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Full-Order Model

N
= Consider state variable X(ta p) c R™

= N ranges from “large” to "very large” (10%T not uncommon).

= 4 isvector of parameters.

=  Dynamics take the form

x(t, 1) = Ax(t, p) + 1 (x(¢, 1))

= (an be expensive to solve. How to reduce cost?




Reduced-Order Models

High-fidelity PDE simulations are expensive.

semi-discretization blows up dimensionality.

e set JONN
5 ;ﬁ‘:’-’;?!%‘?ﬁﬁ%&i\w

Good results possible without solving full PDE?

Standard is to encode -> solve -> decode.

o Linear: RBM, etc.

Nonlinear: kernel methods, neural networks, etc

https://mpas-dev.github.io/atmosphere/atmosphere.html
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Introduction to Model . . . : , .
Hamiltonian Model Reduction Metriplectic Model Reduction

« Joint work with Max Gunzburger (UT Austin), Lili Ju (U of SC),
Zhu Wang (U of SC), and Irina Tezaur (Sandia CA).




ldea Behind ROM

= Do we really need all 10 dimensions?
= No, if (t, ) » x(t, p) is unique.

= S={x(t,p)|t€[0,T], u€D}cRY,

solution manifold.
= (n, +1)dimensions enough for

loss-less representation of &.

= How can we approximate & efficiently?




Proper Orthogonal Decomposition

= Do PCA on solution snapshots X = x(tj,pu;), 1<j <N,.

= Yields X ~ UXVT, Galerkin projection {f( — U)A(J

» Orthogonality of POD basis TJ implies, for X € R"™ f: fox,

x = UTAUx + UTf (Ux) := Ax + f (X)

= ODE of size N converted to ODE of size n.




Does this work?

= Trained on one period Lo-

0.8 1

= Tested on five o

0.4 1

0.2 1

0.0

—0.29 __ Fom solution

—-= Nalve ROM
—0.4 9 —=- Hamiltonian ROM

T
0.0 0.2




Hamiltonian Systems

=  Archetype for conservative systems: X = {X, H} = LVH

Governed by scalar potential function H and SS matrix L

= L defines (potentially degenerate) Poisson bracket {F,G} = VF -LVG .

Satisfies Jacobi identity {F,{G,H}} +{G,{H,F}}+{H,{F,G}} =0
=  Guarantees that flowis L V.H and energy is conserved:

H(x)=%x-VH=LVH-VH=-LVH-VH=0




Exa m p I e S) H a m i Ito n i a n Syste m S GIFs courtesy of Wikipedia under Creative Cornmons license

Real Space Phase Space

AN

= Undamped simple harmonic oscillator: mi = —kx

1

H=-—@p+q¢) v=a=("

2m -1 0, T

k Velocity
v m o

= |ncompressible Euler: (w =w - Vu—u - Vu|

1
H= ul? dz. L(w) = (w-V — Vw) VX

= Warning! Vorticity is the Hamiltonian variable!
w=V Xu




What about ROM?

= Naive Galerkin projection yields X = UTLV H (X).
Not Hamiltonian, UTL # —LTU.

= (One solution due to Y. Gong, Q. Wang, Z. Wang (2017):
recall that VH (%) = %' - VH (%) = UTVH(X).
- Wewant UTLVH (x) = LUTVH(x) = LVH (X).

Implies the overdetermined system UTL = LUT.

Solution is {IAJ — UTLUJ (antisymmetry is obviously inherited).




Hamiltonian ROM

= Energy conservation is retained:
H(%)=x-VH=LVH-VH=-LVH-VH =0
= (Can prove convergence to FOM solution with increasing POD basis.

= Need a symplectic time integrator (many choices available).

= For "easy’ nonlinearities, AVF is a good choice.

k+1 k

1
= / LVH (tx"t' 4+ (1 —t)x") dt
0




Nonintrusive Hamiltonian ROMs

= What happens if no access to FOM code? Operator inference.

