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High Data Rate GMOT Experiment Cycle

Contrast (𝑪) SNR as figure of merit

• Τ𝐶 𝛿𝐶 ∼ Τ1 𝜎𝑔 = Τ𝑔𝑘𝑇2 𝛿𝜙

• 𝑆Bg : background fluorescence after 

depumping atoms to 𝐹 = 1
• 𝑆𝐹=2 : atoms that would have 

transferred due to Raman AI pulses
• 𝑆𝐹=1+2 : total atom signal
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Overview
Light-pulse atom interferometers (LPAIs) are important for advanced
inertial sensing applications due to their exquisite sensitivity and long-
term stability but operating in real-world environments remains
challenging. Cold-atom LPAIs interrogate freefalling atoms with a

sensitivity 𝜎𝑔 ∝ 1/𝑇AI
2 for interrogation time 𝑇AI , therefore the best

sensitivity is achieved by maximizing 𝑇AI but this causes the LPAI to be
susceptible to dynamics occurring on timescales ≲ 𝑇AI.

Light-Pulse Atom Interferometry (LPAI)
Drive Doppler-sensitive Raman transitions between 87Rb ground states 

using 
𝜋

2
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2
pulse sequence (note 𝑇AI ≈ 2𝑇).

• Atomic population coherently 
oscillates between

• Resulting interference fringe phase 
is sensitive to accelerations

Prototype Compact LPAI System
Structure was primarily designed with the goals of minimizing mechanical
degrees-of-freedom while maintaining a compact formfactor [1].
• “Alignment-free” optics system with all fiber delivery of 780 nm light
• Nonconductive materials (FR4, PEEK) to reduce eddy currents

In-house-fabricated grating chip is composed of 
three binary gratings in a triangular orientation to 
form a tetrahedral GMOT [4-6].

Vacuum package is similar to the passively-pumped 
system that has sustained a MOT for ≳2 years [7].
• Volume: 1.6 × 1.6 × 1.6 in3 (4 × 4 × 4 cm3)
• Internally-mounted grating chip using 3D-printed 

Ti swan-neck flexure mount and retaining ring
• Includes Rb dispensers, NEGs, and 

AR-coated fused silica viewports
• Sapphire viewports were used in [7] to 

reduce He permeation

High Data Rate Approach
Mitigate detrimental effects of relative motion between the atoms and
interrogation lasers is to operate the LPAI at high cycle rates (𝑅)

𝑅 ≡
1

𝑇Cycle
=

1

𝑇Cooling
+

1

𝑇AI
+

1

𝑇Overhead

necessitating a tradeoff between signal (∼ 𝑇Cooling) and sensitivity (∼ 𝑇AI).

Building on previous work that demonstrated a grating magneto-optical
trap (GMOT) LPAI accelerometer [1], we present work towards achieving
high cycle rate ( 𝑅 ≳ 100 Hz ) GMOT operation. This is enabled by
recapturing atoms from cycle-to-cycle [2,3], reducing 𝑇MOT and
maximizing 𝑇AI. This result will enable development of fieldable LPAIs
tolerant of dynamics.

Varying GMOT Cooling Power
Maximum atom number is expected to occur with ≈ 10 − 30 ΤmW cm2 of
cooling power [8,9].
• Prototype system cooling power limited by inefficient truncated-

Gaussian “flat-top” beam shaper (∼ 16.4% delivered to grating)
• Fixed 𝑅 = 41.25 Hz : 𝑇Cycle = 24.24 ms, 𝑇MOT = 10 ms, 𝑇AI = 10 ms

Varying Cycle Rate (Varying 𝑇MOT and 𝑇AI)
Explore tradeoff between signal ( Τ𝐶 𝛿𝐶) and potential LPAI sensitivity (𝜎𝑔 ∝

1/𝑇AI
2 ).

• Fixed 𝐼Cooling = 7.99 ΤmW cm2

Next Steps and Future Directions
• Increase GMOT cooling power ≳ 10 ΤmW cm2 to reach predicted 

maximum GMOT atom number [8,9]
• Replace single-sideband (IQ) modulators [10-13] with acousto-optic 

modulators (AOMs) to improve system reliability
• Calibrate fluorescence to extract atom number
• Measure temperature after sub-Doppler cooling
• Implement D2 Λ-enhanced grey molasses for GMOT [14,15]

𝐶 =
𝑆𝐹=1+2 − 𝑆Bg − 𝑆𝐹=2 − 𝑆Bg

𝑆𝐹=1+2 − 𝑆Bg + 𝑆𝐹=2 − 𝑆Bg

Δ𝜙 = 𝒌eff ⋅ 𝒂 − 2𝒗 × 𝛀 𝑇2

ȁ ۧ𝑔1 ≡ ห ൿ5 2𝑆 Τ1 2, 𝐹 = 1,𝑚𝐹 = 0

ȁ ۧ𝑔2 ≡ ห ൿ5 2𝑆 Τ1 2, 𝐹 = 2,𝑚𝐹 = 0
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