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Full-Order Model

§ Consider state variable                .

§ N ranges from “large” to “very large” (           not uncommon).

§       is vector of parameters.

§ Dynamics take the form 

  .

§ Can be expensive to solve.  How to reduce cost?
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Reduced-Order Models

§ High-fidelity PDE simulations are expensive.

§ semi-discretization blows up dimensionality.

§ Good results possible without solving full PDE?

§ Standard is to encode -> solve -> decode.

§ Linear: POD, RBM, etc.

§ Nonlinear: kernel methods, neural networks, etc.
https://mpas-dev.github.io/atmosphere/atmosphere.html
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Outline

Introduction to Model 
Reduction

1

Hamiltonian Model Reduction
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Metriplectic Model Reduction
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• Joint work with Max Gunzburger (UT Austin),  Lili Ju (U of SC), 
     Zhu Wang (U of SC),  and Irina Tezaur (Sandia CA).



Idea Behind ROM
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Proper Orthogonal Decomposition
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Does this work?

§ Trained on one period

§ Tested on five
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Hamiltonian Systems

§ Archetype for conservative systems:         .

§ Governed by scalar potential function H and  SS matrix       .

§      defines (potentially degenerate) Poisson bracket          .

§ Satisfies Jacobi identity         .  

§ Guarantees that flow is       and energy is conserved:

 .
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Examples) Hamiltonian Systems

§ Undamped simple harmonic oscillator: 

§ Incompressible Euler:

        .

§ Warning!  Vorticity is the Hamiltonian variable!

GIFs courtesy of Wikipedia under Creative Commons license
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§ Naïve Galerkin projection yields     .

§ Not Hamiltonian,          .

§ One solution due to Y. Gong, Q. Wang, Z. Wang (2017):

§ Recall that               .

§ We want           .

§ Implies the overdetermined system                .  

§ Solution is  ,   (antisymmetry is obviously inherited).

What about ROM?
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Hamiltonian ROM

§ Energy conservation is retained:        

         

§ Can prove convergence to FOM solution with increasing POD basis.

§ Need a symplectic time integrator (many choices available).

§ For ”easy” nonlinearities, AVF is a good choice.

                    

                 

11



§ What happens if no access to FOM code?  Operator inference.

§ Partial solution for canonical systems (Sharma, Kramer, Wang 2022):

§ Postulate a reduced Hamiltonian      .

§ Dynamical system becomes   . 

§ Infer

Nonintrusive Hamiltonian ROMs
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§ Yeah!  But…

§ Relies on         .

§ Needs a block-diagonal  

§ How to extend to more general 

systems?

Does it work?
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§ Recognize special case of more general OpInf procedure:

§ Joint w. Irina Tezaur (Sandia CA)

§ Can solve ,   .

§ If      is known, this is “canonical” inference!

§ If          is known, this is noncanonical inference.

Hamiltonian Operator Inference
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§ Need to solve minimization 

      , 

§ Boils down to unconstrained linear system:

 ,

where      ,                                    .

Hamiltonian Operator Inference
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§ Consider solving 

§ Recast as 

§ Discretizing with periodic BCs yields

§ A = L  is non-canonical!

 KdV Equation



KdV Equation

August 8, 2023 20

N = 500, n=36 N = 500, n=48
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 KdV Equation



§ If   ,

     ,

   have maximal rank.

§ Theorem:                       ,                                

                 as       and                 .

Convergence with increasing data
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§ Benjamin-Bona-Mahoney equation:

§ Hamiltonian: 

§ Poisson structure:

§ Intrusive H-ROM not feasible

§ Can we still get a good OpInf H-ROM?

BBM Equation
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BBM Equation

August 8, 2023 24

N = 1024, n=36 N = 1024, n=72
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 BBM Equation



Beyond Hamiltonian systems

§ Generalizes first law of thermodynamics.

§ Only useful for conservative systems!

§ What about, e.g., dissipation?

§ Need two laws….

§ Recall Casimir invariants:            .  

§ Casimirs are potential entropy functions.

Illustration courtesy of P. J. Morrison
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Beyond Hamiltonian systems

§ Notice,       generates same 

dynamics as      .

§ But relaxes to different equilibria!

§ Can we maintain a complete picture of the dynamics?

§ Choose             for some Casimir       .

§ Analogue of isolated systems in thermodynamics.

§ Examples:  Boltzmann equation, Vlasov with collisions.

dissipation

barrier
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Metriplectic Systems

§ Consider a system         .

