
Exceptional  service in the national  interest

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly 
owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Reinforcement Learning for Adaptive Control

of PDE-Constrained Environments

Nick Winovich†, Bart van Bloemen Waanders†

Deepanshu Verma‡, Lars Ruthotto‡

†Sandia National Laboratories

‡Emory University

SAND2023-04412C

SAND2023-04412CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do
not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly
owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract
DE-NA0003525.



Problem Formulation
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min
s,a

J(s, a) =

∫ T

0
L(t, s, a) dt + Ψ(s(T ))

(
L(t, s, a) = 1

2
‖a(t)‖2

Ψ(s) =
∫

ΩT
s+ dx

)
(1)

where s(t) solves

 F (t, s, ṡ, a) = 0

G(s(0), a) = 0
(2)

where F corresponds to the implicit equations associated with semi-discretization of the PDE: ∂u
∂t

+ Fξ,ω,φ(u,∇u,∆u) = ζ(a)

u = 0 on ∂Ω
(3)

and G defines the initial conditions of the system. More precisely, after discretizing in space:

 F = ∂u
∂t
−
[
Au + Qξ,ω + Vφu + P(α)β

]
= 0

G = u(0) − u0 = 0
with s =

 |u
|

 and a =

[
α

β

]
(4)
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Gradient-Based Optimization
a local approach



Gradient-Based Optimization: Motivation for Lagrangian
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To find an optimal control a∗ for the objective function J(s, a), it is natural to consider the gradient:

∇aJ =

∫ T

0
∇aL(t, s, a) dt + ∇aΨ(s(T )) =

∫ T

0

∂L
∂s
∇as + ∂L

∂a
dt + ∂Ψ

∂s
∇as

∣∣
t=T

(5)

However, computing this directly is typically infeasible due to the appearance of ∇as on the right-hand-side.

Fortunately, a workaround exists which is based on the following observation:

∇aJ = ∇aL for all λ(t), µ(t) when we set (6)

L ≡
∫ T

0
L(t, s, a) + λTF (t, s, ṡ, a) dt + µTG(s(0), a) + Ψ(s(T )) (7)

This allows us to avoid calculating ∇as by choosing λ, µ so that these problematic terms cancel out.
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Numerical Algorithm
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I.) Integrate

 F (t, s, ṡ, a) = 0

s(0) = s0

for s forward in time

II.) Integrate


∂L
∂s

+ λT
(
∂F
∂s
− ∂

∂t
∂F
∂ ṡ

)
− λ̇T ∂F

∂ ṡ
= 0

λ(T ) = − ∂Ψ
∂s

[
∂F
∂ ṡ

]−1
for λ backward in time

III.) Compute ∇aJ using the reduced expression:

∇aJ =

∫ T

0

∂L

∂a
+ λT

∂F

∂a
dt + λT

∂F

∂ṡ

∣∣∣
t=0

[
Gs(0)

]−1 ∂G

∂a
(8)

Now the optimal control a∗ can be found using gradient-based search algorithms with only one additional

PDE solve required for each gradient calculation (i.e. integrating backward in time for λ).



Local Nature of Solutions
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a0 a1
a2

a3

a4

a∗

Recall that the dynamics in the original problem formulation were actually parameterized by (ξ, ω, φ): ∂u
∂t

+ Fξ,ω,φ(u,∇u,∆u) = ζ(a)

u = 0 on ∂Ω
(9)

Since the gradient-based search is designed to converge to one specific action sequence a∗,

the entire process must be repeated whenever new parameters (ξ′, ω′, φ′) are encountered.
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Reinforcement Learning
gradient-free search



Reinforcement Learning: Markov Policy Approach
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Replace direct search for optimal a∗ = {a(0), a(t1), . . . , a(T )} with one-step-ahead policy model;

i.e. propose the next action a(tn) based on the current system state s(tn).

does not require gradients from PDE system, only needs a differentiable policy πθ

uses intermediate observations of the system and loss to propose controls sequentially

in principle, can be applied to several distinct problem scenarios at the same time

a(tn) =

[
α(tn)

β(tn)

]



Reinforcement Learning: Trial-and-Error Strategy
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I.) Sample collection of configurations {(ξi , ωi , φi )}

II.) Apply policy to each system from t = 0 to t = T

III.) Evaluate outcomes {J(si , ai )} for current policy

IV.) Update the policy based on outcomes and repeat

Performance is gauged w.r.t. state “value” estimates:

Φ(t, s(t)) = Eπθ

[∫ T

t
L(t, s, a)dt + Ψ(s(T ))

]
(10)



Reinforcement Learning Policies for Adaptive Control
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Trained RL policy provides approximate solutions for a complete family of problems {(ξi , ωi , φi )}:

But without leveraging PDE gradients/structure we find:
i.) poor data efficiency

ii.) suboptimal convergence
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Approximate HJB
semi-global solutions



Dynamic Programming Perspective
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min
a

J(s, a) =

∫ T

0
L(t, s, a) dt + Ψ(s(T )) subject to

 ∂s
∂t

= f (t, s, a)

s(0) = s0

(11)

where f (t, s, a) = ζ(a) − Fξ,ω,φ(u,∇u,∆u) ∼ dynamics for a given configuration (ξ, ω, φ).

