

Property-preserving model reduction for conservative and dissipative systems

Anthony Gruber

Center for Computing Research, Sandia National Laboratories, Albuquerque, NM

Junior Faculty Seminar, FAU Erlangen-Nuremberg, May 31, 2023

Full-Order Model

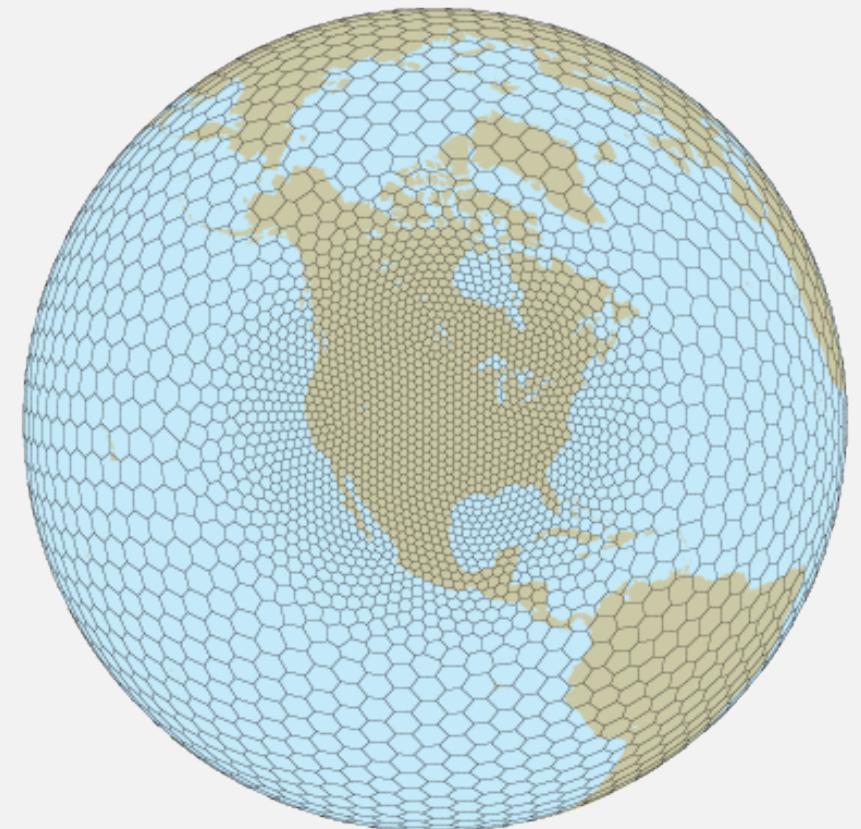
- Consider state variable $\mathbf{x}(t, \mu) \in \mathbb{R}^N$.
 - N ranges from “large” to “very large” (10^{6+} not uncommon).
 - μ is vector of parameters.
- Dynamics take the form

$$\dot{\mathbf{x}}(t, \mu) = \mathbf{A}\mathbf{x}(t, \mu) + \mathbf{f}(\mathbf{x}(t, \mu)).$$

- Can be expensive to solve. How to reduce cost?

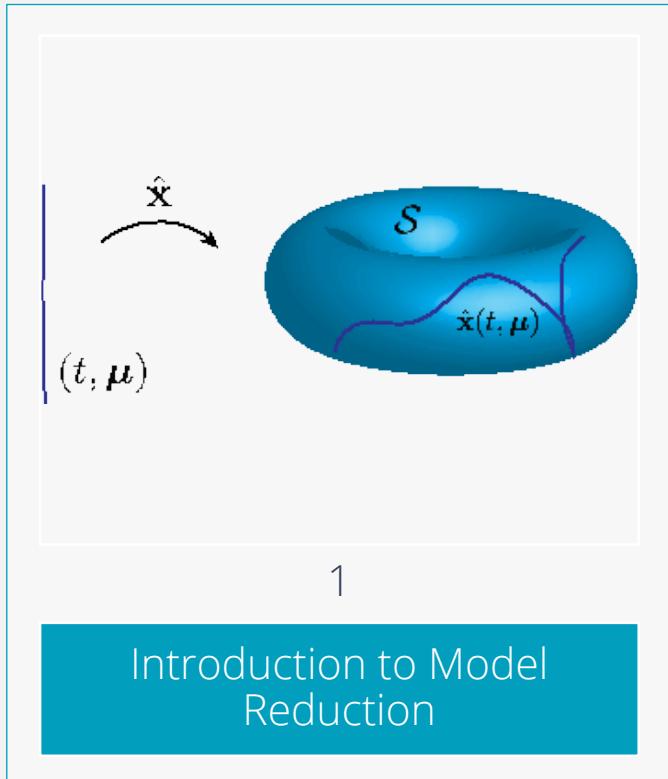
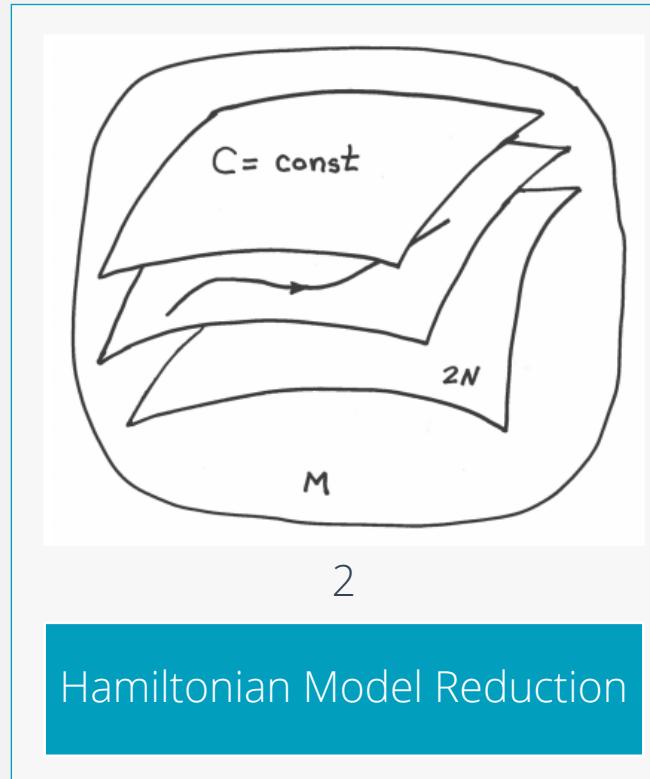
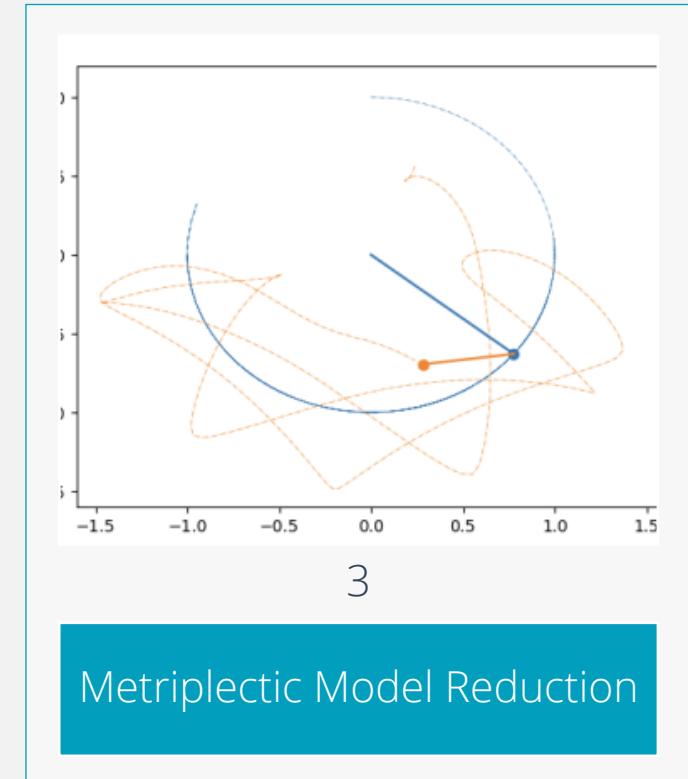
Reduced-Order Models

- High-fidelity PDE simulations are **expensive**.
 - semi-discretization blows up dimensionality.
- Good results possible without solving full PDE?
- Standard is to **encode -> solve -> decode**.
 - Linear: **POD**, RBM, etc.
 - Nonlinear: kernel methods, neural networks, etc.



<https://mpas-dev.github.io/atmosphere/atmosphere.html>

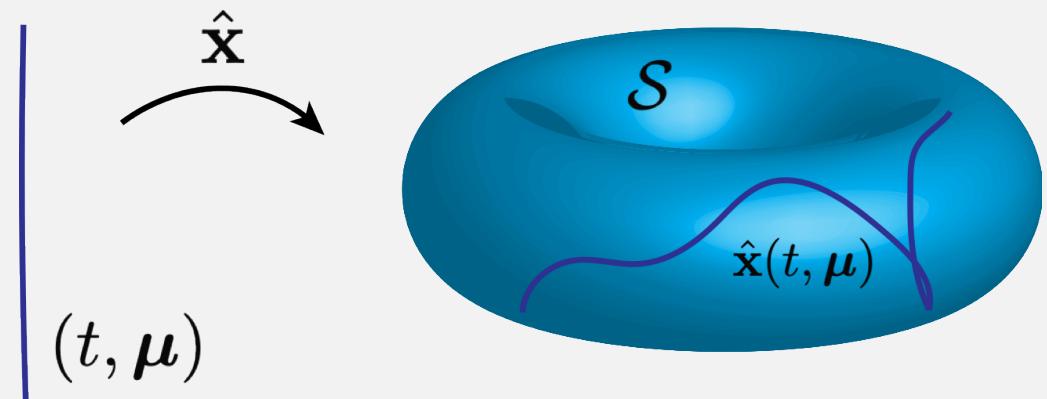
Outline



- Joint work with **Max Gunzburger** (UT Austin), **Lili Ju** (U of SC), **Zhu Wang** (U of SC), and **Irina Tezaur** (Sandia CA).

Idea Behind ROM

- Do we really need all 10^6 dimensions?
 - No, if $(t, \mu) \mapsto \hat{\mathbf{x}}(t, \mu)$ is unique.
- $\mathcal{S} = \{\mathbf{x}(t, \mu) \mid t \in [0, T], \mu \in D\} \subset \mathbb{R}^N$, solution manifold.
 - $(n_\mu + 1)$ dimensions enough for loss-less representation of \mathcal{S} .
- How can we approximate \mathcal{S} efficiently?

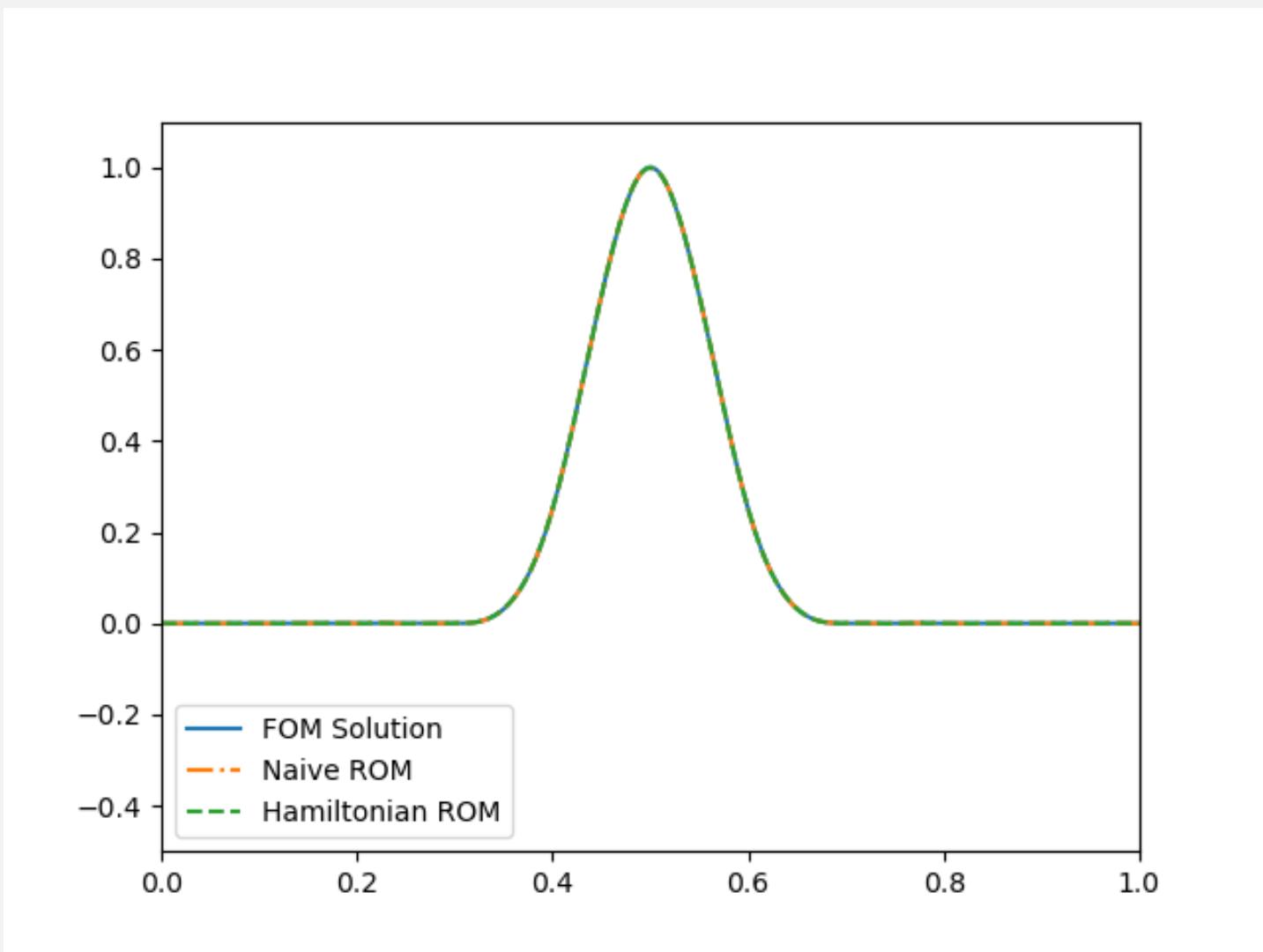


Proper Orthogonal Decomposition

- Do PCA on solution snapshots $\mathbf{X} = \mathbf{x}(t_j, \mu_j)$, $1 \leq j \leq N_t$.
 - Yields $\mathbf{X} \approx \mathbf{U}\Sigma\mathbf{V}^\top$, Galerkin projection $\tilde{\mathbf{x}} = \mathbf{U}\hat{\mathbf{x}}$.
- Orthogonality of POD basis \mathbf{U} implies, for $\hat{\mathbf{x}} \in \mathbb{R}^n$, $\hat{f} = f \circ \tilde{\mathbf{x}}$,
$$\dot{\hat{\mathbf{x}}} = \mathbf{U}^\top \mathbf{A} \mathbf{U} \hat{\mathbf{x}} + \mathbf{U}^\top \mathbf{f}(\mathbf{U}\hat{\mathbf{x}}) := \hat{\mathbf{A}}\hat{\mathbf{x}} + \hat{\mathbf{f}}(\hat{\mathbf{x}})$$
- ODE of size N converted to ODE of size n .

Does this work?

