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Figure: Additive manufacturing and high-throughput testing provides new data science
challenges.
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A Deterministic Inverse Problem

» m) SIS

Problem
Given some observed data, find A € A that best predicts the data.
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@ Solutions may not be unique without additional assumptions.

@ Requires solving several deterministic forward problems.
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A Stochastic Inverse Problem

Problem

Given some observed data and an assumed noise model, find the parameters that
are most likely to have produced the data.
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A Different Stochastic Inverse Problem

N-- -

Problem

Given a probability density on observations, find a probability density on A such
that the push-forward matches the given density on the observed data.
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A Different Stochastic Inverse Problem

N-- -

Problem

Given a probability density on observations, find a probability density on A such
that the push-forward matches the given density on the observed data.

@ Solutions may not be unique without additional assumptions.
@ We only need to solve a single stochastic forward problem.
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Notation

We assume we are given:

@ A finite-dimensional parameter space, A.
@ A parameter-to-observation/data map, Q : A — D = Q(A)
© A observed/target probability measure on (D, Bp), denoted PS5, with

density 7% (typically from experimental data)

@ An initial probability measure on (A, By), denoted P't, with density it
(typically from prior beliefs or expert knowledge)

Tim Wildey (tmwilde@sandia.gov) Scalable DCI SIAM OP 2023 9/43



Notation

We assume we are given:

@ A finite-dimensional parameter space, A.

@ A parameter-to-observation/data map, Q : A — D = Q(A)

© A observed/target probability measure on (D, Bp), denoted PS5, with
density 7% (typically from experimental data)

@ An initial probability measure on (A, By), denoted P't, with density it
(typically from prior beliefs or expert knowledge)

We need to compute:

@ The push-forward of the initial density through the model.

@ In other words, we need to solve a forward UQ problem using the initial.

o We use wged to denote this push-forward density.
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A Key Assumption

Predictability Assumption

We assume that the observed probability measure, Pobs s absolutely continuous
with respect to the push-forward of the initial, P%ed.

s

pred
D

Good Initial Bad Initial
(Cannot predict all observations)
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A Solution to the Stochastic Inverse Problem

Given an initial probability measure, Pi" on (A, Bp) and an observed probability

measure, P, on (D, Bp), the probability measure Py¥ on (A, By) defined by

up init ﬂ.obs Q A
B = [ ([ o, OB T dn ) dun(a). ¥A < By

solves the stochastic inverse problem.

Tim Wildey (tmwilde@sandia.gov)

Scalable DCI

SIAM OP 2023 11/43
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Given an initial probability measure, Pt on (A, Bp) and an observed probability
measure, P9, on (D, Bp), the probability measure Py¥ on (A, Bp) defined by

up _ 7I_init ﬂ-'ons( Q()‘))
rea = [ ([ oy TSN Q()\))dMA,q(A)) dun(q), YA € By

solves the stochastic inverse problem.

The updated measure of N\ is 1.
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A Solution to the Stochastic Inverse Problem

Given an initial probability measure, Pt on (A, Bp) and an observed probability
measure, P9, on (D, Bp), the probability measure Py¥ on (A, Bp) defined by

up _ 7I_init ﬂ-'ons( Q()‘))
rea = [ ([ oy TSN Q()\))dMA,q(A)) dun(q), YA € By

solves the stochastic inverse problem.

The updated measure of N\ is 1.

PPy¥ is stable with respect to perturbations in P%* and in Pit.

For details: [Combining Push-forward Measures and Bayes’ Rule to Construct Consistent
Solutions to Stochastic Inverse Problems, BJW. SISC 40 (2), 2018.]
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A Solution to the Stochastic Inverse Problem

Given an initial probability measure, Pi" on (A, Bp) and an observed probability
measure, P, on (D, Bp), the probability measure Py¥ on (A, By) defined by

up init ﬂ.obs Q A
B = [ ([ o, OB T dn ) dun(a). ¥A < By

solves the stochastic inverse problem.

The updated density is:

71_up _ 7_l,init 7T':)DbS(Q()‘))
R S C)

e Both 7ifit and 7% are given.

o Computing 72 requires a forward propagation of the initial density.
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A Parameterized Nonlinear System

Consider a parameterized nonlinear system of equations:

Muptus = 1

2 — Ui =

Quantity of interest is the second component: Q(\) = us.
Two inputs, one output
Given 752 ~ N(0.3,0.0252).

