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Motivation

Figure: Additive manufacturing and high-throughput testing provides new data science
challenges.
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A Deterministic Inverse Problem

Modelx * *
*

Problem
Given some observed data, find λ ∈ Λ that best predicts the data.

Solutions may not be unique without additional assumptions.

Requires solving several deterministic forward problems.
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A Stochastic Inverse Problem

Model
Noise

* *
*

Problem
Given some observed data and an assumed noise model, find the parameters that
are most likely to have produced the data.

Solutions may not be unique without additional assumptions.

Requires solving several deterministic forward problems.
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A Different Stochastic Inverse Problem

Model * *
*
* *
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Problem
Given a probability density on observations, find a probability density on Λ such
that the push-forward matches the given density on the observed data.

Solutions may not be unique without additional assumptions.

We only need to solve a single stochastic forward problem.
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Notation

We assume we are given:
1 A finite-dimensional parameter space, Λ.

2 A parameter-to-observation/data map, Q : Λ→ D = Q(Λ)

3 A observed/target probability measure on (D,BD), denoted Pobs
D , with

density πobs
D (typically from experimental data)

4 An initial probability measure on (Λ,BΛ), denoted Pinit
Λ , with density πinit

Λ

(typically from prior beliefs or expert knowledge)

We need to compute:
1 The push-forward of the initial density through the model.

In other words, we need to solve a forward UQ problem using the initial.

We use πpred
D to denote this push-forward density.
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A Key Assumption

Predictability Assumption

We assume that the observed probability measure, Pobs
D , is absolutely continuous

with respect to the push-forward of the initial, Ppred
D .

⇡obs
D

⇡
Q(prior)
D

⇡obs
D

⇡
Q(prior)
D
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A Solution to the Stochastic Inverse Problem

Theorem

Given an initial probability measure, Pinit
Λ on (Λ,BΛ) and an observed probability

measure, Pobs
D , on (D,BD), the probability measure Pup

Λ on (Λ,BΛ) defined by

Pup
Λ (A) =

∫
D

(∫
A∩Q−1(q)

πinit
Λ (λ)

πobs
D (Q(λ))

πpred
D (Q(λ))

dµΛ,q(λ)

)
dµD(q), ∀A ∈ BΛ

solves the stochastic inverse problem.

The updated density is:

πup
Λ (λ) = πinit

Λ (λ)
πobs
D (Q(λ))

πpred
D (Q(λ))

.

Both πinit
Λ and πobs

D are given.

Computing πpred
D requires a forward propagation of the initial density.
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Λ is stable with respect to perturbations in Pobs
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A Parameterized Nonlinear System

Example

Consider a parameterized nonlinear system of equations:

λ1u
2
1 + u2

2 = 1,

u2
1 − λ2u

2
2 = 1

Quantity of interest is the second component: Q(λ) = u2.

Two inputs, one output

Given πobs
D ∼ N(0.3, 0.0252).

Given a uniform initial density.

Use 10,000 samples from the initial and a standard KDE to approximate the
push-forward.

Use standard rejection sampling to generate samples from πup
Λ .
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A Parameterized Nonlinear System
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A Parameterized Nonlinear System
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A Parameterized Nonlinear System
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Figure: Samples from the updated density (left) and a comparison of πobs
D , πpred

D and
push-forward of the updated density (right).
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A Higher-Dimensional PDE-based Example

Example

Consider the classical model for single-phase incompressible flow in porous media,

−∇ · (K (λ, x)∇p(λ)) = 0, x ∈ Ω = [0, 1]2,

with p = 1 along the left boundary and p = 0 along the right boundary.
We assume log(K (λ, x)) is described by a Karhunen-Loeve (KL) expansion.
We use correlation length of 0.01 in each direction and retain 100 terms.
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A Higher-Dimensional PDE-based Example

The QoI is the pressure at (0.0540, 0.5487).

Use 10,000 samples and a KDE to approximate the push-forward of the initial.