- Trained on one period
 - Tested on five



Hamiltonian Systems

- Archetype for conservative systems: $\dot{\mathbf{x}} = \{\mathbf{x}, H\} = \mathbf{L}\nabla H$.
 - Governed by scalar potential function H and SS matrix \mathbf{L} .
- \mathbf{L} defines (potentially degenerate) Poisson bracket $\{F, G\} = \nabla F \cdot \mathbf{L} \nabla G$.
 - Satisfies Jacobi identity $\{F, \{G, H\}\} + \{G, \{H, F\}\} + \{H, \{F, G\}\} = 0$.
- Guarantees that flow is $\perp \nabla H$ and energy is conserved:

$$\dot{H}(\mathbf{x}) = \dot{\mathbf{x}} \cdot \nabla H = \mathbf{L}\nabla H \cdot \nabla H = -\mathbf{L}\nabla H \cdot \nabla H = 0.$$

Examples) Hamiltonian Systems

GIFs courtesy of Wikipedia under Creative Commons license

- Undamped simple harmonic oscillator: $m\ddot{x} = -kx$

$$H = \frac{1}{2m} (p^2 + q^2) \quad \mathbf{L} = \mathbf{J} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

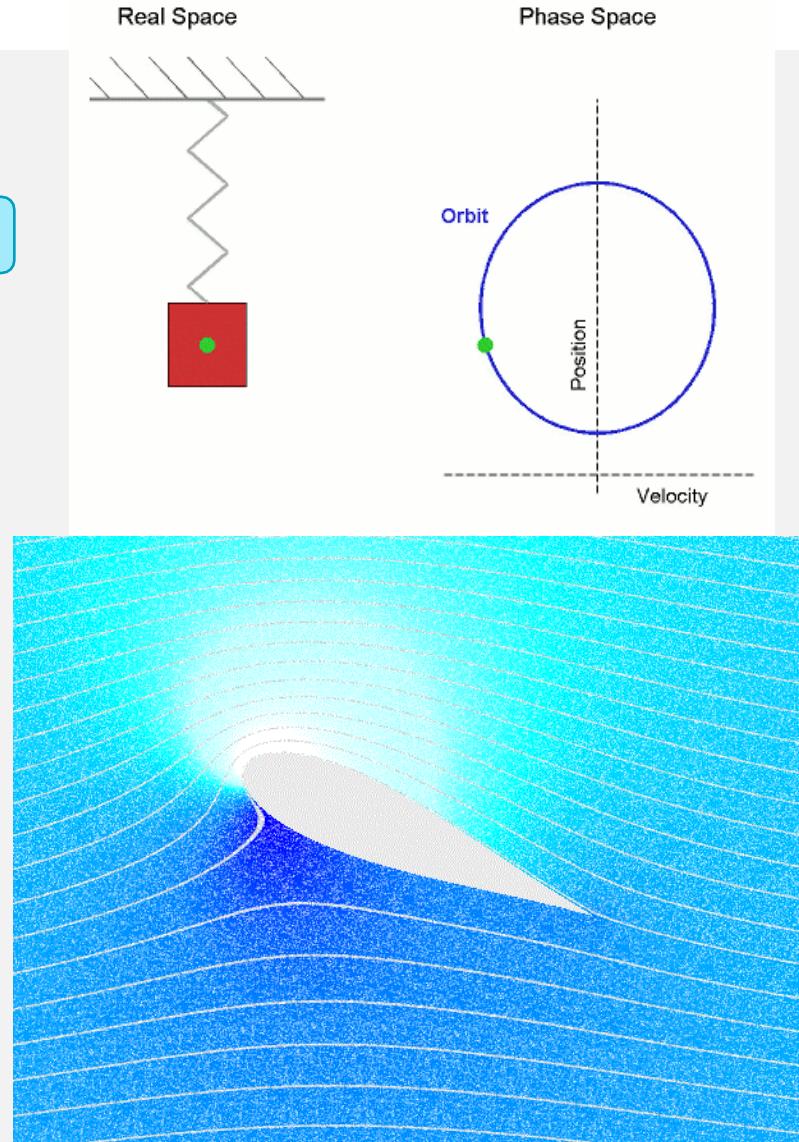
$$p = m\dot{x}, \quad q = m\sqrt{\frac{k}{m}}x$$

- Incompressible Euler: $\dot{\omega} = \omega \cdot \nabla \mathbf{u} - \mathbf{u} \cdot \nabla \omega$

$$H = \frac{1}{2} \int |\mathbf{u}|^2 dx. \quad L(\omega) = (\omega \cdot \nabla - \nabla \omega) \nabla \times$$

- Warning! Vorticity is the Hamiltonian variable!

$$\omega = \nabla \times \mathbf{u}$$



What about ROM?

- Naïve Galerkin projection yields $\dot{\hat{\mathbf{x}}} = \mathbf{U}^\top \mathbf{L} \nabla H(\tilde{\mathbf{x}})$.
 - Not Hamiltonian, $\mathbf{U}^\top \mathbf{L} \neq -\mathbf{L}^\top \mathbf{U}$.
- One solution due to Y. Gong, Q. Wang, Z. Wang (2017):
 - Recall that $\nabla \hat{H}(\hat{\mathbf{x}}) = \tilde{\mathbf{x}}' \cdot \nabla H(\tilde{\mathbf{x}}) = \mathbf{U}^\top \nabla H(\tilde{\mathbf{x}})$.
- We want $\mathbf{U}^\top \mathbf{L} \nabla H(\tilde{\mathbf{x}}) = \hat{\mathbf{L}} \mathbf{U}^\top \nabla H(\tilde{\mathbf{x}}) = \hat{\mathbf{L}} \nabla \hat{H}(\hat{\mathbf{x}})$.
 - Implies the overdetermined system $\mathbf{U}^\top \mathbf{L} = \hat{\mathbf{L}} \mathbf{U}^\top$.
 - Solution is $\hat{\mathbf{L}} = \mathbf{U}^\top \mathbf{L} \mathbf{U}$ (antisymmetry is obviously inherited).

Hamiltonian ROM

- Energy conservation is retained:

$$\dot{\hat{H}}(\hat{\mathbf{x}}) = \dot{\hat{\mathbf{x}}} \cdot \nabla \hat{H} = \hat{\mathbf{L}} \nabla \hat{H} \cdot \nabla \hat{H} = -\hat{\mathbf{L}} \nabla \hat{H} \cdot \nabla \hat{H} = 0$$

- Can prove convergence to FOM solution with increasing POD basis.
- Need a symplectic time integrator (many choices available).
 - For "easy" nonlinearities, AVF is a good choice.

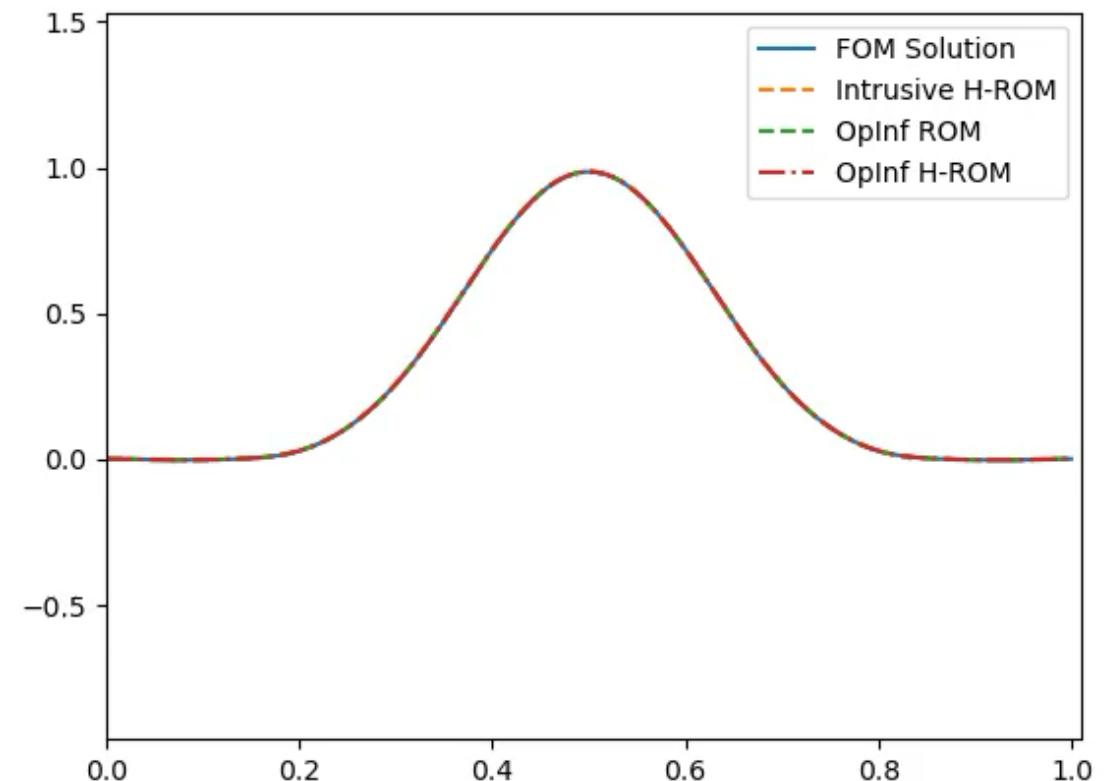
$$\frac{\mathbf{x}^{k+1} - \mathbf{x}^k}{\Delta t} = \int_0^1 \mathbf{L} \nabla H \left(t \mathbf{x}^{k+1} + (1-t) \mathbf{x}^k \right) dt$$

Nonintrusive Hamiltonian ROMs

- What happens if no access to FOM code? *Operator inference.*
- Partial solution for canonical systems (Sharma, Kramer, Wang 2022):
 - Postulate a reduced Hamiltonian $\hat{H}(\hat{\mathbf{q}}, \hat{\mathbf{p}}) = \hat{\mathbf{q}}^\top \hat{\mathbf{A}}_{qq} \hat{\mathbf{q}} + \hat{\mathbf{p}}^\top \hat{\mathbf{A}}_{pp} \hat{\mathbf{p}}$.
 - Dynamical system becomes $\begin{pmatrix} \dot{\hat{\mathbf{q}}} \\ \dot{\hat{\mathbf{p}}} \end{pmatrix} = \begin{pmatrix} 0 & \mathbf{I} \\ -\mathbf{I} & 0 \end{pmatrix} \begin{pmatrix} \hat{\mathbf{A}}_{qq} & \mathbf{0} \\ \mathbf{0} & \hat{\mathbf{A}}_{pp} \end{pmatrix} \begin{pmatrix} \mathbf{q} \\ \mathbf{p} \end{pmatrix}$.
 - Infer $\hat{\mathbf{A}}_{qq} = \underset{\hat{\mathbf{A}} = \hat{\mathbf{A}}^\top}{\operatorname{argmin}} \left| \hat{\mathbf{X}}_{p,t} + \hat{\mathbf{A}} \hat{\mathbf{X}}_q \right|^2$ $\hat{\mathbf{A}}_{pp} = \underset{\hat{\mathbf{A}} = \hat{\mathbf{A}}^\top}{\operatorname{argmin}} \left| \hat{\mathbf{X}}_{q,t} - \hat{\mathbf{A}} \hat{\mathbf{X}}_p \right|^2$

Does it work?

- Yeah! But...
 - Relies on $\mathbf{U}^\top \mathbf{J} = \mathbf{J}_r \mathbf{U}^\top$.
 - Needs a block-diagonal $\nabla \hat{H}$
- How to extend to more general systems?



Hamiltonian Operator Inference

- Recognize special case of more general Oplnf procedure:
 - Joint w. Irina Tezaur (Sandia CA)
 - Can solve $\underset{\hat{\mathbf{L}} \text{ or } \hat{\mathbf{A}}}{\operatorname{argmin}} \left| \hat{\mathbf{X}}_t - \hat{\mathbf{L}} \hat{\mathbf{A}} \hat{\mathbf{X}} \right|^2, \quad \hat{\mathbf{L}}^\top = -\hat{\mathbf{L}}, \hat{\mathbf{A}}^\top = \hat{\mathbf{A}}.$
- If \mathbf{L} is known, this is “canonical” inference!
- If ∇H is known, this is *noncanonical inference*.

Hamiltonian Operator Inference

- Need to solve minimization

$$\underset{\mathbf{D} \in \mathbb{R}^{N \times N}}{\operatorname{argmin}} \left(|\mathbf{C} - \mathbf{A} (\mathbf{D} \pm \mathbf{D}^\top) \mathbf{B}|^2 + \eta |\mathbf{D}|^2 \right),$$

- Boils down to *unconstrained* linear system:

$$((\mathbf{A}^\top \mathbf{A} \bar{\oplus} \mathbf{B} \mathbf{B}^\top) (\mathbf{I} \pm \mathbf{K}) + \eta \mathbf{I}) \operatorname{vec} \mathbf{D} = \operatorname{vec} (\mathbf{A}^\top \mathbf{C} \mathbf{B}^\top \pm \mathbf{B} \mathbf{C}^\top \mathbf{A}),$$

where $\mathbf{A} \bar{\oplus} \mathbf{B} = \mathbf{A} \otimes \mathbf{B} + \mathbf{B} \otimes \mathbf{A}$, $\operatorname{vec} \mathbf{D}^\top = \mathbf{K} \operatorname{vec} \mathbf{D}$.

KdV Equation

- Consider solving $u_t = \alpha uu_x + \rho u_x + \gamma u_{xxx}$, $[-L, L] \times [0, T]$

- Recast as $u_t = \mathcal{D} \frac{\delta \mathcal{H}}{\delta u}$, $\mathcal{H} = \int_0^L \left(\frac{\alpha}{6} u^3 + \frac{\rho}{2} u^2 - \frac{\nu}{2} u_x^2 \right) dx$, $\mathcal{D} = \partial_x$

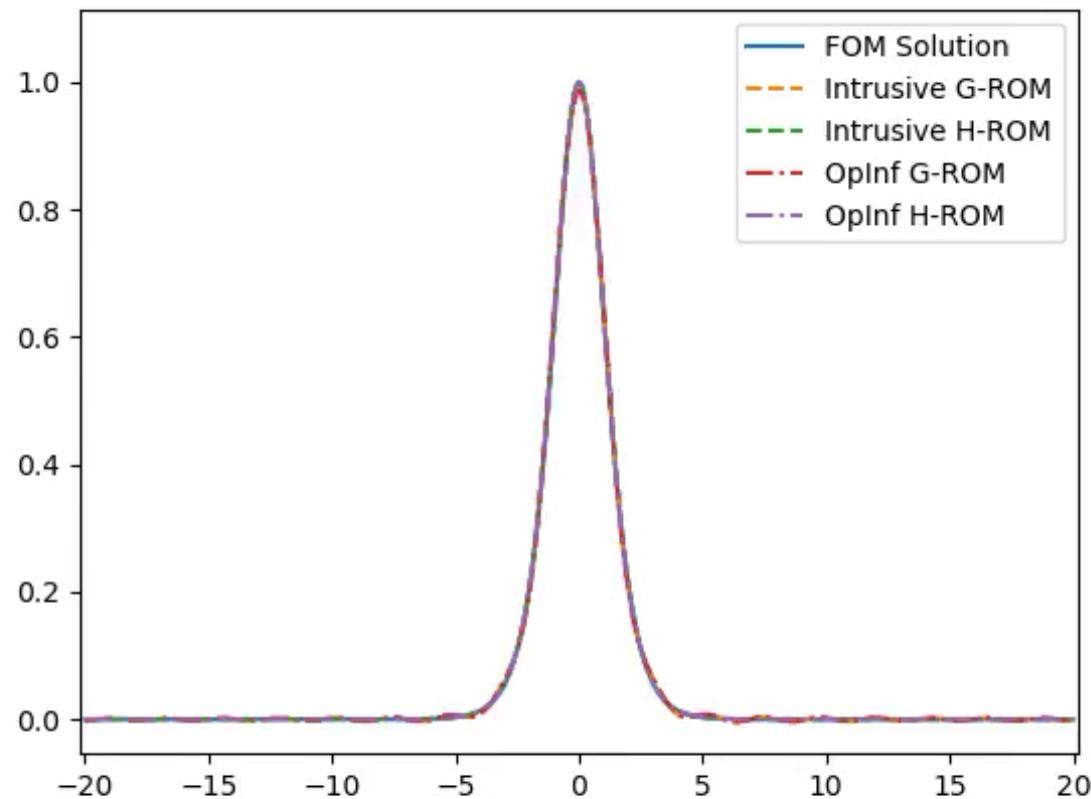
- Discretizing with periodic BCs yields

$$\mathbf{A} = \frac{1}{2\Delta x} \begin{pmatrix} 0 & 1 & 0 & 0 & \cdots & -1 \\ -1 & 0 & 1 & 0 & \cdots & 0 \\ & \ddots & \ddots & \ddots & & \\ & 0 & \cdots & 0 & -1 & 0 & 1 \\ & 1 & \cdots & 0 & 0 & -1 & 0 \end{pmatrix}, \quad \mathbf{B} = \frac{1}{\Delta x^2} \begin{pmatrix} -2 & 1 & 0 & 0 & \cdots & 1 \\ 1 & -2 & 1 & 0 & \cdots & 0 \\ & \ddots & \ddots & \ddots & \ddots & \\ & 0 & \cdots & 0 & 1 & -2 & 1 \\ & 1 & \cdots & 0 & 0 & 1 & -2 \end{pmatrix}$$