Given a uniform initial density.

Use 10,000 samples from the initial and a standard KDE to approximate the
push-forward.

o Use standard rejection sampling to generate samples from 7,".
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A Parameterized Nonlinear System
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A Parameterized Nonlinear System

= Pushforward of prior
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A Parameterized Nonlinear System

161 —— PF Initial
=== Observed
== = PF Updated

-0.50

-0.75

-1.00 =
~1.00 -0.75 -0.50 -0.25 0.00 025 050 075 1.00 0.0 0.1 0.2 0.3 0.4 0.5 0.6

Figure: Samples from the updated density (left) and a comparison of 73, wged and

push-forward of the updated density (right).
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A Higher-Dimensional PDE-based Example

Example

Consider the classical model for single-phase incompressible flow in porous media,
~V - (K(\,x)Vp(N)) =0, xe€Q=][0,1]?

with p = 1 along the left boundary and p = 0 along the right boundary.
We assume log(K (A, x)) is described by a Karhunen-Loeve (KL) expansion.
We use correlation length of 0.01 in each direction and retain 100 terms.

- 'FI..

Realizations of permeability Realizations of pressure

PDF for Qol
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A Higher-Dimensional PDE-based Example

@ The Qol is the pressure at (0.0540, 0.5487).
@ Use 10,000 samples and a KDE to approximate the push-forward of the initial.
o Assume 7 ~ N(0.7,1.0E-4).

40 1 —— Observed
—— PF Initial
30
20
10 |
0 4
T T

T T T
06 065 07 075 08 08 09
Quantity of interest
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Figure: The 1D marginals from the initial (red) and the updated (blue) for the first

KL-mode (upper-left) through the 100" KL-mode (lower-right).
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re Slightly More Interesting
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Push-forward of the Updated Matches the Observations

40 1 —— Observed
—— PF Initial
—— PF Updated
30
20
10 |
0 4
T T

T T T
06 065 07 075 0.8 085 0.9
Quantity of interest

Mean Variance
Observed 0.7 1.0E-4
PF-Updated | 0.7001 1.0170E-4
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Relationship with Statistical Bayesian Inference

Using Bayes theorem we can define a posterior density [Stuart 2010; Gelman et al
2013; Jaynes 1998, ...]:

#2(Mg) = mft () Y.
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Relationship with Statistical Bayesian Inference

Using Bayes theorem we can define a posterior density [Stuart 2010; Gelman et al
2013; Jaynes 1998, ...]:
-, (gl
A 0l) = () T,

Let A =[—1, 1] and consider the simple nonlinear map

g(A\) =X, p=135....

Here, p is not uncertain and are used to vary the nonlinearity.
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Relationship with Statistical Bayesian Inference

Using Bayes theorem we can define a posterior density [Stuart 2010; Gelman et al
2013; Jaynes 1998, ...]:
-, (gl
A 0l) = () T,

Let A =[—1, 1] and consider the simple nonlinear map

g(A\) =X, p=135....

Here, p is not uncertain and are used to vary the nonlinearity.

@ Assume a uniform initial /prior and 7 ~ N(0.25,0.12).

o For the statistical Bayesian approach, we use an observed value of
§ = 0.25 and assume a Gaussian noise model 7 ~ N(0,0.12).
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Comparing Push-forwards for Linear and Nonlinear Maps
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Comparing Push-forwards for Linear and Nonlinear Maps
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The Bayesian and measure-theoretic formulations solve different problems, give
different densities and make different predictions.
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Connections with Deterministic Optimization

Consider the linear map g = A\ and 7t ~ N(X, Tinit), and 7225 ~ N(, Tobs)-
The updated density is given by,

u _ — 1 _ _
TP (N) ~ exp(— (fnrobi“(AA —)|m + ||rob1/2(A =N = ST AN = N)Em))
2

Data mismatch Tikhonov regularization Un-regularization

Same as statistical Bayesian

where FA = ArinitA*.
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Connections with Deterministic Optimization

Consider the linear map g = A\ and 7t ~ N(X, Tinit), and 7225 ~ N(, Tobs)-
The updated density is given by,

u _ — 1 _ _
TP (N) ~ exp(— (fnro.,i”(AA—q)ném ||r V2O = M)z — ST A = X))
2

obs

Data mismatch Tikhonov regularization Un-regularization

Same as statistical Bayesian
where FA = ArinitA*.