Aiming for a procedure applicable to multiple configurations, we first augment the state variable:

sT =
[

— u — , ξ , ω, φ
]

(12)



Core Mathematical Elements
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Value Function: Φ(t, s) = inf
a
J(t, s, a) where J(t, s, a) =

∫ T

t
L(t, s, a) dt + Ψ(s(T )) (13)

extends analysis to handle multiple problem configurations ( as in RL approach )

Hamiltonian: H(t, s, a, p) = p(t)T f (t, s, a) − L(t, s, a) (14)

incorporates mathematical structure of system dynamics ( similar to local approach )

Adjoint Equation:

 ∂
∂t

p(t) = ∇sH(t, s∗, a∗, p)

p(T ) = ∇sΨ(s∗(T ))
where s∗ , a∗ ∼ optimal state/control (15)
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Pontryagin Maximum Principle: Feedback Form
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For any optimal state/costate pair (s∗, p∗), the Pontryagin Maximum Principle states that:

a∗(t) ∈ arg supa H(t, s∗, a, p∗) (16)

In practice, this simple property can provide remarkably precise information about the optimal control a∗(t).

In particular, when the dynamics f and running cost L are differentiable with respect to a:

∇aH(t, s, a, p) = pT∇af − ∇aL = 0 (17)

⇒ express optimal control in terms of state s and adjoint variable p

Feedback Form: a∗(t) = Λ(t, s∗(t), p∗(t)) (18)



Hamilton-Jacobi-Bellman Equations
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If Φ is twice differentiable at (t, s∗(t)) for t < T , then an optimal costate/adjoint variable is given by:

p∗(t) = −∇sΦ(t, s∗(t)) (19)

Moreover, the following Hamilton-Jacobi-Bellman equations (HJB) hold at every state s and time t < T :

∂
∂t

Φ(t, s) = sup
a
H(t, s∗, a,−∇sΦ(t, s)) (20)

w/ a∗(t) = Λ(t, s∗(t),−∇sΦ(t, s∗(t))) (21)



Technical Approach for Approximate HJB Solutions
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The feedback form gives an expression for optimal control in terms of optimal state and costate.

The optimal costate is given by the gradient of the value function.

⇒ The control problem can be reduced to approximating the value function.

Goal: Construct a differentiable surrogate Φθ(t, s) for the true value function which satisfies:


∂
∂t

Φθ(t, s) = H(t, s∗, Λ(t, s,−∇sΦθ(t, s)) , −∇sΦθ(t, s))

Φθ(T , s(T )) = Ψ(s(T ))

∇sΦθ(T , s(T )) = ∇sΨ(s(T ))

(22)
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Feedback Form Calculation
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H(t, s, a, p) = p(t)T f (t, s, a) − L(t, s, a) (23)

f (t, s, a) =
[
Au + Qξ,ω + Vφu + P(α)β

]
and L(t, s, a) = 1

2
‖a‖2 (24)

∇aH = pT∇af − ∇aL = 0 (25)

∂
∂β
H = pT ∂

∂β
f − ∂

∂β
L = 0 (26)

⇒ pTP − βT = 0 (27)

⇒ β = PTp (28)

β(t) = −PT∇uΦθ(t, s) (29)



Value Function Dynamics
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H(t, s, a, p) = p(t)T f (t, s, a) − L(t, s, a) (30)

f (t, s, a) =
[
Au + Qξ,ω + Vφu + P(α)β

]
and L(t, s, a) = 1

2
‖a‖2 (31)

∂
∂t

Φθ(t, s) = H(t, s∗, Λ(t, s,−∇sΦθ(t, s)) , −∇sΦθ(t, s)) (32)

∂
∂t

Φθ = −
[
∇sΦθ

]T [
Au + Qξ,ω + Vφu + P(α)β

]
− 1

2
(‖α‖2 + ‖β‖2) (33)

where α and β are computed using the feedback form expressions and ∇sΦ(t, s).



RL/HJB Comparison: Example 1
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RL/HJB Comparison: Example 1
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RL/HJB Comparison: Example 2
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RL/HJB Comparison: Example 2
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Summary and Concluding Remarks
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Gradient-Based Methods

Single PDE configuration

Involved implementation

(gradient calculations)

Optimal control solutions

(relative to RL/HJB)

Reinforcement Learning

Multiple configurations

Simple implementation

(black-box/no gradients)

Suboptimal solutions

(with more PDE solves)

Approximate HJB

Multiple configurations

Involved implementation

(gradient calculations)

Near optimal solutions

(with less PDE solves)

Local methods yield most accurate solutions, but require precise knowledge of system configuration

HJB leverages offline calculations to form policies which can adapt to a broad range of configurations
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