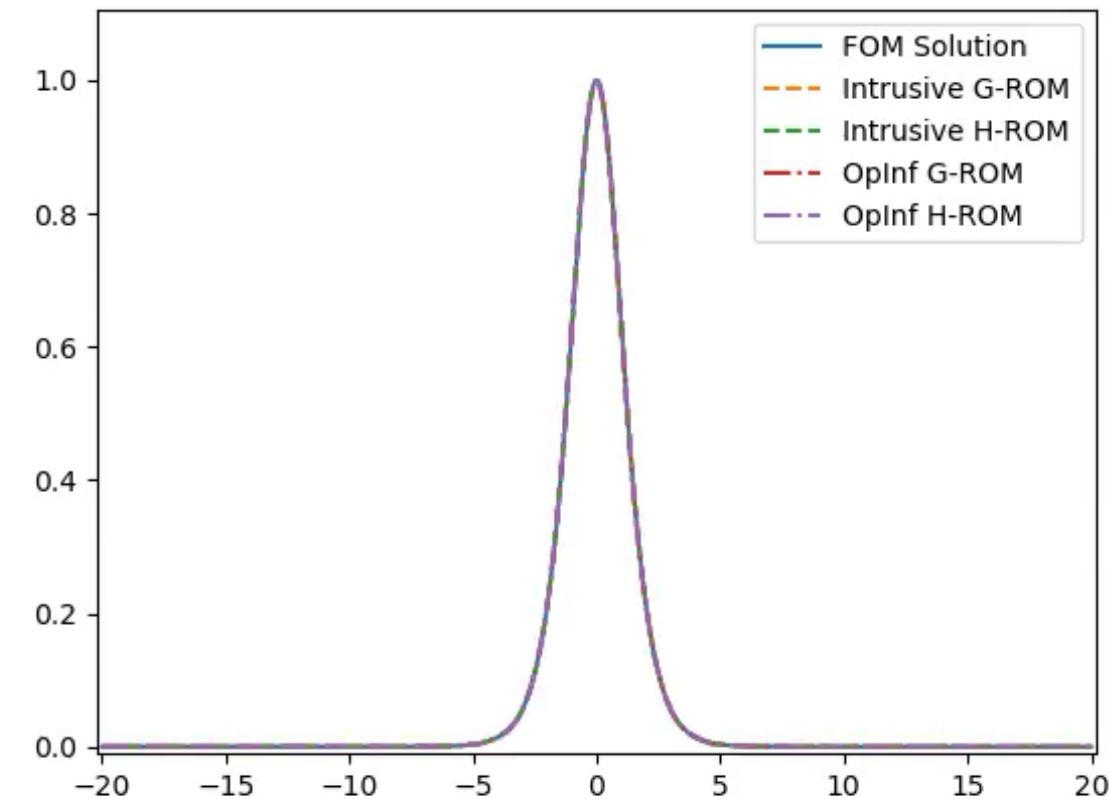
- $\mathbf{A} = \mathbf{L}$ is non-canonical!

$$\begin{aligned} \frac{d\mathbf{u}}{dt} &= \mathbf{A} \nabla_{\mathbf{u}} H(\mathbf{u}) \\ &= \mathbf{A} \left(\frac{\alpha}{2} \mathbf{u}^2 + \rho \mathbf{u} + \nu \mathbf{B} \mathbf{u} \right) \\ u_0(x) &= \operatorname{sech}^2 \left(\frac{x}{\sqrt{2}} \right) \end{aligned}$$

KdV Equation

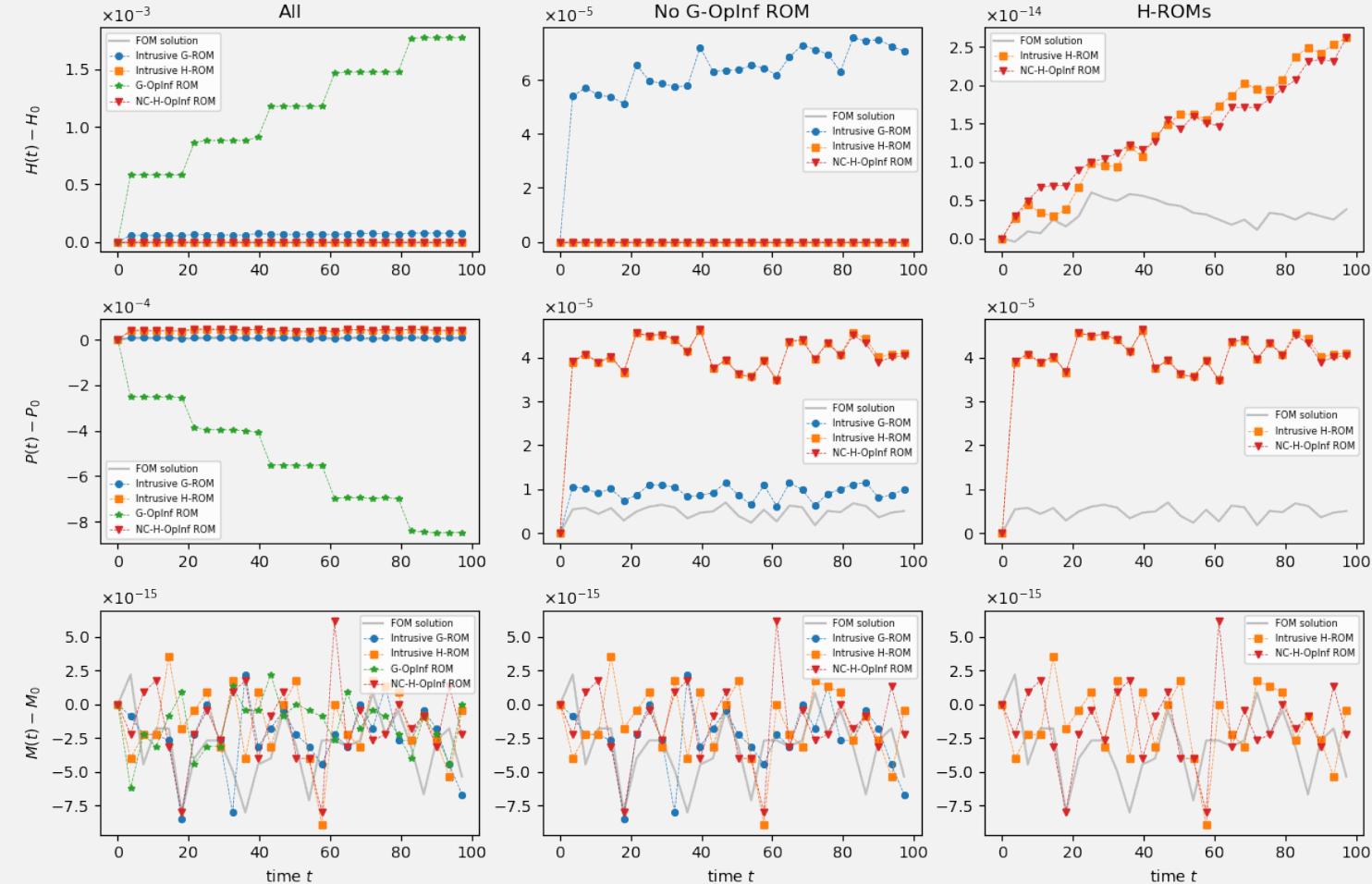
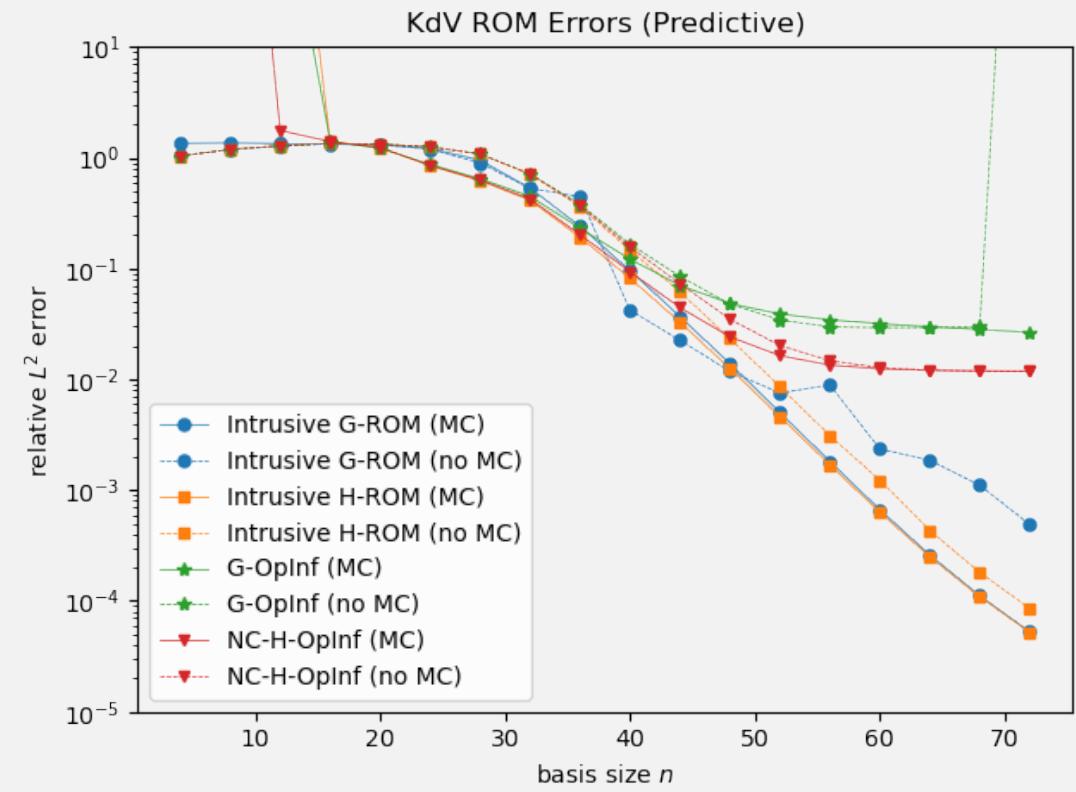


$N = 500, n=36$



$N = 500, n=48$

KdV Equation



Convergence with increasing data

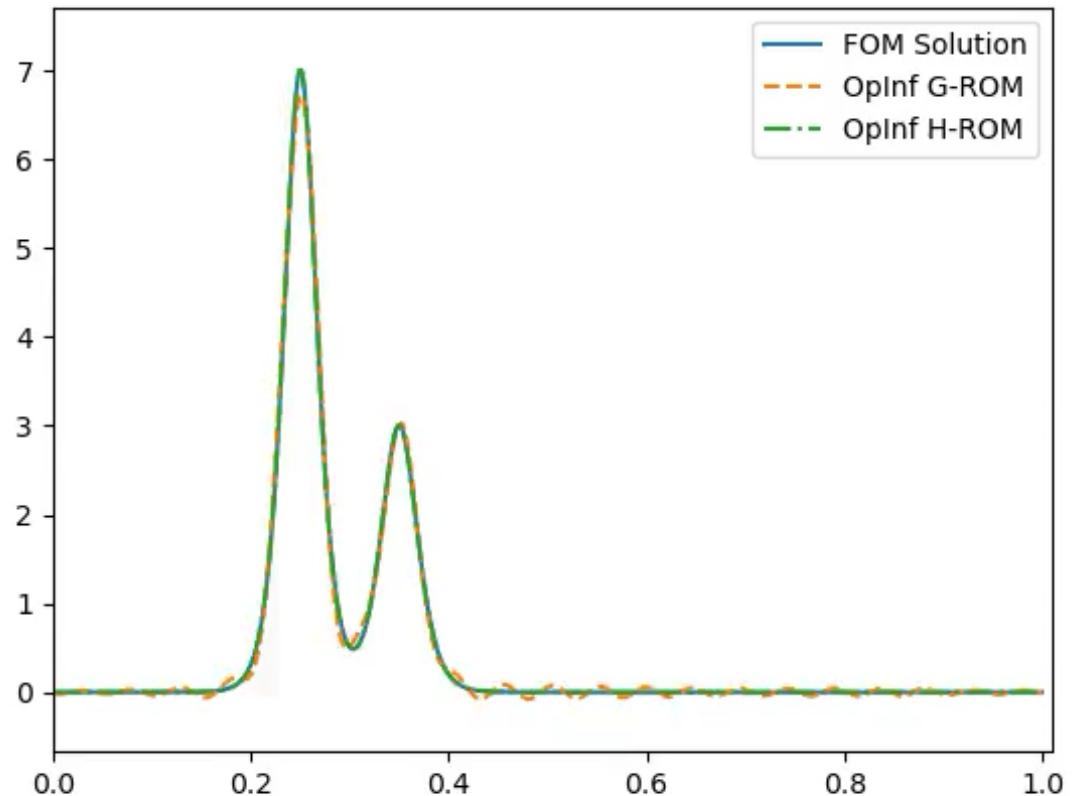
- If $\lim_{n \rightarrow N} |(\mathbf{I} - \mathbf{U}\mathbf{U}^\top) \mathbf{x}| = 0, \forall \mathbf{x},$
$$\lim_{\Delta t \rightarrow 0} \max_i |\mathbf{x}_t(t_i) - \dot{\mathbf{x}}(t_i)| = 0,$$

 $\mathbf{X}, H(\mathbf{X})$ have maximal rank.
- *Theorem:* $\hat{\mathbf{L}} \rightarrow \mathbf{U}^\top \mathbf{L} \mathbf{U}, \hat{\mathbf{A}} \rightarrow \mathbf{U}^\top \mathbf{A} \mathbf{U}$
as $n \rightarrow N$ and $\Delta t \rightarrow 0$.

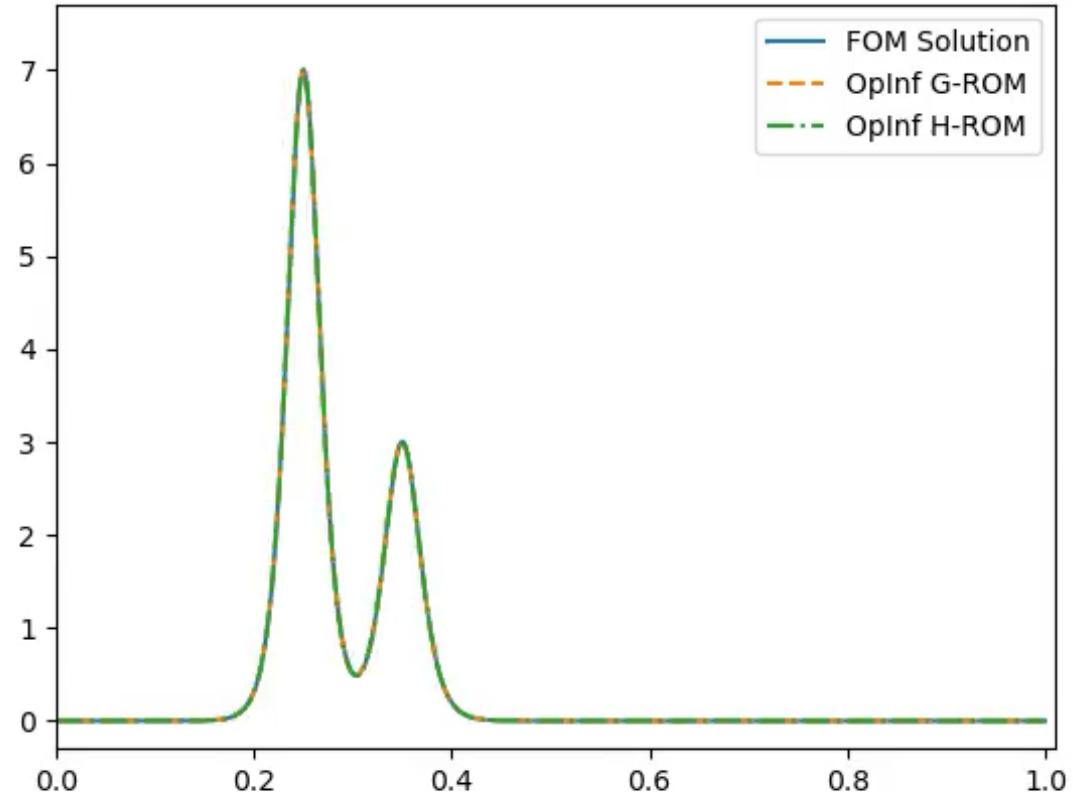
BBM Equation

- Benjamin-Bona-Mahoney equation:
$$\dot{x} = \alpha x_s + \beta x x_s - \gamma \dot{x}_{ss}.$$
- Hamiltonian:
$$H(x) = \frac{1}{2} \int_0^\ell \alpha x^2 + \frac{\beta}{3} x^3 ds,$$
- Poisson structure:
$$L = - (1 - \partial_s^2)^{-1} \partial_s,$$
- Intrusive H-ROM not feasible
 - Can we still get a good Oplnf H-ROM?