Assume πobs
D ∼ N(0.7, 1.0E-4).
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Quantity of interest
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PF Initial
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The 1D Marginals of Updated Density Tell Us Nothing

Figure: The 1D marginals from the initial (red) and the updated (blue) for the first
KL-mode (upper-left) through the 100th KL-mode (lower-right).
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The Means Are Slightly More Interesting
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Push-forward of the Updated Matches the Observations
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Mean Variance
Observed 0.7 1.0E-4
PF-Updated 0.7001 1.0170E-4
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Relationship with Statistical Bayesian Inference

Using Bayes theorem we can define a posterior density [Stuart 2010; Gelman et al

2013; Jaynes 1998, ...]:

π̃post
Λ (λ|q) = πinit

Λ (λ)
π(q|λ)

C
.

Example

Let Λ = [−1, 1] and consider the simple nonlinear map

q(λ) = λp, p = 1, 3, 5, . . . .

Here, p is not uncertain and are used to vary the nonlinearity.

Assume a uniform initial/prior and πobs
D ∼ N(0.25, 0.12).

For the statistical Bayesian approach, we use an observed value of
q̂ = 0.25 and assume a Gaussian noise model η ∼ N(0, 0.12).
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Comparing Push-forwards for Linear and Nonlinear Maps

The Bayesian and measure-theoretic formulations solve different problems, give
different densities and make different predictions.
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Connections with Deterministic Optimization

Consider the linear map q = Aλ and πinit
Λ ∼ N(λ, Γinit), and πobs

D ∼ N(q, Γobs).
The updated density is given by,

πup
Λ (λ) ∼ exp

(
−
(1

2
‖Γ−1/2

obs (Aλ− q)‖2
Rm︸ ︷︷ ︸

Data mismatch

+
1

2
‖Γ−1/2

obs (λ− λ)‖2
Rn︸ ︷︷ ︸

Tikhonov regularization︸ ︷︷ ︸
Same as statistical Bayesian

− 1

2
‖Γ−1/2

A A(λ− λ)‖2
Rm︸ ︷︷ ︸

Un-regularization

))

where ΓA = AΓinitA
∗.

The point that maximizes the updated density, denoted λMUD, is defined by

λMUD = argmin
λ∈Λ

J(λ),

where

J(λ) =
1

2
‖Γ−1/2

obs (Aλ − q)‖2
Rm +

1

2
‖Γ−1/2

init (λ − λ)‖2
Rn − 1

2
‖Γ−1/2

A A(λ − λ)‖2
Rm .
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Connections with Deterministic Optimization

We can rewrite the regularization terms as,

1

2
‖Γ−1/2

init (λ− λ)‖2
Rn − 1

2
‖Γ−1/2

A A(λ− λ)‖2
Rm =

1

2
(λ− λ)T (Γ−1

init − A∗(AΓinitA
∗)−1A)︸ ︷︷ ︸

R

(λ− λ)

Regularization matrix: R = Γ−1
init − A∗(AΓinitA

∗)−1A.

If A is invertible, then R = 0.
⇒ Regularization is “turned off” if there is a unique solution.

More generally, regularization is only applied in directions not informed by the
map/data.
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Connections with Deterministic Optimization

Bayesian MAP Point:
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Comparison of Computational Effort (Naive Approach)

MAP Point
Preliminary computations:

None

Objective function evaluation:

Inputs: A, x , Γ
−1
init

, x , q, Γ
−1
obs

Compute: q = Ax (1 forward solve)
Set: ∆x = x − x and ∆q = q − q

Return: J(x) = 1
2

∆qT Γ
−1
obs

∆q + 1
2

∆xT Γ
−1
init

∆x

Gradient evaluation:

Inputs: A∗ , ∆x , Γ
−1
init

, ∆q, Γ
−1
obs

Compute: g = A∗Γ
−1
obs

∆q (1 adjoint solve)

Return: ∇J(x) = g + Γ
−1
init

∆x

Hessian evaluation on vector v :

Inputs: A, A∗ , Γ
−1
init

, Γ
−1
obs

, v

Compute: z = Av (1 forward solve)

Compute: w = A∗Γ
−1
obs

z (1 adjoint solve)

Return: Hv = w + Γ
−1
init

v

MUD Point
Preliminary computations:

Compute: ΓA =
(
AΓinitA

∗)−1 (M forward and adjoint solves)

Compute: x̂ = A∗Γ
−1
obs

q (1 adjoint solve)
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Inputs: A, A∗ , x , Γ
−1
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, x , q, q̃, Γ
−1
obs
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Set: ∆x = x − x and ∆q = q − q