= Partial solution for canonical systems (Sharma, Kramer, Wang 2022)

A /\

= Postulate a reduced Hamiltonian H (g, p q" Ay AppD
=  Dynamical system becomes () ( ) ( 14 ) ( )
= |nfer .

X

Ay = a{gmAin
A=AT7

Xp ; App = argmin

A=At




Does it work?

Yeah! But...
= Releson UTJ =J, UT.
= Needs a block-diagonal Vﬁ
How to extend to more general

systems?
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Hamiltonian Operator Inference

Recognize special case of more general OplInf procedure:

= Joint w. Irina Tezaur (Sandia CA)

. N a2
X; —LAX

iT— L AT -

= (Cansolve algllli
LorA

it L is known, this is “canonical” inference!

it VH is known, this is noncanonical inference.

A

A




Hamiltonian Operator Inference

= Need to solve minimization

argmin (\C — A (D -

DGRNXN

= Boils down to unconstrained linear system:

(ATA®BBT) (I -

- K) +nl) vee D = vec (ATCBT -

-DT)B[* +7|D[*)

where A B=AQB+B®A vecDT =KvecD.

- BCTA)

/




KdV Equation

= (Consider solving

Discretizing with periodic BCs yields

)

U = dully + PUx -+ YVUxxx,

[—L, L]1x][0,T]

_ H L“s P 2 V s —
Recast as “ =Py H:/o (E”+§“ -yu)dr. D =9

I
[u—
o
[u—

o

o 1 o0 0 ... -1
0O --- 0 |
., ., .. , B=_
. . . sz
o - -1 0 1

1 -~ 0 0 -1 0

A =L is non-canonical!

!
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X

[a—
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|

du
— = AV H
di uH(u)

= A (%u:Z + pu + vBu)

uo(x) = sech? (%)




KdV Equation

—— FOM Solution
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H(t) —Hg

P(t) — Po

M(t) — My

KdV Equation
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Convergence with increasing data

. ¢ lim [(I-UUT)x| =0, Vx

n— N

I t;) —%(t;)| =0
Jim max [x¢(1;) —x(4;)] =0,

X, H(X) have maximal rank.

« Theorem' L — UTLU, A — UTAU
as n —> N and At — 0




BBM Equation

= Benjamin-Bona-Mahoney equation: & = axs + Bxxs — YILss.
. . 1 [*

= Hamiltonian: H(=)= §f0 am2+§m3ds,

= Poisson structure: L= —(1—82)"" 8,

= |ntrusive H-ROM not feasible

= (Can we still get a good OplInf H-ROM?




BBM Equation
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BBM Equation
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Beyond Hamiltonian systems

= (eneralizes first law of thermodynamics.

= Only useful for conservative systems!

= What about, e.g., dissipation?

=  Need two laws....

= Recall Casimir invariants: {-,C} = LVC = 0

= (Casimirs are potential [entrop;] functions.

llustration courtesy of P. J. Morrison

C= const

2N
M J




Beyond Hamiltonian systems parrier

/\
o2 &S

= Notice, H = H + \'C; generates same

dynamics as H

= But relaxes to different equilibria!

= (Can we maintain a complete picture of the dynamics?

dissipation
M

= Choose S = (' forsome Casimir C'.

= Analogue of /solated systems in thermodynamics.

=  Examples: Boltzmann equation, Vlasov with collisions.




Metriplectic Systems

= Consider a system X = {x,E}+ [x,5|=LVE+MVS
= Hamiltonian + Gradient; LT = —L, MT =M .
= Energy and Entropy function(al)s £, S .

= Want to capture E=0,8>0

= How to appropriately “stitch together” reversible and irreversible parts?




Metriplectic Systems

. 0
E(x)=%-VE =LVE-VE +MVS-VE =VS MVE
$(x) =x-VS =LVE-VS +MVS-VS = -VE-LVS + |VS[%,

= Solution? Prescribed degeneracies!

