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Problem Formulation

— 1
s /T s et s T (L(t,s,a) - Za(t)uz) o\
s,a 0

V(s) = fQT st dx

here s(t) solves Flt.s,4,a) =0 (2)
G(s(0),a) = 0

where F corresponds to the implicit equations associated with semi-discretization of the PDE:
% + Few.o(u,Vu,Au) = ((a) 3)
u =0 ondQ

and G defines the initial conditions of the system. More precisely, after discretizing in space:

F =2 _J[A cw +Vyu+P =0 |
94 — [Au+ Q¢ + Vyu + P(a)B] with s = |u| and a=|“
G = U(O)*UO =0
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Gradient-Based Optimization

a local approach
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Gradient-Based Optimization: Motivation for Lagrangian

To find an optimal control a* for the objective function J(s, a), it is natural to consider the gradient:
T T
V) = / Val(t,s,a)dt + VaW(s(T)) = / Og,s + ar + v, 5)
0 0

However, computing this directly is typically infeasible due to the appearance of Vs on the right-hand-side.
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Gradient-Based Optimization: Motivation for Lagrangian

To find an optimal control a* for the objective function J(s, a), it is natural to consider the gradient:
T T
V. = /0 Val(t,s,a)dt + V,¥(s(T)) = /0 OLVas + Stdt + 2YV.s|,_, (5)

However, computing this directly is typically infeasible due to the appearance of Vs on the right-hand-side.

Fortunately, a workaround exists which is based on the following observation:

VaJ = VaL forall A(t), u(t) when we set (6)

L = AT L(t,s,a) + ATF(t,s,5,a)dt + u' G(s(0),a) + W(s(T)) (7)

This allows us to avoid calculating Vs by choosing A, it so that these problematic terms cancel out.
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Numerical Algorithm

F(t,s,$,a) = 0 L
l.) Integrate for s forward in time

s(0) = s

1) Integrate 9s 9s 0t s s for A backward in time
NT) = —GL[%]7
s L'as

111.) Compute V,J using the reduced expression:

T oL OF OF
Vil = = 4 ATt AT
? o Oa tAGe T EE

_10G
[Gs(0)] 5 (8)

t=0

Now the optimal control a* can be found using gradient-based search algorithms with only one additional

PDE solve required for each gradient calculation (i.e. integrating backward in time for \).
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AN
Local Nature of Solutions

Recall that the dynamics in the original problem formulation were actually parameterized by (¢, w, ¢):

%+ Fewo(u,Vu,Bu) = ((a)
u =0 onodQ

Since the gradient-based search is designed to converge to one specific action sequence a*,
the entire process must be repeated whenever new parameters (¢/,w’, ¢’) are encountered.
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Reinforcement Learning

gradient-free search
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Reinforcement Learning: Markov Policy Approach

)

=t a(tn)
) a(tp) =
I 'ﬁ'v":z:::z (tn) [B(tn)

1616

3232 (x10) (x10)

-

Replace direct search for optimal a* = {a(0), a(t1),...,a(T)} with one-step-ahead policy model;
i.e. propose the next action a(t,) based on the current system state s(ty).

—» does not require gradients from PDE system, only needs a differentiable policy mg
— uses intermediate observations of the system and loss to propose controls sequentially

— in principle, can be applied to several distinct problem scenarios at the same time
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AN
Reinforcement Learning: Trial-and-Error Strategy

1.) Sample collection of configurations {(&;,w;, ¢;)} PDE Environment
< Event
11.) Apply policy to each system fromt =0tot =T . Response

I Assets

g S(tn+]_), AJ

11l.) Evaluate outcomes {J(s;, a;)} for current policy

IV.) Update the policy based on outcomes and repeat

- m - -

s(tn) <

[0 Performance is gauged w.r.t. state “value” estimates:

RL Agent

)
o(t,s(t)) = Enx, Ut L(t,s,a)dt + W(s(T))| (10)

9/23



Reinforcement Learning Policies for Adaptive Control

Trained RL policy provides approximate solutions for a complete family of problems {(&;,w;, ¢;)}:

Solution at t = 0.00 Solution at t = 0.00 Solution at t = 0.00

. . . . i.) poor data efficiency
But without leveraging PDE gradients/structure we find:
ii.) suboptimal convergence
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Approximate HJB

semi-global solutions
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Dynamic Programming Perspective

. T . 2 = f(t,s,a)
minJ(s,a) = / L(t,s,a)dt + W(s(T)) subject to ¢ (11)
2 0 5(0) = 59

where f(t,s,a) = ((a) — F¢w,¢(u,Vu,Au) ~ dynamics for a given configuration (§,w, ¢).