BBM Equation

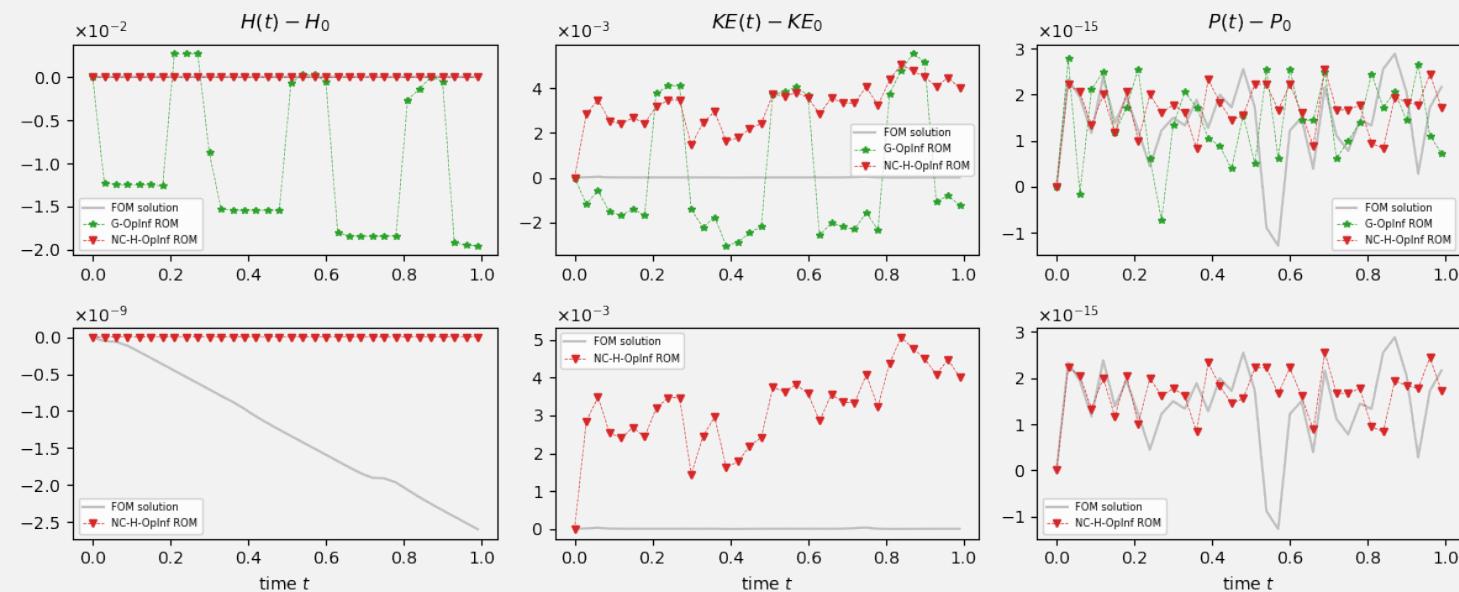
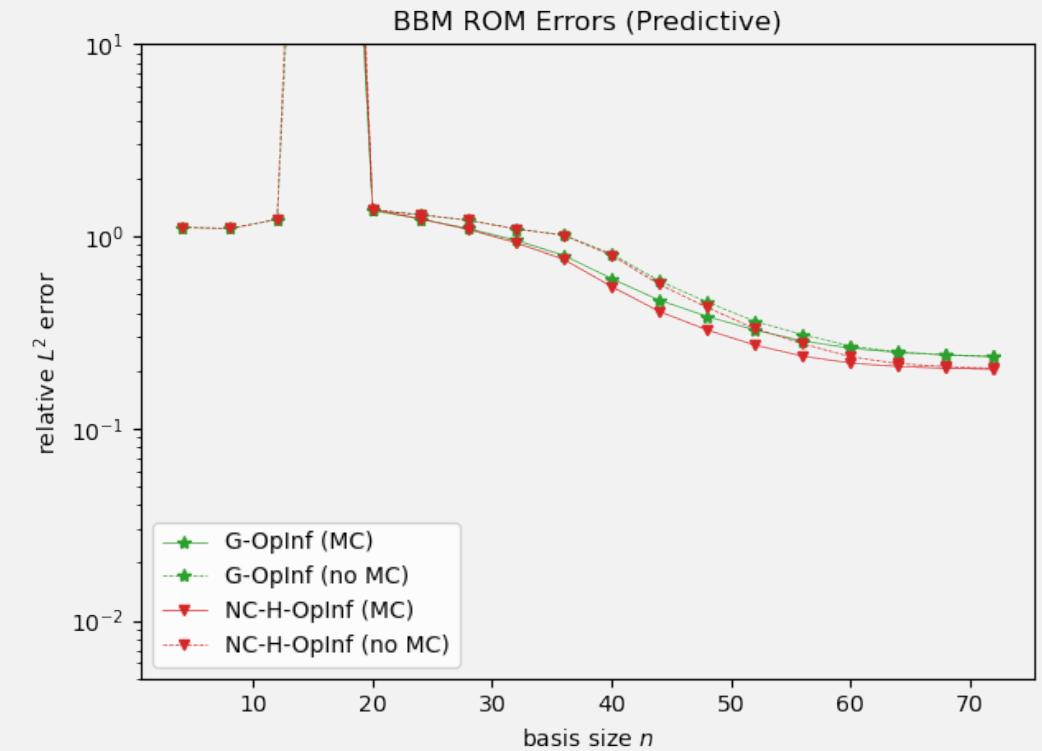


$N = 1024, n=36$



$N = 1024, n=72$

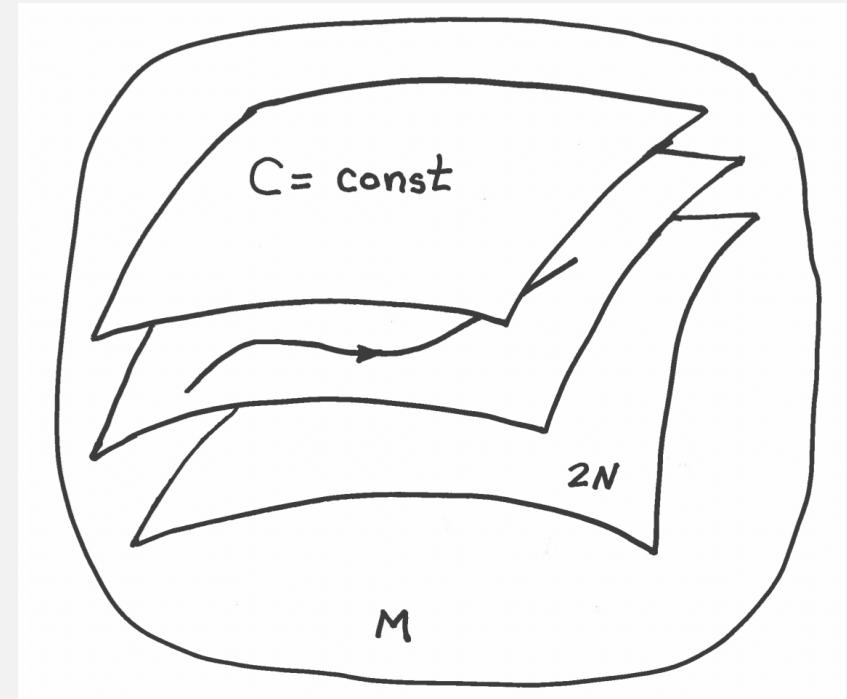
BBM Equation



Beyond Hamiltonian systems

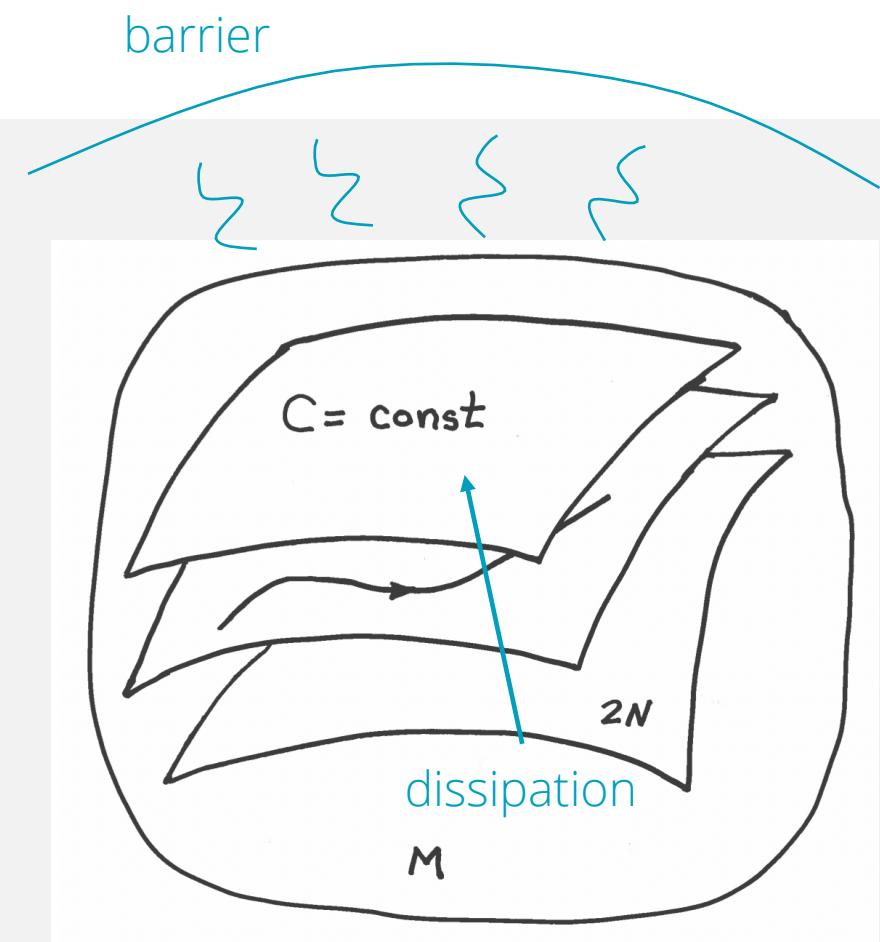
- Generalizes first law of thermodynamics.
 - Only useful for conservative systems!
- What about, e.g., dissipation?
 - Need two laws....
- Recall Casimir invariants: $\{\cdot, C\} = \mathbf{L} \nabla C = 0$.
 - Casimirs are potential entropy functions.

Illustration courtesy of P. J. Morrison



Beyond Hamiltonian systems

- Notice, $H' = H + \lambda^i C_i$ generates same dynamics as H .
 - But relaxes to different equilibria!
- Can we maintain a complete picture of the dynamics?
 - Choose $S = C$ for some Casimir C .
- Analogue of *isolated* systems in thermodynamics.
 - Examples: Boltzmann equation, Vlasov with collisions.



Metriplectic Systems

- Consider a system $\dot{\mathbf{x}} = \{\mathbf{x}, E\} + [\mathbf{x}, S] = \mathbf{L}\nabla E + \mathbf{M}\nabla S$.
 - Hamiltonian + Gradient: $\mathbf{L}^\top = -\mathbf{L}$, $\mathbf{M}^\top = \mathbf{M}$.
 - Energy and Entropy function(al)s E, S .
- Want to capture $\dot{E} = 0, \dot{S} \geq 0$.
 - How to appropriately “stitch together” reversible and irreversible parts?

Metriplectic Systems

- Note,

$$\dot{E}(\mathbf{x}) = \dot{\mathbf{x}} \cdot \nabla E = \mathbf{L} \nabla E \cdot \nabla E + \mathbf{M} \nabla S \cdot \nabla E = \boxed{\nabla S \cdot \mathbf{M} \nabla E}$$

$$\dot{S}(\mathbf{x}) = \dot{\mathbf{x}} \cdot \nabla S = \mathbf{L} \nabla E \cdot \nabla S + \mathbf{M} \nabla S \cdot \nabla S = \boxed{-\nabla E \cdot \mathbf{L} \nabla S + |\nabla S|_{\mathbf{M}}^2}$$

- Solution? Prescribed degeneracies!

- Choose $\mathbf{L} \nabla S = \mathbf{M} \nabla E = \mathbf{0}$.

Example: Thermoelastic Double Pendulum

$$\begin{pmatrix} \dot{q}_1 \\ \dot{q}_2 \\ \dot{p}_1 \\ \dot{p}_2 \\ \dot{S}_1 \\ \dot{S}_2 \end{pmatrix} = \begin{pmatrix} p_1 \\ p_2 \\ -\frac{\partial}{\partial q_1}(E_1 + E_2) \\ -\frac{\partial}{\partial q_2}(E_1 + E_2) \\ T_1^{-1}T_2 - 1 \\ T_1T_2^{-1} - 1 \end{pmatrix}$$

- State variable

$$\mathbf{x} = (q_1 \quad q_2 \quad p_1 \quad p_2 \quad S_1 \quad S_2)^\top$$

$$L = \begin{pmatrix} \mathbf{0}_{4 \times 4} & \mathbf{S} \\ -\mathbf{S}^\top & \mathbf{0}_{6 \times 6} \end{pmatrix}, \quad M = \begin{pmatrix} \mathbf{0}_{8 \times 8} & \mathbf{0}_{8 \times 2} \\ \mathbf{0}_{2 \times 8} & \mathbf{T} \end{pmatrix}$$

$$\mathbf{S} = \begin{pmatrix} 1 & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & 1 & \mathbf{0} \end{pmatrix}, \quad \mathbf{T} = \begin{pmatrix} \frac{T_2}{T_1} & -1 \\ -1 & \frac{T_1}{T_2} \end{pmatrix} \quad T_i = \partial_{S_i} E_i$$

- Energy/Entropy: $S = S_1 + S_2$

$$E = \frac{1}{2} (|\mathbf{p}_1|^2 + |\mathbf{p}_2|^2) + E_1 + E_2$$

$$E_i = \frac{1}{2} (\log \lambda_i)^2 + \log \lambda_i + e^{S_i - \log \lambda_i} - 1$$