The point that maximizes the updated density, denoted Ayuyp, is defined by

Amup = argmin  J()),
YA

where

1. —1/2 _ ~1/2 < 1. —1/2 <
JO) = SIS (AN = @)+ 31Tt — Dl — ST 2A %)

init
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Connections with Deterministic Optimization

We can rewrite the regularization terms as,
init

1, - 1, _ -
ST 2= Dl — ST AN = Dl =

init

%(A — )T (T = A (AT A")LAY(A — 3)

R

Regularization matrix: R =T} — A (A A%) LA

init

If Ais invertible, then R = 0.
= Regularization is “turned off” if there is a unique solution.

More generally, regularization is only applied in directions not informed by the
map/data.
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Connections with Deterministic Optimization

Bayesian MAP Point:
| : 1l Ci¥
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Data mismatch Tikhonov regularization Objective function
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Comparison of Computational Effort (Naive Approach)

MAP Poi

Preli

inary computations:

None

Objective function evaluation:

. —1 _ _ —1
Inputs: A, x, rinit o %, Gy robs
Compute: g = Ax
Set: Ax =x —xand Ag=qg — q
5 _ 1A, 1 15, Tr—1
Return: J(x) = 549 T obs Aq + 5Ax Finit Ax

(1 forward solve)

Gradient evaluation:
LAk —1 =il

Inputs: A%, Ax, [0, Ag, T
Compute: g = AT

1 o
obs 24 (1 adjoint solve)

Return: VJ(x) = g + It Ax

Hessian evaluation on vector v:

. * —1 —1
Inputs: A, A™, rinit' robs’ v
Compute: z = Av (1 forward solve)
. _oaxp—1 o
Compute: w = A T obs? (1 adjoint solve)
Return: Hv = w + rinit v
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Comparison of Computational Effort (Naive Approach)

Preliminary computations:

None

Objective function evaluation:

. —1 _ _ —1

Inputs: A, x, rinit 2 % @ robs

Compute: g = Ax

Set: Ax =x —xand Ag=qg — q

Return: J(x) = 1AqTr*1Aq+ 1axT r.n.tlAX

(1 forward solve)

Gradient evaluation:
=i

Inputs: A*, Ax, I, obs

|n|t Ag. T

L 1
Compute: g = A* rob Aq

Return: VJ(x) = g + [ Ax

(1 adjoint solve)

Hessian evaluation on vector v:
. * r—1 —1

Inputs: A, A™, rinit’ robs’ v

Compute: z = Av (1 forward solve)

Compute: w = A*r*b1 (1 adjoint solve)

Return: Hv = w + I'Imt

MAP Point MUD Point

Preliminary computations:
Compute: T4 = (ATnieA*) ~1

Compute: & = A*

(M forward and adjoint solves)
Tops (1 adjoint solve)

(1 forward solve)

Compute: § = AX
H (1 adjoint solve)

Compute: z = A* Y]

Objective function evaluation:
. — o =il
Inputs: A, A*, x, rm-t . X G, G, T obs
Compute: g = Ax
Compute: w = A*TI'4(q — §)
Set: Ax =x —Xxand Agq=q — G

Return: J(x) = 1AqTr—1Aq+ LaxTr-tax — 1axTw

Ta
(1 forward solve)
(1 adjoint solve)

Gradient evaluation:
LAk =il =1 s o

Inputs: A™, Ax, rlmt q, robs' a2 %
Compute: g = A* (robs —Ta)q
Return: VJ(x) =g+ 2 — &+ T .

(1 adjoint solve)

|n|t

Hessian evaluation on vector v
. * r—1 —1
Inputs: A, A™, rinit’ robs' Fp v

Compute: z = Av (1 forward solve)

Compute: w = A™ (robs )z (1 adjoint solve)

Return: Hv = w + rlnlt
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Example: Random Linear Maps

Example
Consider the following random linear map,
A:R"— R™,
where n > m (more parameters than observations) and each entry is U(0,1).

