. (2016)
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Phase field fracture models

▶ Many different phase field fracture models exist
▶ Different choices for:

▶ elastic model
▶ inclusion of plasticity (and choice of plastic model)
▶ rate-dependence
▶ how damage impacts elastic and plastic responses (degradation functions)
▶ fracture potential
▶ tension-compression split

▶ Each one has to be derived from scratch based on the assumptions made in
that work
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Existing formulation within sierra

▶ Existing phase field formulation incorporating plasticity in sierra
(PhaseFieldFeFp) hard-codes many things:
▶ elastic, plastic, and fracture models
▶ constraints
▶ flow rule
▶ number of internal variables and phase variables
▶ degradation function
▶ tension-compression split

▶ What if we could generalize the existing formulation?
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Formulation
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Guiding Principles

▶ Potential-based formulation — elastic, plastic, and damage models are all
derived from potentials (same for “viscous” parts and kinetic potentials)

▶ As modular as possible — almost every part has multiple choices (elastic
potential, plastic potential, damage potential, degradation function,
tension-compression split) and new ones can be implemented as long as they
provide the required “bits” (usually: value, jacobian, hessian)

▶ Generalized — solution method is as general as possible (Sequential
Quadratic Programming with Active-Set constraint selection) and almost
nothing is assumed about the form of the constraints (can be nonlinear
functions of multiple variables)
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Derivation

▶ Start with the usual assumption: F = F eF p

▶ Define potentials ψe
(
F F p−1

,ϕ
)
, ψp (F p,ϕ,Q), and ψf (ϕ,∇ϕ)

▶ Further, split the ϕ dependence of ψe and ψp into a multiplicative
component:

ψe
(
F F p−1

,ϕ
)

= ge (ϕ) ψ̃e
(
F F p−1)

ψp (F p,ϕ,Q) = gp (ϕ) ψ̃p (F p,Q)
▶ Define kinetic potentials ψ∗

P , ψ∗
Q, and ψ∗

ϕ that define the viscous response of
P , Q, and ϕ respectively

▶ Split the ϕ dependence of ψ∗
P and ψ∗

Q as above
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Derivation

▶ Define generalized flow rule as Ḟ
p = Q̇M (K) F p

▶ This introduces a vector of internal variables Q and a third-order flow tensor
M

▶ If Q is size n (n internal variables), then M is n×3×3
▶ Reduces to the standard case when there is only one internal variable (outer

dimension of M is 1)
▶ From now on, we deal only with M

▶ In the case that M is fully defined (i.e. doesn’t need to be solved for), can
introduce constraints that fix the components of M
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Derivation

▶ At each step, we are given {F n,ϕn,F
p
n,Qn} as well as F n+1

▶ We need to find
{
Mn+1,Qn+1,F

p
n+1

}
▶ We also need to solve for ϕn+1, but that is done separately due to

limitations within sierra (alternating minimization approach)
▶ We have to minimize

∆A (F ,ϕ,∇ϕ,F p,Q) + ∆tgp
(
ϕn+α

)
ψ̃∗

Q

(
Qn+1 − Qn

∆t
; Qn+α

)

with respect to Qn+1 and Mn+1, subject to a system of (possibly
non-linear) constraints
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Derivation

L = ge
(
ϕn+1

)
ψ̃e
(
F e

n+1

)
+ gp

(
ϕn+1

)
ψ̃p
(
F p

n+1,Qn+1

)
+ ∆tgp

(
ϕn+α

)
ψ̃∗

p

(
Qn+1 − Qn

∆t
; Qn+α

)
− λici

▶ Minimize to solve for updated Qn+1 and Mn+1

▶ Easy to solve if all constraints are equalities (Newton-Raphson or such
would work nicely)

▶ Active-Set methods can be utilized for constraint selection
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Derivation

(
L,xx −c,x

c,x 0

)(
pk

λn+1

)
=
(

−F,x

−c

)

▶ We convert it to a quadratic problem and utilize SQP with Active-Set
constraint selection

▶ Derivation is involved but fairly straight-forward
▶ To use this method, we need the Hessian of the Lagrangian as well as

derivatives of the constraint equations
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Examples
▶ Pure elasticity

▶ Elastic potential turned on, all other potentials and kinetic potentials
disabled, degradation functions turned off

▶ L = ψ̃e (F n+1)
▶ Elasto-plasticity, isotropic plasticity

▶ Elastic and plastic potentials turned on, all other potentials and kinetic
potentials disabled, degradation functions turned off

▶ L = ψ̃e
(
F n+1F p−1

n+1

)
+ ψ̃p

(
F p

n+1, Qn+1
)

− λici, with Mii = 0,
MijMij = 3

2 , Mij = Mji, and Qn+1 −Qn ≥ 0
▶ Elasto-plasticity, isotropic + kinematic + rate-dependent plasticity with

damage
▶ All potentials enabled, plastic kinetic potential enabled, all other kinetic

potentials disabled, degradation functions turned on
▶ L = ge

(
ϕn+1

)
ψ̃e
(
F e

n+1
)

+ gp
(
ϕn+1

)
ψ̃p
(
F p

n+1, Qn+1
)

+
∆tgp

(
ϕn+α

)
ψ̃∗

p

(
∆Q
∆t ;Qn+α

)
− λici with the same constraints as before
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Challenges

▶ No generalized n-dimensional tensor library available in sierra…so created
one!

▶ Finding relevant derivatives of the log strain tensor was highly non-trivial
▶ Implementing the tension-compression split in a generic way, especially the

spectral tension-compression split, was non-trivial
▶ Numerical sensitivities
▶ Efficiency concerns
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Dealing with the TCS

dψ̃e±

dF e
kl

= ∂ψ̃e±

∂Ee±
uv

∂Ee±
uv

∂Ee
mn

∂Ee
mn

∂Ce
pq

∂Ce
pq

∂F e
kl

▶ ∂Ee±
uv

∂Ee
mn

will be different for each tension-compression split
▶ Fairly straightforward for the deviatoric-volumetric tension-compression split
▶ A bit more involved for the spectral tension-compression split

17 / 25



Example problem

▶ Uses the developed framework (Potential classes, TCS handling, etc)
within the earlier (specialized) formulation

▶ Does not use generalized solver (yet)
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Costs and Benefits
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Costs

▶ SQP can be slower than more specialized methods (e.g. return-mapping)
▶ May need stronger guarantees on potentials or other components than with

more specialized solvers (most components need at least C2)
▶ Derivations can be tricky
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Benefits

▶ Can implement material models whose constraints are not independent
▶ Can investigate alternative flow rules
▶ Converts the existing formulation into a framework rather than one specific

model
▶ As long as requirements for material models are met, can be used within this

framework
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Conclusions

22 / 25



Current State

▶ Preliminary implementation of GeneralizedPhaseFieldFeFp
▶ Phase field solver has also been mostly modularized
▶ Designing correctness and regression tests
▶ Further optimization of n-dimensional tensor library may be needed
▶ Comparison of old and new formulations to verify correctness of behavior
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Next Steps

▶ New elastic, plastic, and damage models can be developed, explored, and
compared against experimental data to better model materials of interest

▶ Inclusion of void mechanics and void nucleation, potentially through
development of a surrogate model

▶ Exploration of ways to model crack initiation while being consistent with our
variational formulation
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Questions?
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