Return: J(x) = 1
2

∆qT Γ
−1
obs

∆q + 1
2

∆xT Γ
−1
init

∆x − 1
2

∆xT w

Gradient evaluation:

Inputs: A∗ , ∆x , Γ
−1
init

, q, Γ
−1
obs

, ΓA , z̃, x̂

Compute: g = A∗(Γ
−1
obs
− ΓA)q (1 adjoint solve)

Return: ∇J(x) = g + z̃ − x̂ + Γ
−1
init

∆x

Hessian evaluation on vector v :

Inputs: A, A∗ , Γ
−1
init

, Γ
−1
obs

, ΓA , v
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−1
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−1
init

v

Tim Wildey (tmwilde@sandia.gov) Scalable DCI SIAM OP 2023 25 / 43



Comparison of Computational Effort (Naive Approach)
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Example: Random Linear Maps

Example

Consider the following random linear map,

A : Rn → Rm,

where n > m (more parameters than observations) and each entry is U(0,1).

The covariance of the prior and observed densities are given:

Γinit = 1.0In, Γobs = 0.25Im.

The mean of the initial and the mean of the observations are also U(0,1).

We assess the scalability with increasing n and m.

Trust-region Newton-CG method and reduce gradient to 1e-12.

For each case, repeat 25 times and report the average performance.
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Scaling With Dimension of Input Space (n)
Dimension of Output Space is Fixed: m = 10

n MAP Point MUD Point
Iters CG Misfit F+A Time Iters CG Misfit F+A Time

100 9.1 48.2 12.2 114.7 0.012 9.2 48.5 2.84e-13 147.6 0.012
500 9.2 55.1 60.7 128.6 0.026 9.2 55.6 3.96e-13 161.8 0.027

1000 10.6 61.7 121.9 144.6 0.109 10.7 61.9 3.06e-13 178.9 0.110
2000 11.0 62.9 242.8 147.8 0.549 11.0 63.9 2.76e-13 183.9 0.553
4000 11.2 65.3 484.1 153.0 2.88 11.3 66.8 3.75e-13 190.6 2.90
8000 12.4 71.4 965.6 167.7 19.7 12.6 73.0 8.59e-13 206.7 20.0

Table: Comparison of the number of optimization iterations, the number of CG
iterations, the value of the final data misfit, the average number of combined forward
and adjoint solves and the average run time in seconds.
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Scaling With Dimension of Output Space (m)
Dimension of Input Space is Fixed: n = 1000

m MAP Point MUD Point
Iters CG Misfit F+A Time Iters CG Misfit F+A Time

5 10.8 54.8 115.7 131.3 0.108 10.9 55.4 3.47e-13 156.6 0.109
10 10.6 61.7 121.9 144.6 0.109 10.7 61.9 3.06e-13 178.9 0.110
20 10.6 60.8 122.9 142.8 0.118 10.6 61.3 5.07e-13 197.5 0.118
40 10.9 57.2 125.4 136.2 0.128 10.9 57.8 2.79e-13 231.4 0.129
80 10.9 65.4 126.4 152.6 0.138 11.0 65.9 2.21e-13 327.7 0.139

160 11.8 82.4 131.8 188.4 0.202 11.6 79.7 1.18e-12 517.4 0.212

Table: Comparison of the number of optimization iterations, the number of CG
iterations, the value of the final data misfit, the average number of combined forward
and adjoint solves and the average run time in seconds.
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The Initial Measure in the Infinite-Dimensional Case

Similar to the Bayesian case [Stuart 2010], we have a Radon-Nikodym derivative

dPup
Λ

dPinit
Λ

(λ) =
πobs
D (Q(λ))

πpred
D (Q(λ))

,

=⇒ we can consider random fields if Pinit
Λ is chosen appropriately.

Let Γinit be defined by the biharmonic operator:

Γinit = A−2 = (δI + γ∇ · (Θ∇))−2,

such that half powers, Γ
1/2
init and Γ

−1/2
init , are easy to compute.
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Linear-Gaussian Case: SVD and Low-Rank Approximations

Assume Q(λ) = Aλ, πinit
Λ ∼ N(λ, Γinit), and πobs

D ∼ N(q, Γobs).