= Choose LV.S = MVE =0 .




. . @ (om )
Example: Thermoelastic Double Penduluifz| | , =
P2 B _%(El‘f‘l’b)
S T1_1T2—
\ S/ \ Tng_l—i )
= State variable
x=(q1 92 p1 pz S1 S2)' .
_ [O04xa S _ [ Osxs Ogx2 05 1
L= (—ST Uﬁxﬁ)’ M _(szs T )
1 0 0 & _1 0.0 ~
S:(U 1 0)’ Tz(fl %) T; = 0s, E; 05 -
=  Energy/Entropy: S = 51 + 52 -
]. —=1.5 1
b= 5 (|p1|2 -+ |p2’2) -+ El + E2 | 15 ~1.0 —0.5 0.0 0.5 1.0 15
E, = . (log )\%-)2 + log \; + €108 _ ]

2
AL =|di]; A2 = |2 — qi|




Metriplectic SP-ROM

« Wanttoreduce X = {Xa E} T [Xa S] = LVE +MVS

« M=UMU and L = UTLU satisfy symmetries, but....

= Clearly LVS = UTLUUTVS #+ 0 (same for MVE).

=  Metriplectic structure is not preserved!

= No separation between reversible and irreversible parts.




p(t)

Does this matter?
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Metriplectic SP-ROM

- Howtoensure LVS = MVE =0

= (Constrained optimization? Too expensive.

=  Penalty method? Too loose.

= Build in symmetries directly!

= (Can always parameterize at expense of increasing tensor degree.




Metriplectic SP-ROM

= If LVS =0 and LT = —L, then {L = £ (VS)J

- f is order 3 totally antisymmetric tensor field €§k 0, ® dr’ & dz® .

f MVE =0 snd MT =M, then M = ¢ (VE, VE)

« ( is rank 4 tensor field Clijl 0; ® dz® ® d’ ® da’ |

= Satisfies Gikjl = —Crijt = —Giklj = Gjlik.




Metriplectic SP-ROM

= Need to solve underdetermined systems!

= ForL: S?kakS:L;.

J

. Form: Cij(9"E)(O'E) = Mj

J .

= These are design decisions.




Why does this help?

= Galerkin projection X = UX vyields:
x=UT¢(VS)VE +UT¢ (VE,VE)VS

= |finstead

% :[& (vé)} VE +[& (VE. VE)} VS

For some 67 C with the right symmetries, then things will work!




Simplifying M

= Consider the eigenvalue decomposition M = Z Ao Mm™ @M

a=1

= Suppose m% = AV E where Aj; = —Aj;

= (Can choose {C = Z Ao A% ® A‘ﬂ.
oa=1

=  Automatically preserves symmetries.

= Requires solving A%@jE = m,? (design decision).




Metriplectic ROM

= All together: x = LVE + MVS
£(VS)VE+((VE,VE) VS

= Theorem: if U is a POD basis and §,6, VE, VS are regular,

[ x(t) — (x0 + UX(8) ||? < {cza}

=0 i>n




Recap: what's necessary?

« Given: LM,V E, V.S defining metriplectic system.

» Compute eigenvalue decomposition M = > Aam®@m*

a=1

» Solve L=&(VS) and m® = A*VE (freedom here).

e

= Compute £ = UT¢(U)U and A% = UTA*U.

= *Assemble RO quantities: L = é (

A

VS

) M= AVE®©AVE.

a=1




Toy example: two gas containers

©
= Variables ¢, P, 51,92 O
® -
[ ’ X :i epr}B § eN:ST}B 3 ® =
ey - () - (35
= Entropy: S(x) =51+ 52.
O
0 10 0 0 0 0 0 ©
1.0 0 0 0 0 0 0
L(o 0 0 o) M'}’(o 0 Iy? (T1T2)1) -
0 0 0 0 0 0 —(IT)™' Ty°




p(t)

Results: two gas containers (3 modes)
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Results: two gas containers (4 modes)

p(t)
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Is this enough?