§ Hamiltonian + Gradient:        .

§ Energy and Entropy function(al)s           .

§ Want to capture     .

§ How to appropriately “stitch together” reversible and irreversible parts?
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Metriplectic Systems

§ Note,

    , 

§ Solution?  Prescribed degeneracies!

§ Choose .

0
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Example: Thermoelastic Double Pendulum

§ State variable 

§ Energy/Entropy:            .  
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Metriplectic SP-ROM

§ Want to reduce    . 

§          and          satisfy symmetries, but…. 

§ Clearly         (same for          ).

§ Metriplectic structure is not preserved!

§ No separation between reversible and irreversible parts.
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Does this matter?

32



Metriplectic SP-ROM

§ How to ensure      .

§ Constrained optimization?  Too expensive.

§ Penalty method?  Too loose.

§ Build in symmetries directly!

§ Can always parameterize at expense of increasing tensor degree.
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§ If                        and                       ,  then                           .

§     is order 3 totally antisymmetric tensor field       .

§ If                              and                       ,  then           .

§    is rank 4 tensor field              .

§ Satisfies      .

Metriplectic SP-ROM
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Metriplectic SP-ROM
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Why does this help?

§ Galerkin projection        yields:

       

§ If instead

   

§ For some            with the right symmetries, then things will work!
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§ Consider the eigenvalue decomposition    .

§ Suppose        where                 .      .

§ Can choose      .

§ Automatically preserves symmetries.

§ Requires solving       (design decision). 

Simplifying M
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Metriplectic ROM

§ All together:     .

  . 

§ Theorem:  if    is a POD basis and      are regular, 
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Recap: what’s necessary?

§ Given:                                       defining metriplectic system.

§ Compute eigenvalue decomposition     .      

§ Solve and           (freedom here). 

§ Compute     and   .

§ *Assemble RO quantities: ,    .  
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Toy example: two gas containers

§ Variables       .      

§ Energy:        .

§ Entropy:        .
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Results: two gas containers (3 modes)
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Results: two gas containers (4 modes)
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Is this enough?

§ Good:  Explicit recipe, exact structure preservation, convergence.

§ Bad:  Requires storage of two sparse degree 3 tensors.

§     contains                     independent components.

§     contains independent components.

§ Still too expensive.  Any way to reduce cost?
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Exterior algebra (EA)

§ Recall the EA on V: 

§ For example:           (DON’T store this)

§ Advantage?  Can multiply analytically first.

§   

§ So,       . 

46



§ Identify L with the bivector sum            .

§ We have         .

§ So, define     .

§ Because of our design decision,      .

§         

Why is this useful?
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§ Now, structure preservation is guaranteed by           .

      since 

           .

§ Only need to store       and    !!

Why is this useful?
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§ Similarly, choose           .    where      .

§ Then,      where   .

§ Leads to

§ No need to store SS matrices.

Savings?
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§ We have     ,

       

§ Makes metriplectic ROM feasible for larger problems.

§ Make the algebra work for you!

Savings?
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§ 1-D elastic rod with coordinate s.

§ damped Hamiltonian system 

with friction.

§ V a given potential function.

Example: Damped Thermoelastic Rod
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§ Discretization yields                                 .

§ Notice, 

§ Can choose

Example: Damped Thermoelastic Rod
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Results: Damped Thermoelastic Rod (10 modes)
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Results: Damped Thermoelastic Rod (10 modes)
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Results: Damped Thermoelastic Rod (60 modes)
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Results: Damped Thermoelastic Rod (60 modes)
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Results: Damped Thermoelastic Rod (120 modes)
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§ Structure-preserving hyper-reduction 

for nonlinearities.

§ Need non-intrusive version!!

§ Good methods for Lagrangian 

systems.

§ Extension to Euler-Poincare, Lie-

Poisson.

What’s next?

Naoki Sato, Dissipative brackets for the Fokker–Planck equation in Hamiltonian systems and 
characterization of metriplectic manifolds, Physica D: Nonlinear Phenomena, Volume 411, 2020.
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Thank you!
Contact:  adgrube@sandia.gov
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Codes:
https://github.com/agrubertx/metriplectic_POD-ROM
https://github.com/ikalash/HamiltonianOpInf

https://github.com/agrubertx/metriplectic_POD-ROM
https://github.com/ikalash/HamiltonianOpInf