Set A∗ = M−1A> and U∗ = U>M where M is the mass matrix associated
with the discretized field.

Similar to the Bayesian case [Bui-Thanh et al 2013], define Ã ∈ Rn×m by

Ã = Γ
1/2
init A

∗Γ
−1/2
obs

and denote the SVD of Ã by

Ã = UΣV>, U ∈ Rn×m, Σ ∈ Rm×m, V ∈ Rm×m,

where we impose U∗U = Im, V>V = Im and VV> = Im.

Solve efficiently using matrix-free randomized algorithms [Halko et al 2011].

Number of PDE solves scales linearly with the desired rank.

Effective rank depends on information content of data [Bui-Thanh et al 2013]

Tim Wildey (tmwilde@sandia.gov) Scalable DCI SIAM OP 2023 30 / 43



Linear-Gaussian Case: SVD and Low-Rank Approximations

Assume Q(λ) = Aλ, πinit
Λ ∼ N(λ, Γinit), and πobs

D ∼ N(q, Γobs).

Set A∗ = M−1A> and U∗ = U>M where M is the mass matrix associated
with the discretized field.

Similar to the Bayesian case [Bui-Thanh et al 2013], define Ã ∈ Rn×m by
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Linear Gaussian Case: Hessians and Covariances

The Hessian and covariance of the updated density can be expressed as,

Hup = Γ
−1/2
init (In + U

(
Σ2 − Im

)
U∗)Γ

−1/2
init ,

Γup = Γ
1/2
init (In + UGU∗) Γ

1/2
init ,

where G ∈ Rm×m is a diagonal matrix with entries

Gii =
Σ2

ii − 1

Σ2
ii

.

The Hessian and covariance of the posterior in Bayesian approach are similar:

Hpost = Γ
−1/2
prior (In + UΣ2U∗)Γ

−1/2
prior ,

Γpost = Γ
1/2
prior (In + UDU∗) Γ

1/2
prior,

where

Dii =
Σ2

ii

Σ2
ii + 1

.
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Linear Gaussian Case: Hessians

There exists a unitary matrix Ũ such that the Hessian can be expressed as,

Hup = MΓ
−1/2
init Ũ

{[ Σ2 0
0 0

]
+
[ 0 0

0 I

]}
Ũ∗Γ

−1/2
init ,

with regularization only applied in the data-uninformed directions

The Bayesian approach gives a similar expression:

Hpost = Γ
−1/2
prior (UΣ2U∗ + I )Γ

−1/2
prior = Γ

−1/2
prior Ũ

{[ Σ2 0
0 0

]
+
[ I 0

0 I

]}
Ũ∗Γ

−1/2
prior ,

with regularization applied in all directions.
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Ũ∗Γ

−1/2
init ,

with regularization only applied in the data-uninformed directions

The Bayesian approach gives a similar expression:

Hpost = Γ
−1/2
prior (UΣ2U∗ + I )Γ

−1/2
prior = Γ

−1/2
prior Ũ
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Example: Linear Advection Diffusion

Consider the advection-diffusion equation

∂u

∂t
− κ∆u + v · ∇u = 0 ∀(x , t) ∈ Ω× (0,T ),

∇u · n = 0 ∀(x , t) ∈ ∂Ω× (0,T ),

u(·, 0) = λ ∀x ∈ Ω,

where κ is a diffusion coefficient and v is a non time-varying velocity field.

Use FEniCS for forward model and hIPPYlib for optimization.

Observations are pointwise observations of u at t = 3

Generate πobs
D using data-generating point in Λ and Gaussian noise.

Compare the data-generating point and the MUD point.

Dimension of both the discretized parameter and state spaces is 7863.