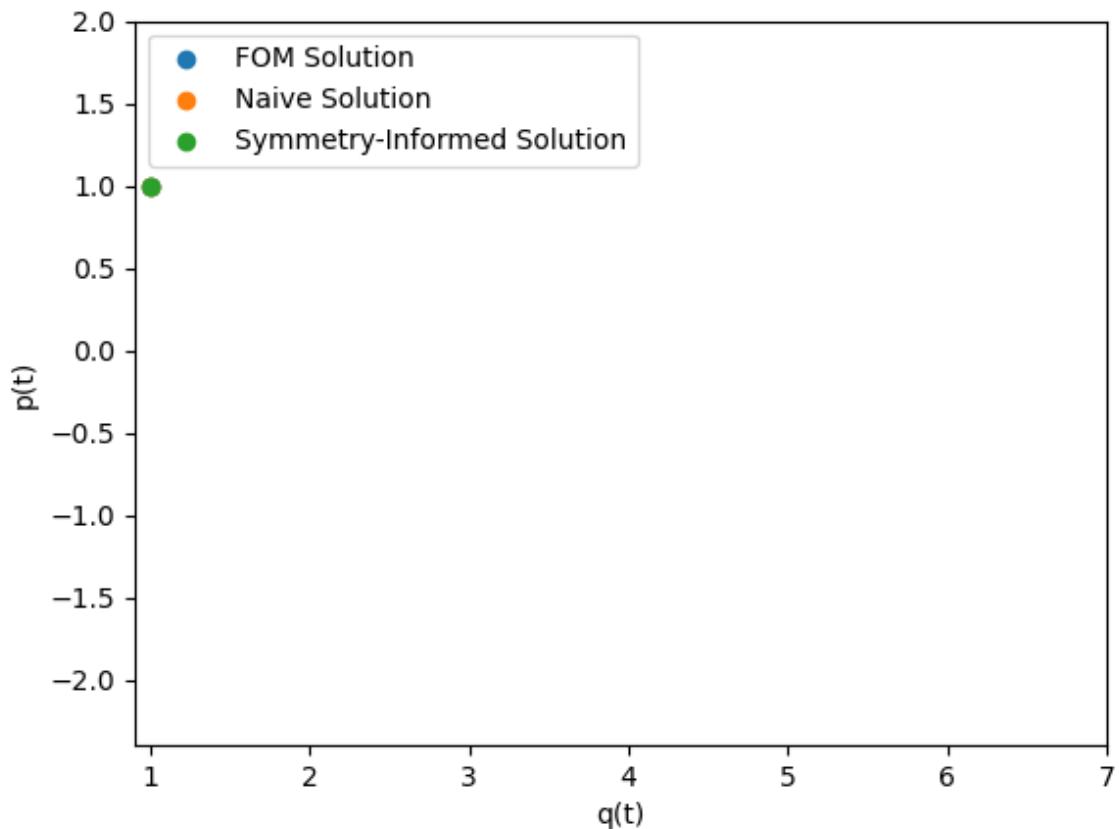
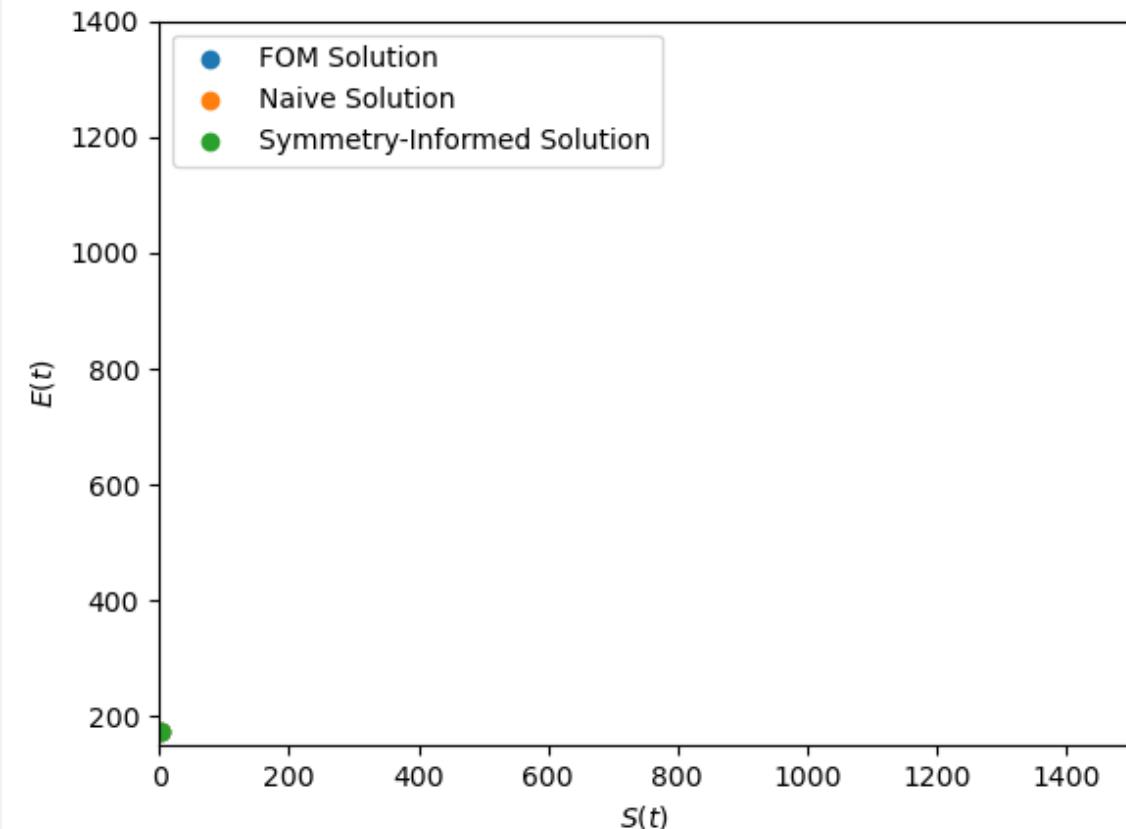
$$\lambda_1 = |\mathbf{q}_1|, \lambda_2 = |\mathbf{q}_2 - \mathbf{q}_1|$$



Metriplectic SP-ROM

- Want to reduce $\dot{\mathbf{x}} = \{\mathbf{x}, E\} + [\mathbf{x}, S] = \mathbf{L}\nabla E + \mathbf{M}\nabla S$.
 - $\hat{\mathbf{M}} = \mathbf{U}^\top \mathbf{M} \mathbf{U}$ and $\hat{\mathbf{L}} = \mathbf{U}^\top \mathbf{L} \mathbf{U}$ satisfy symmetries, but....
- Clearly $\hat{\mathbf{L}}\nabla \hat{S} = \mathbf{U}^\top \mathbf{L} \mathbf{U} \mathbf{U}^\top \nabla S \neq \mathbf{0}$ (same for $\hat{\mathbf{M}}\nabla \hat{E}$).
 - Metriplectic structure is not preserved!
 - No separation between reversible and irreversible parts.

Does this matter?



Metriplectic SP-ROM

- How to ensure $\hat{\mathbf{L}}\nabla\hat{S} = \hat{\mathbf{M}}\nabla\hat{E} = \mathbf{0}$.
 - Constrained optimization? Too expensive.
 - Penalty method? Too loose.
- Build in symmetries directly!
 - Can always parameterize at expense of **increasing tensor degree**.

Metriplectic SP-ROM

- If $\mathbf{L}\nabla S = \mathbf{0}$ and $\mathbf{L}^\top = -\mathbf{L}$, then $\mathbf{L} = \boldsymbol{\xi}(\nabla S)$.
 - $\boldsymbol{\xi}$ is order 3 totally antisymmetric tensor field $\xi_{jk}^i \partial_i \otimes dx^j \otimes dx^k$.
- If $\mathbf{M}\nabla E = \mathbf{0}$ and $\mathbf{M}^\top = \mathbf{M}$, then $\mathbf{M} = \boldsymbol{\zeta}(\nabla E, \nabla E)$.
 - $\boldsymbol{\zeta}$ is rank 4 tensor field $\zeta_{kjl}^i \partial_i \otimes dx^k \otimes dx^j \otimes dx^l$.
 - Satisfies $\zeta_{ikjl} = -\zeta_{kijl} = -\zeta_{iklj} = \zeta_{jlik}$.

Metriplectic SP-ROM

- Need to solve underdetermined systems!
 - For L : $\xi_{jk}^i \partial^k S = L_j^i$.
 - For M : $\zeta_{kjl}^i (\partial^k E)(\partial^l E) = M_j^i$.
- These are **design decisions**.

Why does this help?

- Galerkin projection $\tilde{\mathbf{x}} = \mathbf{U}\hat{\mathbf{x}}$ yields:

$$\dot{\hat{\mathbf{x}}} = \mathbf{U}^\top \boldsymbol{\xi} (\nabla S) \nabla E + \mathbf{U}^\top \boldsymbol{\zeta} (\nabla E, \nabla E) \nabla S$$

- If instead

$$\dot{\hat{\mathbf{x}}} = \hat{\boldsymbol{\xi}} (\nabla \hat{S}) \nabla \hat{E} + \hat{\boldsymbol{\zeta}} (\nabla \hat{E}, \nabla \hat{E}) \nabla \hat{S}$$

- For some $\hat{\boldsymbol{\xi}}, \hat{\boldsymbol{\zeta}}$ with the right symmetries, then things will work!

Simplifying \mathbf{M}

- Consider the eigenvalue decomposition $\mathbf{M} = \sum_{\alpha=1}^r \lambda_{\alpha} \mathbf{m}^{\alpha} \otimes \mathbf{m}^{\alpha}$.
 - Suppose $\mathbf{m}^{\alpha} = \mathbf{A}^{\alpha} \nabla E$ where $A_{ij}^{\alpha} = -A_{ji}^{\alpha}$.
- Can choose $\boldsymbol{\zeta} = \sum_{\alpha=1}^r \lambda_{\alpha} \mathbf{A}^{\alpha} \otimes \mathbf{A}^{\alpha}$.
- Automatically preserves symmetries.
 - Requires solving $A_{ij}^{\alpha} \partial^j E = m_i^{\alpha}$ (design decision).

Metriplectic ROM

- All together:
$$\begin{aligned}\dot{\hat{\mathbf{x}}} &= \hat{\mathbf{L}} \nabla \hat{E} + \hat{\mathbf{M}} \nabla \hat{S} \\ &= \hat{\boldsymbol{\xi}} \left(\nabla \hat{S} \right) \nabla \hat{E} + \hat{\boldsymbol{\zeta}} \left(\nabla \hat{E}, \nabla \hat{E} \right) \nabla \hat{S}\end{aligned}$$
- Theorem: if \mathbf{U} is a POD basis and $\boldsymbol{\xi}, \boldsymbol{\zeta}, \nabla E, \nabla S$ are regular,

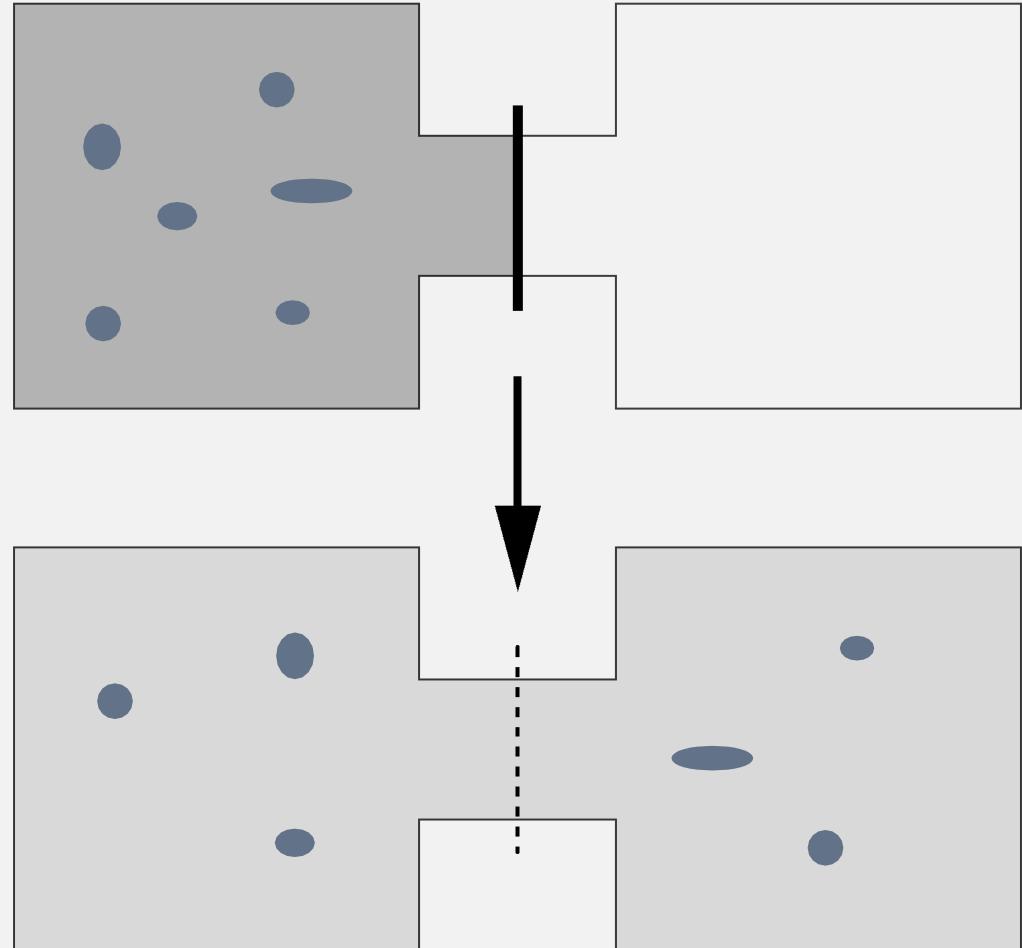
$$\int_{t=0}^T \|\mathbf{x}(t) - (\mathbf{x}_0 + \mathbf{U} \hat{\mathbf{x}}(t))\|^2 \leq C \sum_{j>n} \sigma_j^2 \rightarrow 0$$

Recap: what's necessary?

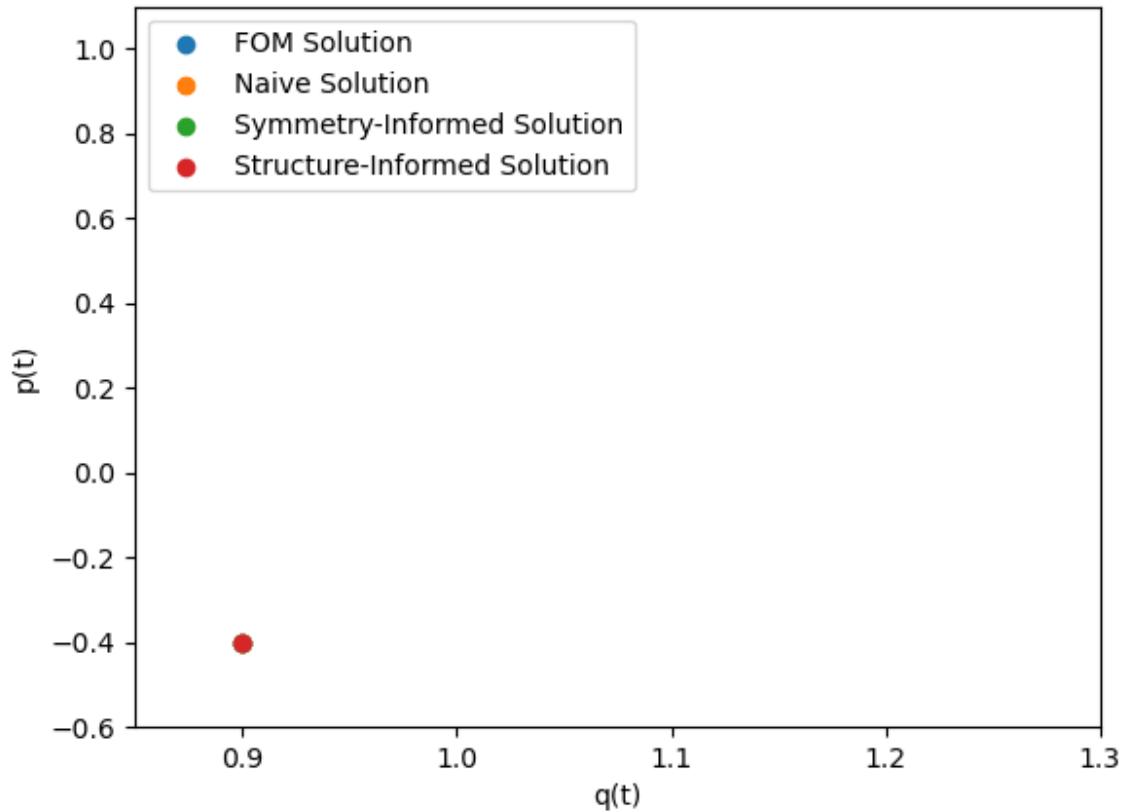
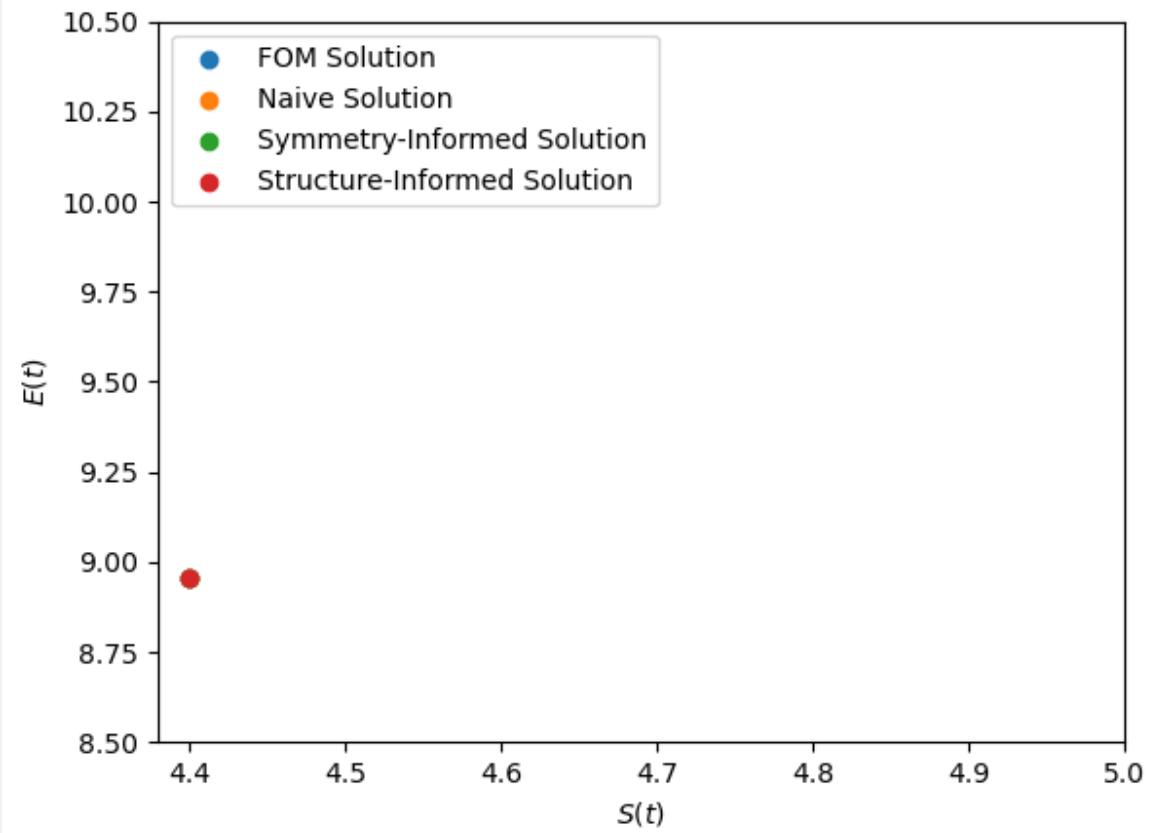
- Given: $\mathbf{L}, \mathbf{M}, \nabla E, \nabla S$ defining metriplectic system.
- Compute eigenvalue decomposition $\mathbf{M} = \sum_{\alpha=1}^r \lambda_\alpha \mathbf{m}^\alpha \otimes \mathbf{m}^\alpha$.
- Solve $\mathbf{L} = \xi(\nabla S)$ and $\mathbf{m}^\alpha = \mathbf{A}^\alpha \nabla E$ (freedom here).
- Compute $\hat{\xi} = \mathbf{U}^\top \xi(\mathbf{U}) \mathbf{U}$ and $\hat{\mathbf{A}}^\alpha = \mathbf{U}^\top \mathbf{A}^\alpha \mathbf{U}$.
- *Assemble RO quantities: $\hat{\mathbf{L}} = \hat{\xi}(\nabla \hat{S}), \hat{\mathbf{M}} = \sum_{\alpha=1}^r \lambda_\alpha \hat{\mathbf{A}}^\alpha \nabla \hat{E} \otimes \hat{\mathbf{A}}^\alpha \nabla \hat{E}$.