The covariance of the prior and observed densities are given:
rinit - 1~0Hn; robs = 025]1,"

The mean of the initial and the mean of the observations are also U(0,1).
We assess the scalability with increasing n and m.
Trust-region Newton-CG method and reduce gradient to le-12.

For each case, repeat 25 times and report the average performance.
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Scaling With Dimension of Input Space (n)

Dimension of Output Space is Fixed: m = 10

n MAP Point MUD Point

Iters CG Misfit F+A Time Iters CG Misfit F+A Time
100 9.1 48.2 12.2 114.7 | 0.012 9.2 48.5 | 2.84e-13 | 147.6 | 0.012
500 9.2 55.1 60.7 128.6 | 0.026 9.2 55.6 | 3.96e-13 | 161.8 | 0.027
1000 | 10.6 | 61.7 | 121.9 | 144.6 | 0.109 10.7 | 61.9 | 3.06e-13 | 178.9 | 0.110
2000 | 11.0 | 62.9 | 242.8 | 147.8 | 0.549 11.0 | 63.9 | 2.76e-13 | 183.9 | 0.553
4000 | 11.2 | 65.3 | 484.1 | 153.0 | 2.88 11.3 | 66.8 | 3.75e-13 | 190.6 2.90
8000 | 12.4 | 71.4 | 965.6 | 167.7 19.7 12.6 | 73.0 | 8.59e-13 | 206.7 20.0

Table: Comparison of the number of optimization iterations, the number of CG
iterations, the value of the final data misfit, the average number of combined forward
and adjoint solves and the average run time in seconds.
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Scaling With Dimension of Output Space (m)

Dimension of Input Space is Fixed: n = 1000

m MAP Point MUD Point
Iters CG Misfit F+A Time Iters CG Misfit F+A Time
5 10.8 | 54.8 | 115.7 | 131.3 | 0.108 109 | 55.4 | 3.47e-13 | 156.6 | 0.109
10 10.6 | 61.7 | 121.9 | 144.6 | 0.109 10.7 | 61.9 | 3.06e-13 | 178.9 | 0.110
20 10.6 | 60.8 | 122.9 | 142.8 | 0.118 10.6 | 61.3 | 5.07e-13 | 197.5 | 0.118
40 109 | 57.2 | 125.4 | 136.2 | 0.128 109 | 57.8 | 2.79e-13 | 231.4 | 0.129
80 109 | 65.4 | 126.4 | 152.6 | 0.138 11.0 | 65.9 | 2.21e-13 | 327.7 | 0.139
160 | 11.8 | 82.4 | 131.8 | 188.4 | 0.202 11.6 | 79.7 | 1.18e-12 | 517.4 | 0.212

Table: Comparison of the number of optimization iterations, the number of CG
iterations, the value of the final data misfit, the average number of combined forward
and adjoint solves and the average run time in seconds.

Tim Wildey (tmwilde@sandia.gov) Scalable DCI SIAM OP 2023 28 /43



The Initial Measure in the Infinite-Dimensional Case

Similar to the Bayesian case [Stuart 2010], we have a Radon-Nikodym derivative

9P ) TE(Q)
dER T Q)

= we can consider random fields if Pl is chosen appropriately.
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The Initial Measure in the Infinite-Dimensional Case

Similar to the Bayesian case [Stuart 2010], we have a Radon-Nikodym derivative

9P ) TE(Q)
dEFE T Q)

= we can consider random fields if ]P""'t is chosen appropriately.

Let Tnit be defined by the biharmonic operator:
Finie = A% = (61 + 9V - (OV)) 2,

such that half powers, T /.t and Fm,t are easy to compute.