Optimization with inexact-Newton globalized with a backtracking line search.
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Example: Linear Advection Diffusion

(a) t = 0 (b) t = 3

Figure: Maximum of data-generating distribution (left) and corresponding observations
at t = 3 (right).
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Example: Linear Advection Diffusion

(a) λMUD (b) MUD Predictions

Figure: Maximum of the updated density (left) and the corresponding predictions at
t = 3 (right).
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Example: Linear Advection Diffusion

(a) t = 0 (b) λMUD (c) Bayesian λMAP

Figure: Data-generating point (left), MUD point (middle), and MAP point (right).
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Example: Linear Advection Diffusion

Parameters MAP Point MUD Point
Nd rank Ns Jmis ||∇J||2 Ns Jmis ||∇J||2
10 10 62 3.032e-01 1.156e-09 54 4.784e-17 1.061e-06
20 20 78 1.584e+00 2.124e-08 100 3.710e-13 3.318e-07
50 29 128 1.262e+01 4.014e-07 142 3.689e+00 2.979e-07

100 36 150 1.595e+01 6.327e-08 148 4.153e+00 5.128e-08
200 43 170 1.850e+01 5.962e-07 172 1.045e+01 2.137e-07
500 49 182 1.786e+01 4.324e-07 192 8.802e+00 6.837e-07

Table: Scaling study for coarse mesh (n = 2023). Nd is the dimension of the data space,
rank is the number of eigenvectors used in the low rank decomposition, Ns is the total
number of model evaluations, Jmis is final value of the misfit portion of the cost function,
and ||∇J||2 is the final value of the norm of the gradient.

Note what happens to Jmis when the rank is less than Nd .
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Example: Linear Advection Diffusion

Parameters MAP Point MUD Point
Nd rank Ns Jmis ||∇J||2 Ns Jmis ||∇J||2
10 10 70 1.234e-01 4.200e-08 60 2.535e-15 2.046e-06
20 20 92 3.525e+00 9.896e-09 86 1.937e-11 2.845e-07
50 30 130 1.141e+01 3.238e-07 130 8.924e+00 2.361e-07

100 38 162 1.519e+01 3.837e-07 172 9.352e+00 5.971e-08
200 40 166 1.631e+01 1.796e-07 168 1.185e+01 6.281e-07
500 48 194 1.755e+01 8.434e-08 194 4.699e+00 4.714e-08

Table: Scaling study for refined mesh (n = 7863). Nd is the dimension of the data space,
rank is the number of eigenvectors used in the low rank decomposition, Ns is the total
number of model evaluations, Jmis is final value of the misfit portion of the cost function,
and ||∇J||2 is the final value of the norm of the gradient.

Note what happens to Jmis when the rank is less than Nd .
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Partial Linearization for Nonlinear Maps

For nonlinear maps, the push-forward is typically non-Gaussian

“De-regularization” term is difficult to characterize.

Often find MAP point, λMAP, to obtain initial guess for λMUD.

We can linearize around λMAP:

f (λ) ≈ f (λMAP) + A(λ− λMAP).

Use this linearization to approximate the de-regularization term:

JPL(λ) =
1

2
||Γ−1/2

obs (f (λ)− q)||Rm +
1

2
||R1/2(λ− λ)||L2(Ω),

R = Γ−1
init − A∗(AΓinitA

∗)−1A,

which allows us to employ the scalable approximation procedures.
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Example: Hyper-elasticity

Consider the equations for the displacement of a compressible Mooney-Rivlin solid:

min
u∈V

Π(u) =

∫
Ω

ψ(u) dx −
∫

Ω

B · u dx −
∫
∂Ω

T · u dS ,

ψ(u) = C1(I 1 − 3) + C2(I 2 − 3) + C3(J − 1)2,

Given a data-generating distribution on the first coefficient in the
strain-energy density C1 (λ = log(C1)).

Pointwise observations of the boundary displacement.

Maximum of data-generating distribution is piecewise constant with value of
0.3 inside a small inclusion and 0.1 everywhere else in the domain.

Dimension of the parameter and state spaces is 36905 and 14487 respectively.

Optimization used inexact-Newton CG.
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Example: Hyper-elasticity

(a) Data-generating contour (b) λMUD contour

(c) Data-generating predictions (d) λMUD predictions
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Conclusions and Future Work

Some inverse problems are best posed as constructive pullback probability
measures

Solution may not be unique, i.e., multiple probability measures can have the
same pushforward

Data-consistent inversion borrows ideas from Bayesian inference to obtain
existence, uniqueness and stability

Standard approach relies on density estimation on observations

Shown we can leverage connections with deterministic optimization to
construct scalable approximations

Future work will connect this with [Pilosov et al 2023] for parameter estimation.
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Thanks! Questions?
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Questions?
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