Toy example: two gas containers

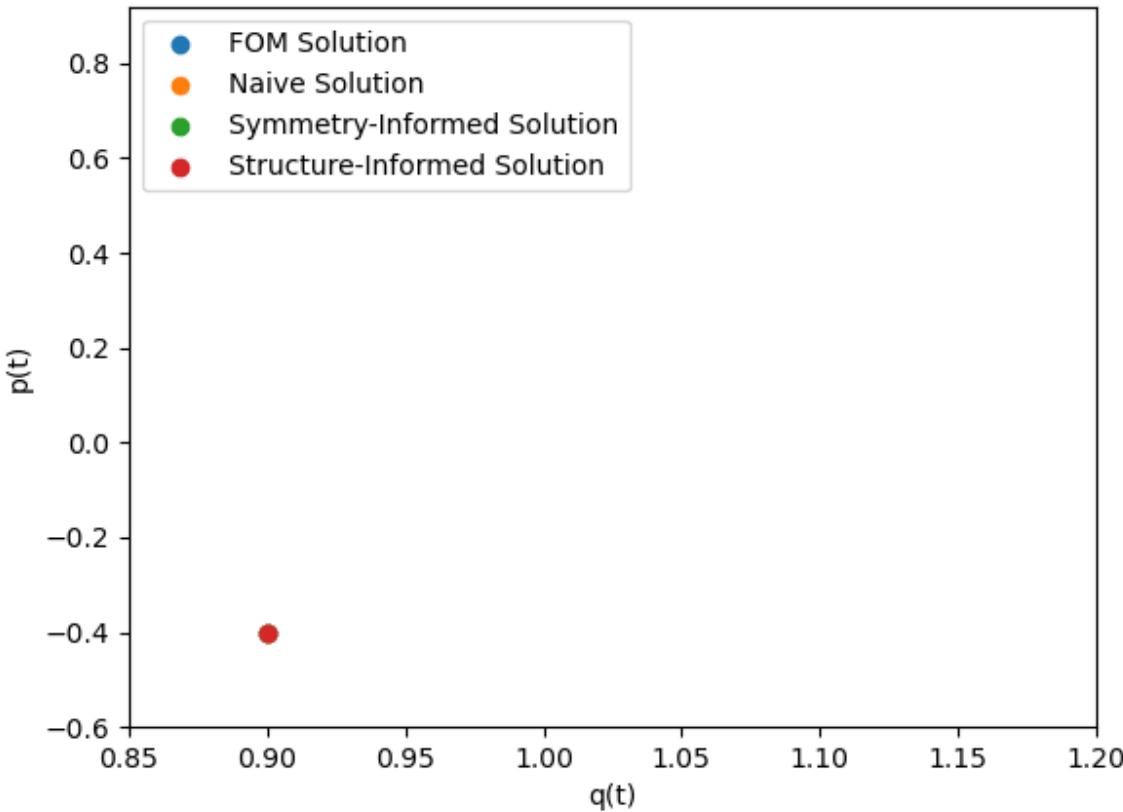
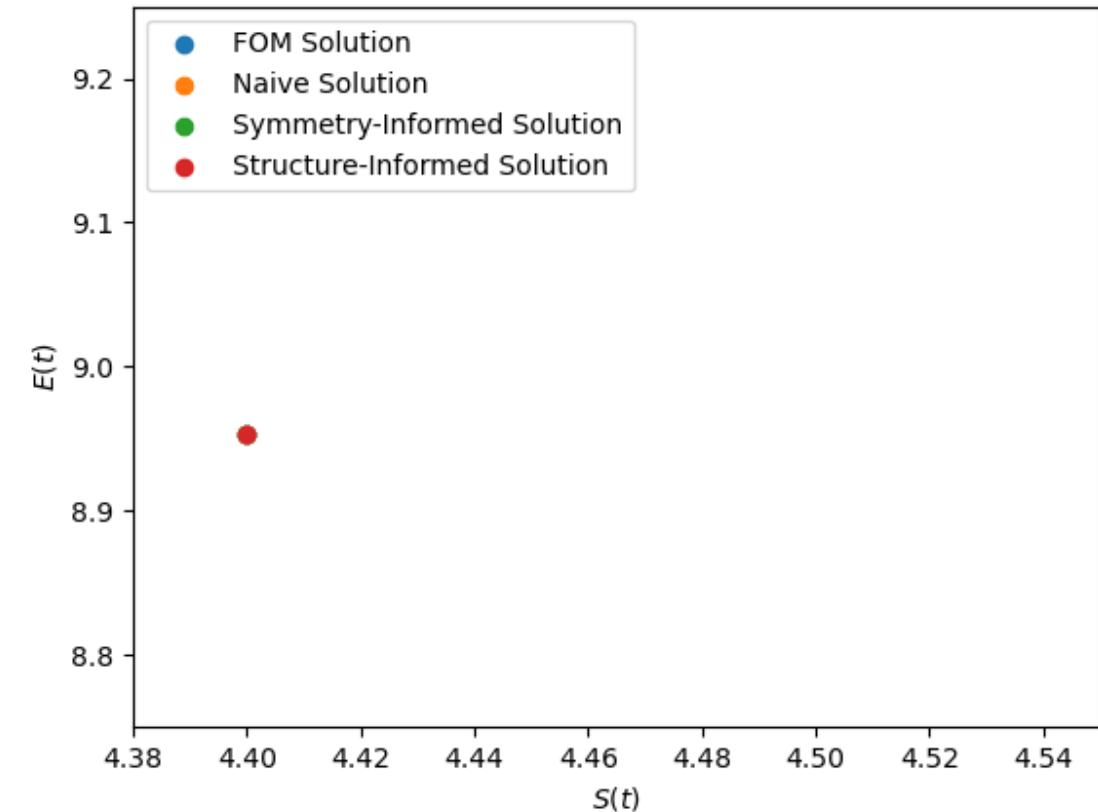
- Variables q, p, S_1, S_2 .
- Energy: $E(\mathbf{x}) = \frac{p^2}{2m} + \left(\frac{e^{\frac{S_1}{Nk_B}}}{\hat{c}q} \right)^{\frac{2}{3}} + \left(\frac{e^{\frac{S_1}{Nk_B}}}{\hat{c}(2-q)} \right)^{\frac{2}{3}}$
$$E_1 \qquad \qquad \qquad E_2$$
- Entropy: $S(\mathbf{x}) = S_1 + S_2$. $T_i = \partial_{S_i} E_i$
$$\mathbf{L} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \quad \mathbf{M} = \gamma \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & T_1^{-2} & -(T_1 T_2)^{-1} \\ 0 & 0 & -(T_1 T_2)^{-1} & T_2^{-2} \end{pmatrix}$$



Results: two gas containers (3 modes)



Results: two gas containers (4 modes)



Is this enough?

- Good: Explicit recipe, exact structure preservation, convergence.
- Bad: Requires storage of two **sparse degree 3 tensors**.
 - ξ contains $\binom{N}{3} \ll N^3$ independent components.
 - \mathbf{A} contains $r\binom{N}{2} \ll N^3$ independent components.
- Still too expensive. Any way to reduce cost?

Exterior algebra (EA)

- Recall the EA on V : $\Lambda(V) = T(V)/\{\mathbf{v} \otimes \mathbf{v} \mid \mathbf{v} \in V\}$
 - For example: $\mathbf{v} \wedge \mathbf{w} = \frac{1}{2} (\mathbf{v} \otimes \mathbf{w} - \mathbf{w} \otimes \mathbf{v})$ (DON'T store this)
- Advantage? Can multiply analytically first.
 - $\mathbf{v} \cdot (\mathbf{w}_1 \wedge \mathbf{w}_2 \wedge \dots \wedge \mathbf{w}_n) = \sum_{i=1}^n (-1)^{i-1} (\mathbf{v} \cdot \mathbf{w}_i) \mathbf{w}_1 \wedge \dots \wedge \widehat{\mathbf{w}_i} \wedge \dots \wedge \mathbf{w}_n$
 - So, $\mathbf{v} \cdot (\mathbf{u} \wedge \mathbf{W}^k) = (\mathbf{v} \cdot \mathbf{u}) \mathbf{W}^k - \mathbf{u} \wedge (\mathbf{v} \cdot \mathbf{W}^k)$

Why is this useful?

- Identify \mathbf{L} with the bivector sum $\mathbf{L} = \sum_{j < i} L^{ij} \mathbf{e}_i \wedge \mathbf{e}_j$.
- We have $\mathbf{L} \cdot \mathbf{v} = (-1)^{1(2+1)} \mathbf{v} \cdot \mathbf{L} = \sum_{j < i} L^{ij} v_j \mathbf{e}_i - \sum_{j > i} L^{ji} v_j \mathbf{e}_i = \mathbf{L}\mathbf{v}$.
- So, define $\boldsymbol{\xi} = \mathbf{L} \wedge \mathbf{s}_{k_0}$. $L^{ii} = 0$
 - Because of our design decision, $\mathbf{s}_{k_0} = \mathbf{e}_{k_0}/S^{k_0}$.
- $\boldsymbol{\xi}(\nabla S) = (\nabla S \cdot \mathbf{L}) \wedge \mathbf{s}_{k_0} + (\mathbf{s}_{k_0} \cdot \nabla S) \mathbf{L} = -\mathbf{L}\nabla S \wedge \mathbf{s}_{k_0} + \mathbf{L} = \mathbf{L}$,
 $= 1$

Why is this useful?

- Now, structure preservation is guaranteed by

$$\hat{\mathbf{L}} = \hat{\boldsymbol{\xi}} \left(\nabla \hat{S} \right) = (\mathbf{U}^\top \mathbf{L} \mathbf{U} \wedge \mathbf{U}^\top \mathbf{s}_{k_0}) \cdot \nabla \hat{S} = \boxed{\bar{\mathbf{L}} \nabla \hat{S} \wedge \mathbf{s}_{k_0}} + \left(\hat{\mathbf{s}}_{k_0} \cdot \nabla \hat{S} \right) \bar{\mathbf{L}}$$

since

$$\hat{\mathbf{L}} \nabla \hat{S} = (0) \hat{\mathbf{s}}_{k_0} + \left(\hat{\mathbf{s}}_{k_0} \cdot \nabla \hat{S} \right) \bar{\mathbf{L}} \nabla \hat{S} - \left(\hat{\mathbf{s}}_{k_0} \cdot \nabla \hat{S} \right) \bar{\mathbf{L}} \nabla \hat{S}.$$

- Only need to store $\bar{\mathbf{L}}$ and $\hat{\mathbf{s}}_{k_0} = \mathbf{U}^{k_0} / S^{k_0}$!!

Savings?

$$\mathbf{m}^\alpha \leftarrow \sqrt{\lambda_\alpha} \mathbf{m}^\alpha$$

- Similarly, choose $\mathbf{A}^\alpha = \mathbf{a}_{k_1}^\alpha \wedge \mathbf{e}_{k_1}$ where $\mathbf{a}_{k_1} = \boxed{\mathbf{m}^\alpha} / E^{k_1}$.
- Then, $\hat{\mathbf{A}}^\alpha = \hat{\mathbf{a}}_{k_1}^\alpha \wedge \mathbf{U}^{k_1}$ where $\hat{\mathbf{a}}_{k_1}^\alpha = \mathbf{U}^\top \mathbf{m}^\alpha / E^{k_1}$.
- Leads to $\hat{\mathbf{A}}^\alpha \nabla \hat{E} = \left(\nabla \hat{E} \cdot \mathbf{U}^{k_1} \right) \hat{\mathbf{a}}_{k_1}^\alpha - \left(\nabla \hat{E} \cdot \hat{\mathbf{a}}_{k_1}^\alpha \right) \mathbf{U}^{k_1}$
- No need to store SS matrices.

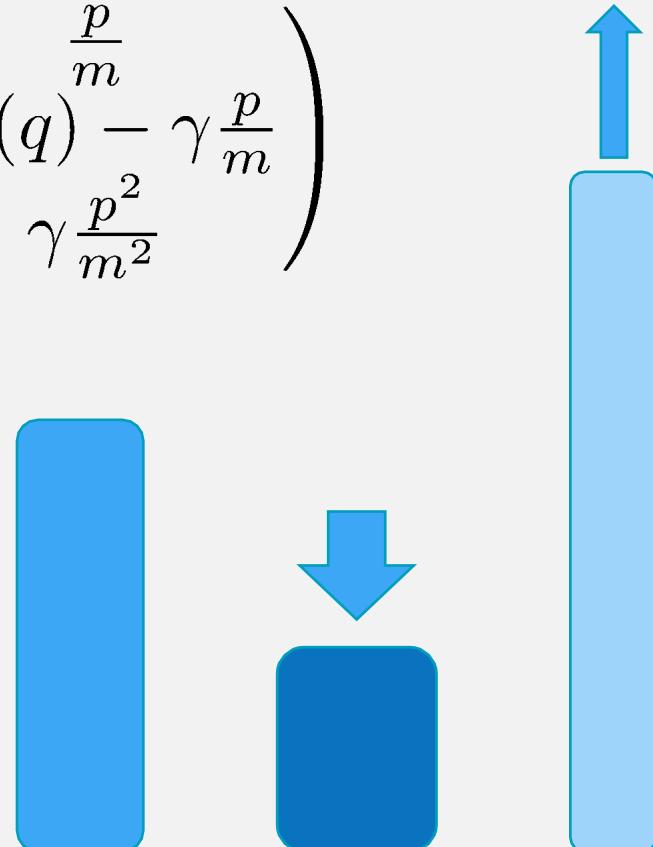
Savings?