Tim Wildey (tmwilde@sandia.gov) Scalable DCI
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Linear-Gaussian Case: SVD and Low-Rank Approximations

o Assume Q(A) = A\, T ~ N(X, Finit), and 725 ~ N(, Tobs)-
o Set A* = M~1AT and U* = UT M where M is the mass matrix associated
with the discretized field.

o Similar to the Bayesian case [Bui-Thanh et al 2013], define A € R"*™ by
5 C1/2 ge—1/2
A= rinitA rc:bs
and denote the SVD of A by
A=UZVT, UeR™™ T eR™M VecR™m

where we impose U*U =1,,, VTV =1, and WT =1,,.
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Assume Q(A) = AN, 7 ~ N(X, Tinit), and 7225 ~ N(, Tobs)-
Set A* = M~1AT and U* = UT M where M is the mass matrix associated
with the discretized field.

Similar to the Bayesian case [Bui-Thanh et al 2013], define A € R"™*™ by

A=r¥2p-l/2

init obs

and denote the SVD of A by
A=UZVT, UeR™™ T eR™M VecR™m

where we impose U*U =1,,, VTV =1, and WT =1,,.
Solve efficiently using matrix-free randomized algorithms [Halko et al 2011].
Number of PDE solves scales linearly with the desired rank.

Effective rank depends on information content of data [Bui-Thanh et al 2013]
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Linear Gaussian Case: Hessians and Covariances

The Hessian and covariance of the updated density can be expressed as,

Hyp = Tt 2 (1o + U (22 = 1) U/,

init init
1/2 *\ rl/2
rUP = rin/it (I[" + uGU )rin/it’

where G € R™*™ is a diagonal matrix with entries
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Linear Gaussian Case: Hessians and Covariances

The Hessian and covariance of the updated density can be expressed as,

Hyp = Tt/ 2(Ip + U (22 = 1) UM/

init init
1/2 *\ rl/2
rUP = rin/it (I[" + uGU )rin/it’

where G € R™*™ is a diagonal matrix with entries

The Hessian and covariance of the posterior in Bayesian approach are similar:

Hpost = M2 (L, + US2 U2

prior prior
rpost = r;r/ér (]I" + UDU*) r;lar/iir’

where
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Linear Gaussian Case: Hessians

There exists a unitary matrix U such that the Hessian can be expressed as,

AU [t

Hyp = MT

with regularization only applied in the data-uninformed directions
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Linear Gaussian Case: Hessians

There exists a unitary matrix U such that the Hessian can be expressed as,

AU [t

Hyp = MT

with regularization only applied in the data-uninformed directions

The Bayesian approach gives a similar expression:

oo = Tyt 2(UE2U" + 2 = 220 [ 210 4 [ L0 N ger e

prior prior prior 0 | 0 prior

with regularization applied in all directions.
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Example: Linear Advection Diffusion

Consider the advection-diffusion equation

%—KAU—I—V'VUZO V(x,t) € 2 x (0, T),

Vu-n=0 V(x,t) €92 x(0,T),
u(,0) =X V¥xeqQ,

where £ is a diffusion coefficient and v is a non time-varying velocity field.

@ Use FEnICS for forward model and hIPPYIib for optimization.
Observations are pointwise observations of u at t = 3

Generate m° using data-generating point in A and Gaussian noise.
Compare the data-generating point and the MUD point.

Dimension of both the discretized parameter and state spaces is 7863.

Optimization with inexact-Newton globalized with a backtracking line search.
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Example: Linear Advection Diffusion

—05

—04

-0.0

(a) t=0 (b) t=3

Figure: Maximum of data-generating distribution (left) and corresponding observations
at t = 3 (right).

Tim Wildey (tmwilde@sandia.gov) Scalable DCI SIAM OP 2023 34 /43



Example: Linear Advection Diffusion

B

) Amup (b) MUD Predictions

—05

—04

-0.0

Figure: Maximum of the updated density (left) and the corresponding predictions at
t = 3 (right).
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Example: Linear Advection Diffusion

o5 — _0s
04 — 0. —04
03 0.3
0.2 0.2
0.1 3 0.1
0.0 -0 -0.0
(a) t=0

(b) Amup (c) Bayesian Ayap

Figure: Data-generating point (left), MUD point (middle), and MAP point (right).
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Example: Linear Advection Diffusion