= Good: Explicit recipe, exact structure preservation, convergence.

= Bad: Requires storage of two sparse degree 3 tensors.

N
= & contains (3) < N® independent components.

2) < N° independent components.

| N
= A contains ’r(

= Still too expensive. Any way to reduce cost?




Exterior algebra (EA)

« RecalltheEaony: A(V) =T(V)/ivev|veV}

(VW —wW®V) (DONT store this)

1
= For example: V/\W=§

= Advantage? Can multiply analytically first.

s Vo (WIAWI AL AWL) =) (D) T (VW) Wi AL AW A L AW,
=1

C0 v (MAWR) = (v o u) WE —uA (v W)




Why is this useful?

= |dentify L with the bivector sum L = Z LY e; A\ e; .
j<i

= Wehave L-v=(-1)!y.L [ZL”vjez ZL”'UJeJ

J<t j>1

= So, define & = L Asg,.

= Because of our design decision, Sk, — eko/S 0

. £(VS) = (VS L) Asg, + sk, - VS) L= —LVS Asy, + L =L,




Why is this useful?

= Now, structure preservation is guaranteed by

A

Lvs = {(0)@{0 (sko vs) ‘vﬁ}— (sk ~ VS) Lvs

= Only need to store I and 8, = U /S*

_ 5 (VS’) — (UTLU AUTsy, ) - \VAS :{LVS' A Sk-OJ—F (éko : VS‘) L




Savings?

Similarly, choose A® =ag, Aey, where ag, =m%/E"
Then, A% = aj,, AU* where ag,, = UTm®/E""
Leadsto A®VE = (VE Ukl) Ay (VE - é%) U*

No need to store SS matrices.




Savings?
Al (1)

= Makes metriplectic ROM feasible for larger problems.

= Make the algebra work for you!




Example: Damped Thermoelastic Rod

!

q
p
S

= 1-D elastic rod with coordinate s.
damped Hamiltonian system

with friction.

E(p,q,e) = H(p,q) + S(e)
- / (2 v+ (s

=/ agiven potential function.




Example: Damped Thermoelastic Rod

0
. o T 2N+1
= Discretization yields X = (q p S) c RV VS = ((1))
OnwnN 1 0 OnvxNn Onxn Op V’(q)
L = -1 Onvxn O], M(X) =7 Ovxn ! _ag VE(X) — %
0 0 0 o —F (\% 4

N
= Notice, M:Zmo‘®mo‘, m® =.,/7(0 e, —%)T,

a=1

- A

= Canchoose € =L AUV A%(%) = UTm*(%) A U2N 1




p1(t)

Results: Damped Thermoelastic Rod (10 modes)
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Results: Damped Thermoelastic Rod (10 modes)
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Results: Damped Thermoelastic Rod (60 modes)

p1(t)
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Results: Damped Thermoelastic Rod (60 modes)
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Results: Damped Thermoelastic Rod (120 modes)
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What's next?

% =—JYH;fi + %DJ““% [fjj’“% (log f + BH)] ,
Structure-preserving hyper-reduction
R F6= [ 12 (5) 7 (5)
for nonlinearities. L
D0 G
= Need non-intrusive version!! el E]Qfag;z' (ﬁ)ﬁj d (E)ﬂdv’

Naoki Sato, Dissipative brackets for the Fokker-Planck equation in Hamiltonian systems and
characterization of metriplectic manifolds, Physica D: Nonlinear Phenomena, Volume 411, 2020.

Good methods for Lagrangian

systems.

= Extension to Euler-Poincare, Lie-

Poisson.




Thank you!

Contact: adgrube@sandia.gov
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Codes:
https://github.com/agrubertx/metriplectic POD-ROM
https://github.com/ikalash/HamiltonianOplnf



https://github.com/agrubertx/metriplectic_POD-ROM
https://github.com/ikalash/HamiltonianOpInf