O Aiming for a procedure applicable to multiple configurations, we first augment the state variable:

sT = [—u—,ﬁ,w,qﬁ] (12)
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AN
Core Mathematical Elements N\

\

N\

-
Value Function: &(t,s) = ir;fJ(t,s, a) where J(t,s,a) = / L(t,s,a)dt + W(s(T)) (13)
t

—» extends analysis to handle multiple problem configurations ( as in RL approach )
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AN
Core Mathematical Elements N\
T \
Value Function: ®(t,s) = infJ(t,s,a) where J(t,s,a) = / L(t,s,a)dt + W(s(T)) (13)
a t
— extends analysis to handle multiple problem configurations ( as in RL approach )
Hamiltonian: H(t,s,a,p) = p(t) f(t,s,a) — L(t,s,a) (14)

— incorporates mathematical structure of system dynamics ( similar to local approach )
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Core Mathematical Elements

-
Value Function: ®(t,s) = infJ(t,s,a) where J(t,s,a) = / L(t,s,a)dt + W(s(T))
2 t

— extends analysis to handle multiple problem configurations ( as in RL approach )

Hamiltonian: H(t,s,a,p) = p(t) f(t,s,a) — L(t,s,a) (14)
— incorporates mathematical structure of system dynamics ( similar to local approach )

8 * >k

= p(t) = VsH(t,s*, a

5eP(t) SH(t,s", 2%, p) where s*, a* ~ optimal state/control (15)

Adjoint Equation:
p(T) = VsW(s*(T))
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Pontryagin Maximum Principle: Feedback Form

For any optimal state/costate pair (s*, p*), the Pontryagin Maximum Principle states that:

a*(t) € argsup, H(t,s", a,p") (16)

In practice, this simple property can provide remarkably precise information about the optimal control a*(t).

In particular, when the dynamics f and running cost L are differentiable with respect to a:

VaH(t,s,a,p) = p'Vaf — Vil =0 (17)

= express optimal control in terms of state s and adjoint variable p

Feedback Form: a*(t) = A(t,s*(t), p*(t)) (18)

14/23




Hamilton-Jacobi-Bellman Equations

If ® is twice differentiable at (t,s*(t)) for t < T, then an optimal costate/adjoint variable is given by:

pr(t) = —Vs&(t,s7(1)) (19)
Moreover, the following Hamilton-Jacobi-Bellman equations (HJB) hold at every state s and time t < T:

%(D(t,s) = H(t,s*, a,—Vsd(t,s)) (20)

w/ a*(t) = A(t,s*(t), —Vs®(t,s*(t))) (21)
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Technical Approach for Approximate HJB Solutions

[0 The feedback form gives an expression for optimal control in terms of optimal state and costate.

[0 The optimal costate is given by the gradient of the value function.

:> The control problem can be reduced to approximating the value function.
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Technical Approach for Approximate HJB Solutions

[0 The feedback form gives an expression for optimal control in terms of optimal state and costate.

[0 The optimal costate is given by the gradient of the value function.

:> The control problem can be reduced to approximating the value function.

Goal: Construct a differentiable surrogate ®y(t,s) for the true value function which satisfies:

Dog(t,s) = H(t,s*, A(t,s,—Vsdy(t,s)), —Vsdy(t,s))
o(T,s(T)) = W(s(T)) (22)
Vs®y(T,s(T)) = Vs¥(s(T))
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Feedback Form Calculation

H(t,s,a,p) = p(t)Tf(t,s,a)Af L(t,s,a)

f(t;5,8) = [Au+ Qe + Vou + P(@)f] and  L(t;5,9) = 1[a?

VoH = p'Vaf — Vil =0
el _ T 0 el _
= p'P-p8" =0
= B =Plp

B(t) = —PTV,d4(t,s)

(23)

(24)

(25)

(26)
(27)

(28)

(29)
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Value Function Dynamics

H(t,s,a,p) = p(t)Tf(t,s7 a) — L(t,s,a)

f(t,s,a) = [Au + Q¢ + Vypu + P(a)B] and L(t,s,a) = %||a||2 (31)
Ddg(t,s) = H(t,s*, N(t,s,—Vsby(t,s)), —Vsby(t,s)) (32)
Sy = —[Vitg] " [Au+ Qg + Vgu + P(@)8] — L(llell? + [18]12) (33)

where o and 3 are computed using the feedback form expressions and Vs ®(t,s).
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RL/HJB Comparison: Example 1

Training Trajectories RL/HJB
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RL/HJB Comparison: Example 1

PDE Solves Required by RL/H]JB

6540
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RL/HJB Comparison: Example 2

Training Trajectories RL/HJB
— PPO —— TD3 —— HJB

10t

Average Suboptimality

0 2000 4000 6000 8000 10000 12000 14000

PDE Solves
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RL/HJB Comparison: Example 2

PDE Solves

PDE Solves Required by RL/H]JB
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Summary and Concluding Remarks

O Single PDE configuration

[0 Involved implementation

(gradient calculations)

[0 Optimal control solutions
(relative to RL/HJB)

OO Multiple configurations

O Simple implementation

(black-box/no gradients)

[0 Suboptimal solutions
(with more PDE solves)

AN

\

Gradient-Based Methods Reinforcement Learning Approximate HJB

OO0 Multiple configurations

O Involved implementation
(gradient calculations)

[0 Near optimal solutions
(with less PDE solves)

AN

\

N\

—> Local methods yield most accurate solutions, but require precise knowledge of system configuration

— HJB leverages offline calculations to form policies which can adapt to a broad range of configurations
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