Parameters MAP Point MUD Point

Ny | rank || N Jnis [IVJ]]2 N, Imis [IVJ]]2
10 10 62 | 3.032e-01 | 1.156e-09 || 54 | 4.784e-17 | 1.061e-06
20 20 78 | 1.584e+00 | 2.124e-08 || 100 | 3.710e-13 | 3.318e-07
50 29 128 | 1.262e+01 | 4.014e-07 || 142 | 3.689e+00 | 2.979e-07
100 | 36 150 | 1.595e+01 | 6.327¢-08 || 148 | 4.153e+00 | 5.128e-08
200 | 43 170 | 1.850e+01 | 5.962e-07 || 172 | 1.045e+01 | 2.137e-07
500 | 49 182 | 1.786e+01 | 4.324e-07 || 192 | 8.802e+00 | 6.837e-07

Table: Scaling study for coarse mesh (n = 2023). Ny is the dimension of the data space,
rank is the number of eigenvectors used in the low rank decomposition, Ns is the total
number of model evaluations, Juis is final value of the misfit portion of the cost function,
and ||V J||2 is the final value of the norm of the gradient.

Note what happens to Jnis when the rank is less than Ng.
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Example: Linear Advection Diffusion

Parameters MAP Point MUD Point

Ny | rank || N Jnis [IVJ]]2 N, Imis [IVJ]]2
10 10 70 | 1.234e-01 | 4.200e-08 || 60 | 2.535e-15 | 2.046e-06
20 20 92 | 3.525e+00 | 9.896e-09 || 86 | 1.937e-11 | 2.845e-07
50 30 130 | 1.141e+01 | 3.238e-07 || 130 | 8.924e+00 | 2.361e-07
100 | 38 162 | 1.519e+01 | 3.837e-07 || 172 | 9.352e+00 | 5.971e-08
200 | 40 166 | 1.631e+01 | 1.796e-07 || 168 | 1.185e+01 | 6.281e-07
500 | 48 194 | 1.755e+01 | 8.434e-08 || 194 | 4.699e+00 | 4.714e-08

Table: Scaling study for refined mesh (n = 7863). Ny is the dimension of the data space,
rank is the number of eigenvectors used in the low rank decomposition, N is the total
number of model evaluations, Juis is final value of the misfit portion of the cost function,
and ||V J||2 is the final value of the norm of the gradient.

Note what happens to Jnis when the rank is less than Ng.

38,43

Tim Wildey (tmwilde@sandia.gov) Scalable DCI SIAM OP 2023



Partial Linearization for Nonlinear Maps

For nonlinear maps, the push-forward is typically non-Gaussian
“De-regularization” term is difficult to characterize.

Often find MAP point, Amap, to obtain initial guess for Amup.

We can linearize around Auap:
f()\) ~ f(>\MAP) + A()\ — )\MAP)~

Use this linearization to approximate the de-regularization term:

_ _ 1 -
JpL(A) = -Ilrobls/2( £f(A) —9)|rm + §|IR1/2(/\ = Mz
R=T1— A*(Al,i:A*) 1A,

init

which allows us to employ the scalable approximation procedures.
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Example: Hyper-elasticity

Consider the equations for the displacement of a compressible Mooney-Rivlin solid:

E%iﬁ ﬂ(u)z/g@b(u) dx—/QB-udx—/BQT~udS,
w(u) = C1(71 — 3) + C2(72 — 3) + C3(J — 1)2,

Given a data-generating distribution on the first coefficient in the
strain-energy density C; (A = log((y)).

Pointwise observations of the boundary displacement.

Maximum of data-generating distribution is piecewise constant with value of
0.3 inside a small inclusion and 0.1 everywhere else in the domain.

Dimension of the parameter and state spaces is 36905 and 14487 respectively.

Optimization used inexact-Newton CG.
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Example: Hyper-elasticity

(a) Data-generating contour (b) Amup contour
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(c) Data-generating predictions (d) Amup predictions
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Conclusions and Future Work

@ Some inverse problems are best posed as constructive pullback probability
measures

@ Solution may not be unique, i.e., multiple probability measures can have the
same pushforward

o Data-consistent inversion borrows ideas from Bayesian inference to obtain
existence, uniqueness and stability

@ Standard approach relies on density estimation on observations

@ Shown we can leverage connections with deterministic optimization to
construct scalable approximations

@ Future work will connect this with [Pilosov et al 2023] for parameter estimation.
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Thanks! Questions?
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Thank you for your attention!

Questions?
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