- We have $\hat{\xi} : n^3 \rightarrow n + \binom{n}{2}$
 $\hat{\mathbf{A}} : rn^2 \rightarrow n(r + 1)$
- Makes metriplectic ROM feasible for larger problems.
 - *Make the algebra work for you!*

Example: Damped Thermoelastic Rod

- 1-D elastic rod with coordinate s .
 - damped Hamiltonian system with friction.

$$\begin{pmatrix} \dot{q} \\ \dot{p} \\ \dot{S} \end{pmatrix} = \begin{pmatrix} \frac{p}{m} \\ V'(q) - \gamma \frac{p}{m} \\ \gamma \frac{p^2}{m^2} \end{pmatrix}$$



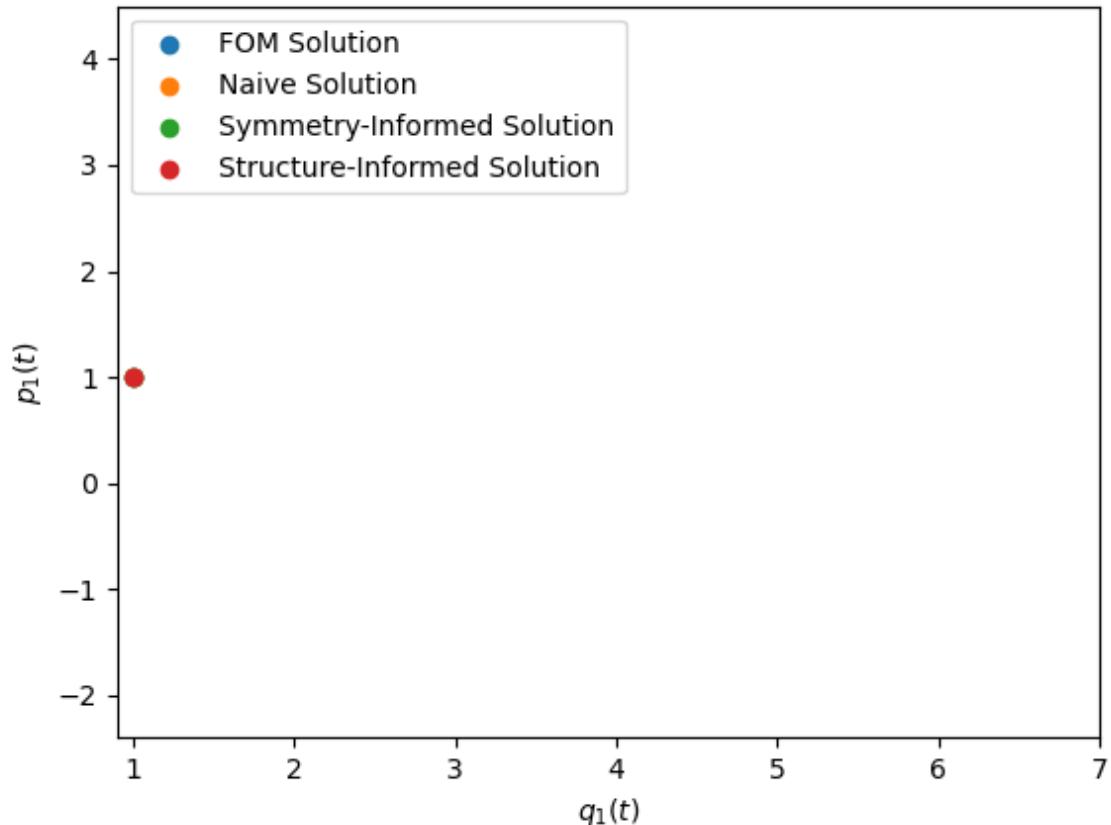
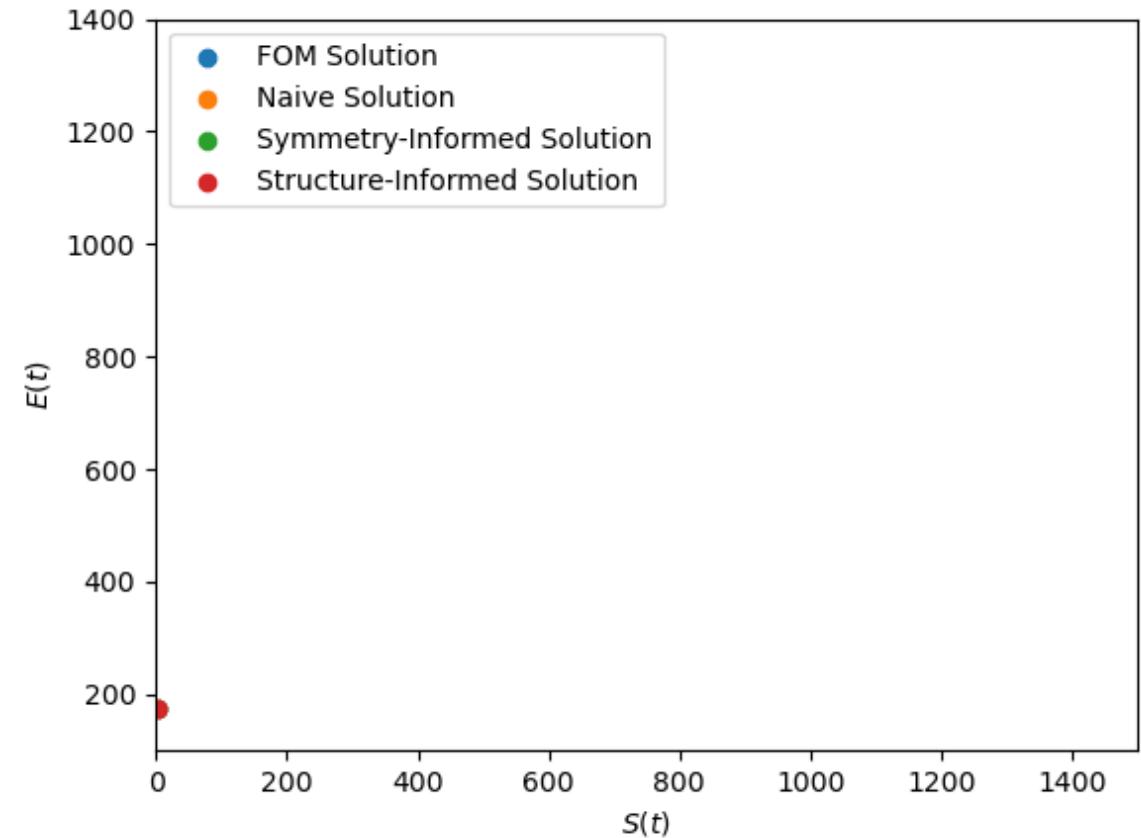
$$\begin{aligned} E(p, q, e) &= H(p, q) + S(e) \\ &= \int_0^\ell \left(\frac{p(s)^2}{2m(s)} + V(q(s)) \right) + \int_0^\ell e(s) \end{aligned}$$

- V a given potential function.

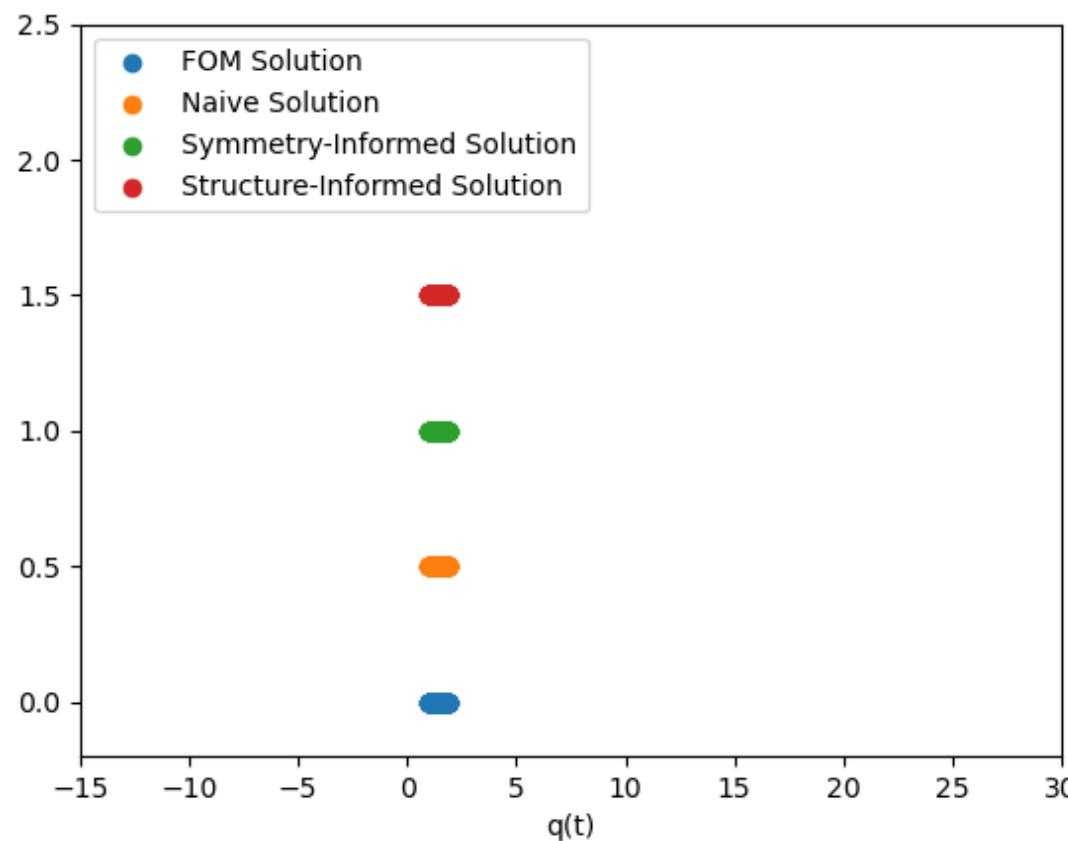
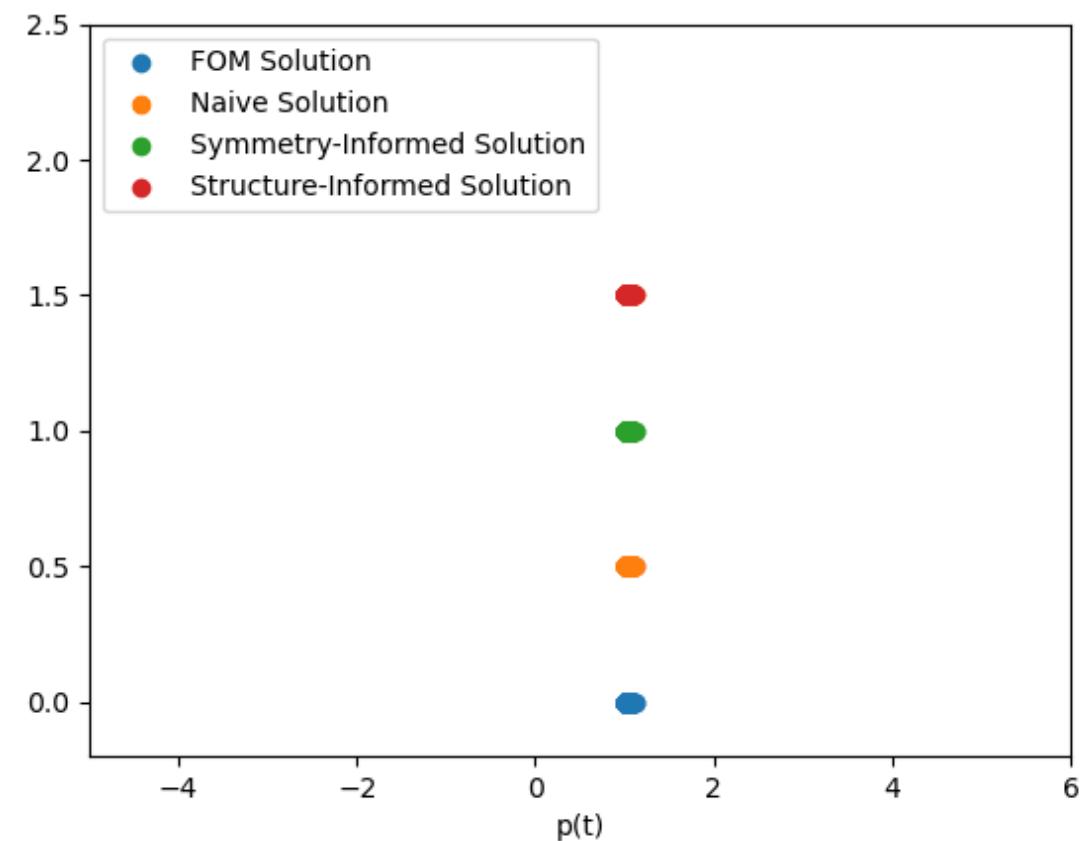
Example: Damped Thermoelastic Rod

- Discretization yields $\mathbf{x} = (\mathbf{q} \quad \mathbf{p} \quad S)^\top \in \mathbb{R}^{2N+1}$. $\nabla S = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$
- $\mathbf{L} = \begin{pmatrix} \mathbf{0}_{N \times N} & \mathbf{I} & \mathbf{0} \\ -\mathbf{I} & \mathbf{0}_{N \times N} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & 0 \end{pmatrix}, \quad \mathbf{M}(\mathbf{x}) = \gamma \begin{pmatrix} \mathbf{0}_{N \times N} & \mathbf{0}_{N \times N} & \mathbf{0} \\ \mathbf{0}_{N \times N} & \mathbf{I} & -\frac{\mathbf{p}}{m} \\ \mathbf{0} & -\frac{\mathbf{p}^\top}{m} & \left(\frac{|\mathbf{p}|}{m}\right)^2 \end{pmatrix} \quad \nabla E(\mathbf{x}) = \begin{pmatrix} \mathbf{V}'(\mathbf{q}) \\ \frac{\mathbf{p}}{m} \\ 1 \end{pmatrix}$
- Notice, $\mathbf{M} = \sum_{\alpha=1}^N \mathbf{m}^\alpha \otimes \mathbf{m}^\alpha, \quad \mathbf{m}^\alpha = \sqrt{\gamma} \begin{pmatrix} \mathbf{0} & \mathbf{e}_\alpha & -\frac{p_\alpha}{m} \end{pmatrix}^\top,$
- Can choose $\hat{\xi} = \bar{\mathbf{L}} \wedge \mathbf{U}^{2N+1}, \quad \hat{\mathbf{A}}^\alpha(\tilde{\mathbf{x}}) = \mathbf{U}^\top \mathbf{m}^\alpha(\tilde{\mathbf{x}}) \wedge \mathbf{U}^{2N+1}$

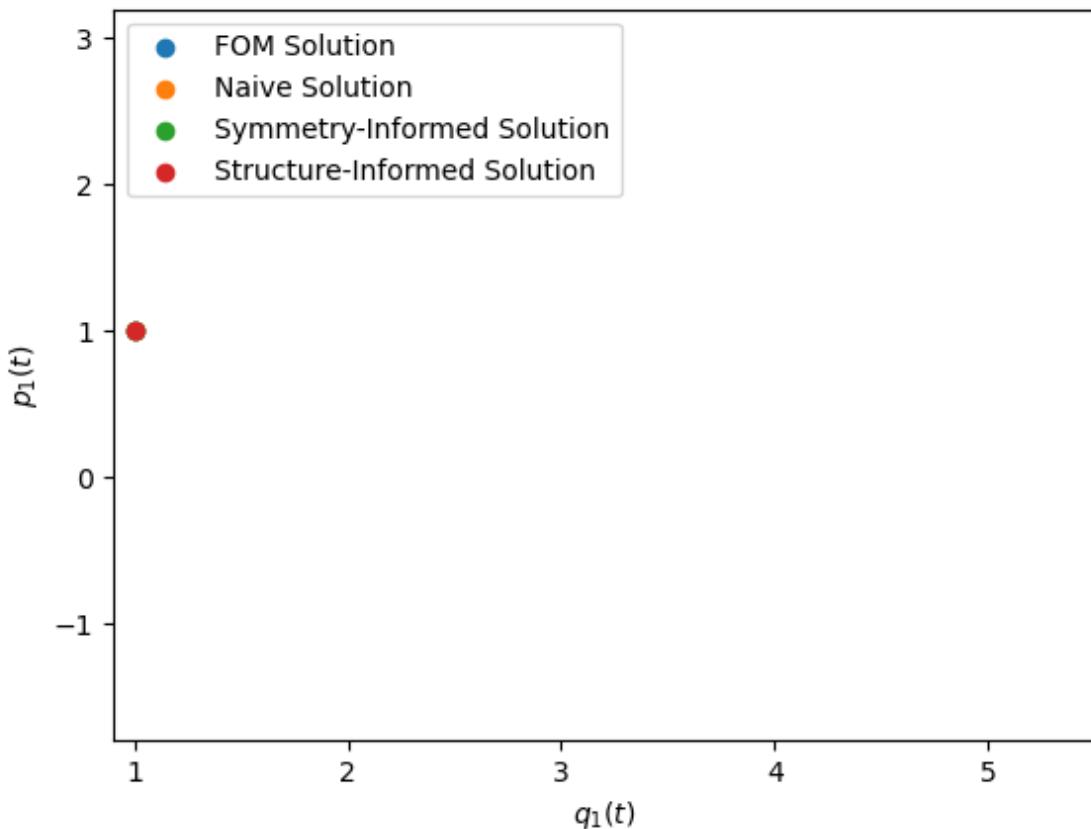
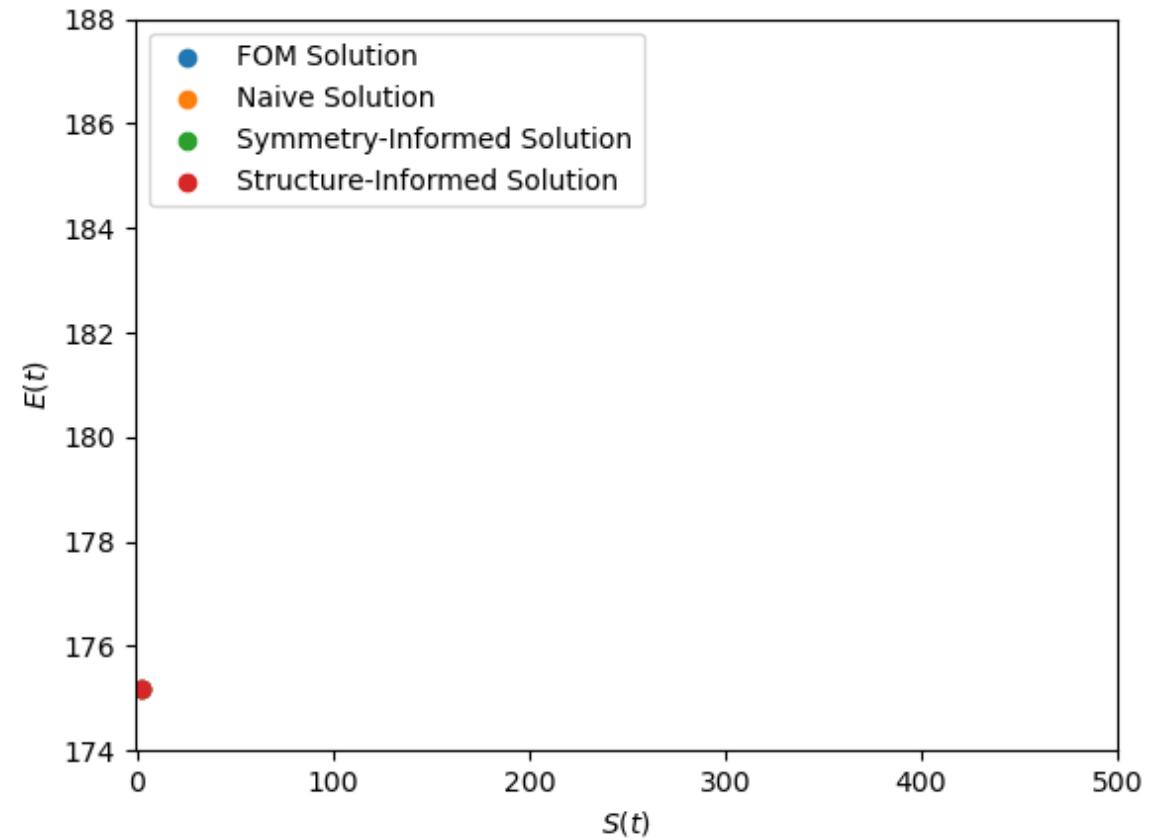
Results: Damped Thermoelastic Rod (10 modes)



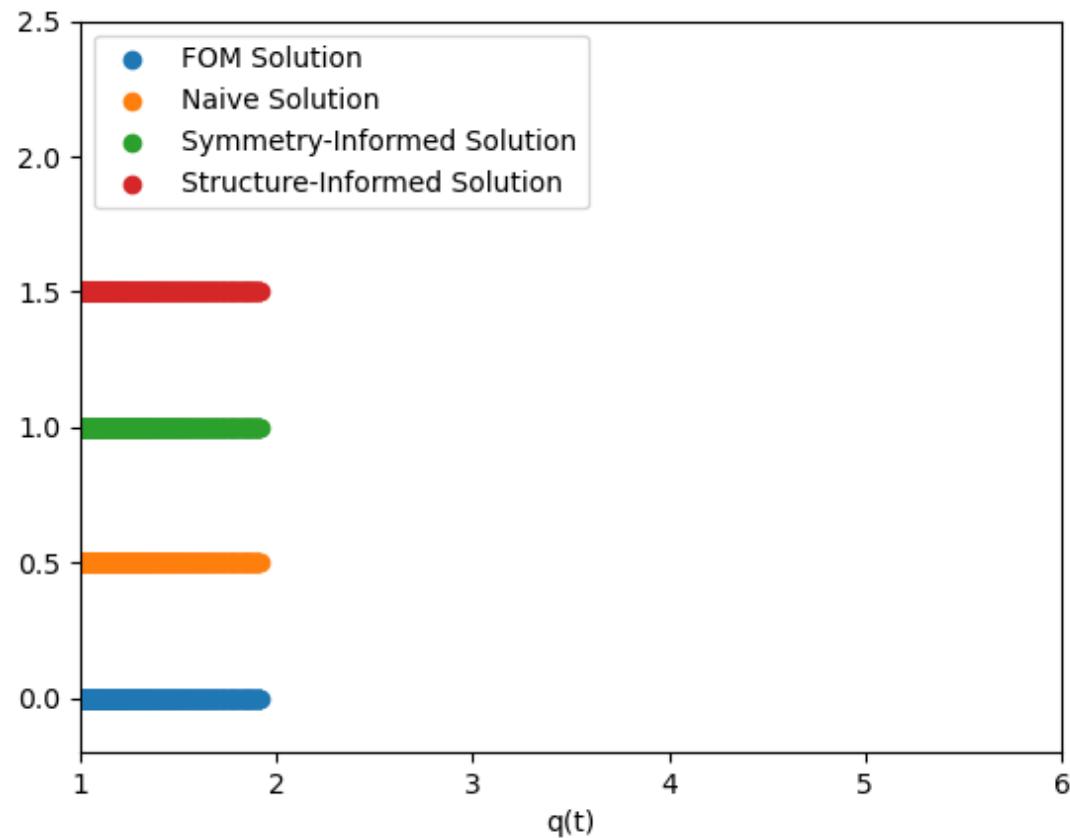
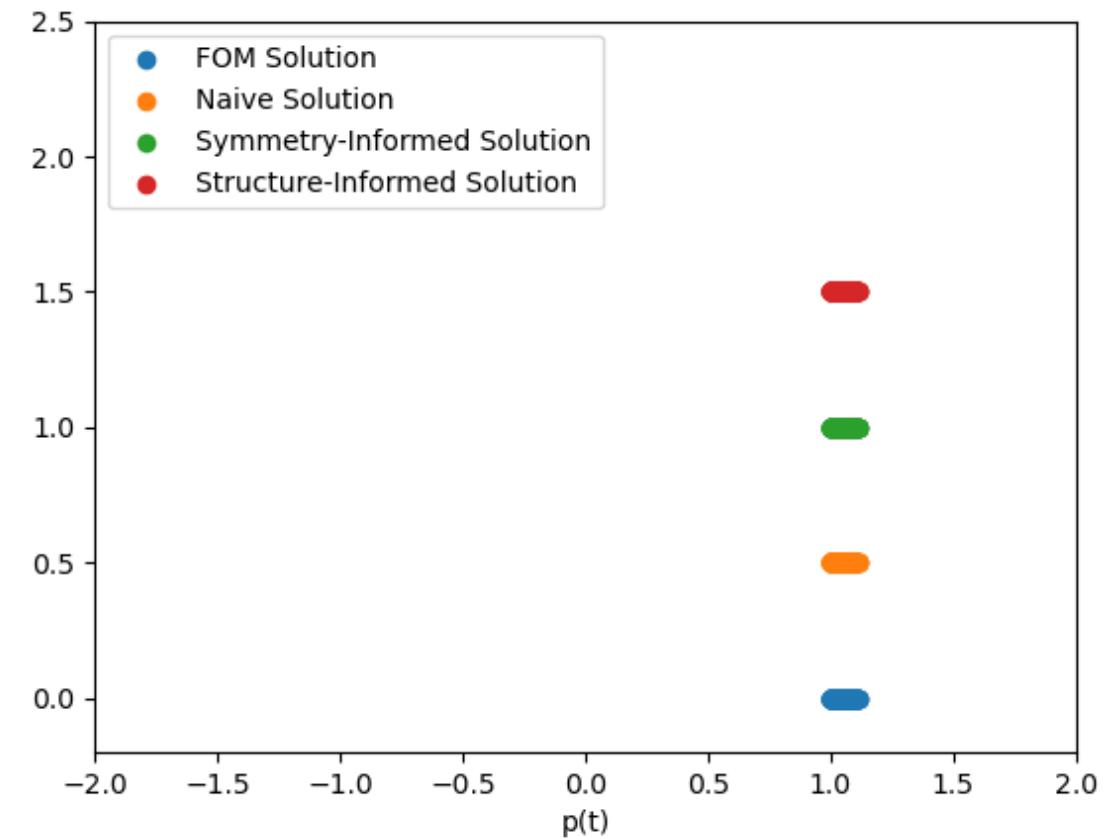
Results: Damped Thermoelastic Rod (10 modes)



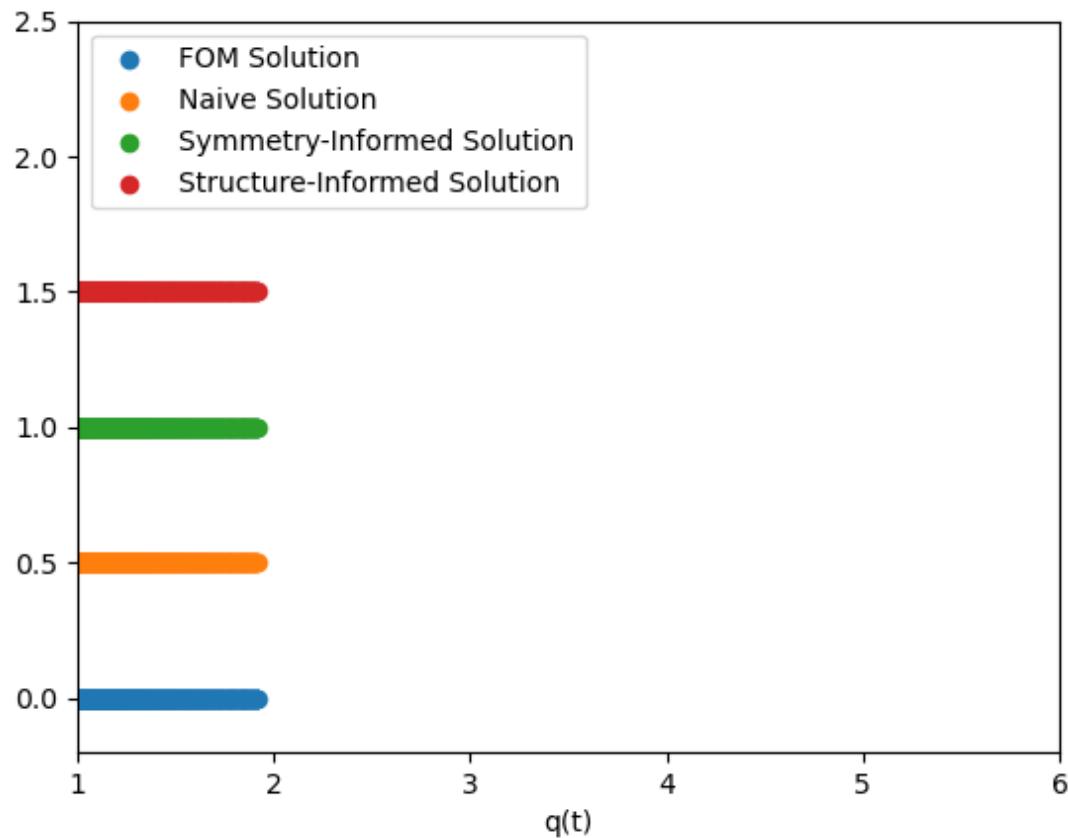
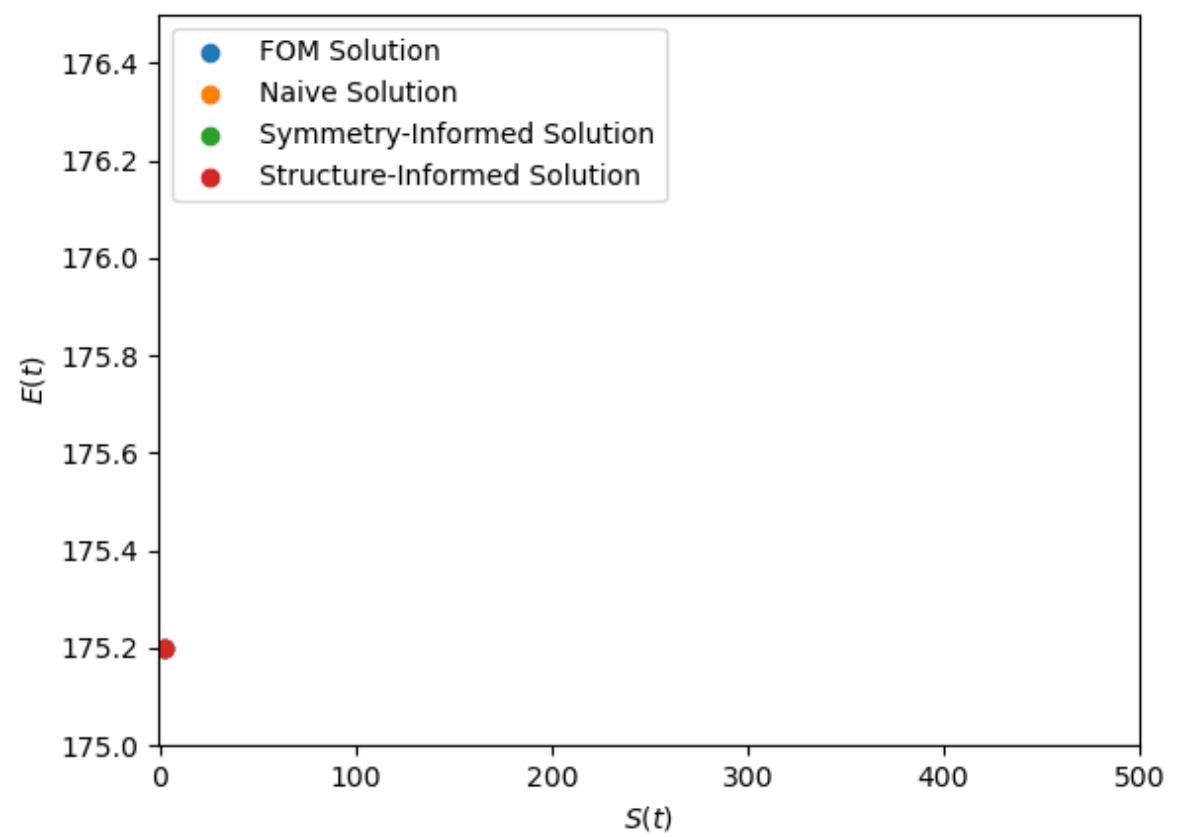
Results: Damped Thermoelastic Rod (60 modes)



Results: Damped Thermoelastic Rod (60 modes)



Results: Damped Thermoelastic Rod (120 modes)



What's next?

- Structure-preserving hyper-reduction for nonlinearities.

- Need non-intrusive version!!

- Good methods for Lagrangian

systems.

- Extension to Euler-Poincare, Lie-Poisson.

$$\frac{\partial f}{\partial t} = -\mathcal{J}^{ij} H_j f_i + \frac{1}{2} D \mathcal{J}^{ik} \frac{\partial}{\partial x^i} \left[f \mathcal{J}^{jk} \frac{\partial}{\partial x^j} (\log f + \beta H) \right],$$

$$\{F, G\} = \int_{\Omega} f \frac{\partial}{\partial x^i} \left(\frac{\delta F}{\delta f} \right)_{\beta} \mathcal{J}^{ij} \frac{\partial}{\partial x^j} \left(\frac{\delta G}{\delta f} \right)_{\beta} dV,$$

$$[F, G] = \frac{D}{2} \int_{\Omega} f \frac{\partial}{\partial x^i} \left(\frac{\delta F}{\delta f} \right)_{\beta} \mathcal{J}^{ik} \mathcal{J}^{jk} \frac{\partial}{\partial x^j} \left(\frac{\delta G}{\delta f} \right)_{\beta} dV,$$

Naoki Sato, Dissipative brackets for the Fokker-Planck equation in Hamiltonian systems and characterization of metriplectic manifolds, *Physica D: Nonlinear Phenomena*, Volume 411, 2020.

Thank you!

Contact: adgrube@sandia.gov

References:

A. Gruber, M. Gunzburger, L. Ju, Z. Wang, "Energetically Consistent Model Reduction for Metriplectic Systems", CMAME, 2023

A. Gruber, I. Tezaur, "Canonical and Noncanonical Hamiltonian Operator Inference", (coming soon!)

Codes:

https://github.com/agrubertx/metriplectic_POD-ROM
<https://github.com/ikalash/HamiltonianOplnf>

